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Abstract

We study the problem of allocating indivisible
goods among agents that have an identical subad-
ditive valuation over the goods. The extent of fair-
ness and efficiency of allocations is measured by
the generalized means of the values that the allo-
cations generate among the agents. Parameterized
by an exponent term p, generalized-mean welfares
encompass multiple well-studied objectives, such
as social welfare, Nash social welfare, and egal-
itarian welfare. We establish that, under identi-
cal subadditive valuations and in the demand or-
acle model, one can efficiently find a single allo-
cation that approximates the optimal generalized-
mean welfare—to within a factor of 40—uniformly
for all p € (—o0, 1]. Hence, by way of a constant-
factor approximation algorithm, we obtain novel
results for maximizing Nash social welfare and
egalitarian welfare for identical subadditive valua-
tions.

1

A significant body of recent work, in artificial intelligence
and computational social choice, has been directed towards
the study of fair and efficient allocation of indivisible goods
among agents; see, e.g., [Endriss, 2017] and [Brandt et al.,
2016]. This thread of research has led to the development of
multiple algorithms and platforms (e.g., Spliddit [Goldman
and Procaccia, 2015]) which, in particular, address settings
wherein discrete resources (that cannot be fractionally allo-
cated) need to be partitioned among multiple agents. Con-
tributing to this line of work, the current paper studies discrete
fair division from a welfarist perspective.

We specifically address the problem of finding allocations
(of indivisible goods) that (approximately) maximize the gen-
eralized means of the agents’ valuations. Formally, for ex-
ponent parameter p € R, the pth generalized mean, of n
nonnegative values {v;}?_;, is defined as M, (v1,...,v,) ==

1
(£ >, 07)*. Parameterized by p, this family of functions in-
cludes well-studied fairness and efficiency objectives, such
as average social welfare (p = 1), Nash social welfare
(p — 0), and egalitarian welfare (p — —o0). In fact, gen-
eralized means—with the exponent parameter p in the range
(=00, 1]—admit a fundamental axiomatic characterization:
up to monotonic transformations, generalized means (with
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p € (—o0, 1]) exactly constitute the family of welfare func-
tions that satisfy the Pigou-Dalton transfer principle and a
few other key axioms [Moulin, 2004]." Hence, by way of
developing a single approximation algorithm for maximizing
generalized means, the current work provides a unified treat-
ment of multiple fairness and efficiency measures.

With generalized mean as our objective, we focus on fair-
division instances in which the agents have a common sub-
additive (i.e., complement free) valuation. Formally, a set
function v, defined over a set of indivisible goods [m], is a
said to be subadditive iff, for all subsets A and B of [m],
we have v(A U B) < v(A) + v(B). This class of functions
includes many other well-studied valuation families, namely
XOS, submodular, and additive valuations.? These function
classes have been used extensively in computer science and
mathematical economics to represent agents’ valuations. Of
particular relevance here are results that (in the context of
combinatorial auctions) address the problem of maximizing
social welfare under submodular, XOS, and, more generally,
subadditive valuations [Nisan et al., 2007].

As mentioned previously, we restrict attention to fair-
division instances wherein all the agents have an identical
valuation. This focus on a common valuation function pro-
vides a technically interesting and applicable subclass of fair-
division problems—as a stylized application, consider a setting
in which the agents’ values represent money, i.e., for every
agent, the value of each subset (of the goods) is equal to the
subset’s monetary worth. Here, one encounters subadditiv-
ity when considering goods that are substitutes of each other.
Also, from a technical standpoint, we note that the problem
of maximizing social welfare is APX-hard even under iden-
tical submodular [Khot et al., 2008] and subadditive valua-
tions [Dobzinski et al., 2005]. One can extend this hardness
result to all p € (—o0, 1].

1.1 Our Results

Addressing fair-division instances with identical subadditive
valuations, we develop an efficient constant-factor approxi-
mation algorithm for the generalized-mean objective (Theo-
rem 1). Specifically, our algorithm computes an allocation (of
the indivisible goods among the agents), A, with the property
that its generalized-mean welfare, M, (A), is at least 1/40

"Note that generalized means are ordinally equivalent to CES
(constant elasticity of substitution) functions.

Recall that a submodular function f is defined by a diminishing
returns property: f(A +e) — f(A) > f(B+e) — f(B), for all
subsets A C Bande ¢ B.
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times the optimal p-mean welfare, for all p € (—o0, 1]. This
result in fact implies an interesting existential guarantee as
well: if in a fair-division instance the agents’ valuations are
identical and subadditive, then there exists a single allocation
that uniformly approximates the optimal p-mean welfare for
allp € (—o0,1].

The tradeoff between fairness and economic efficiency is
an important consideration in fair division literature.> The
relevance of the above-mentioned existential guarantee is
substantiated by the fact that this result reasonably mitigates
the fairness-efficiency tradeoff in the current context; it shows
that for identical subadditive valuations there exists a single
allocation which is near optimal with respect to efficiency ob-
jectives (in particular, social welfare) as well as fairness mea-
sures (e.g., egalitarian welfare).

Furthermore, we note that even specific instantiations of
our algorithmic guarantee provide novel results: while the
problem of maximizing Nash social welfare, among n agents,
admits an O(n log n)-approximation under nonidentical sub-
modular valuations [Garg ef al., 2020], the current work pro-
vides a novel (constant-factor) approximation guarantee for
maximizing Nash social welfare when the agents share a
common subadditive (and, hence, submodular) valuation.*
Analogously, the instantiation of our result for egalitarian
welfare is interesting in and of itself.

Given that the valuations considered in this work express
combinatorial preferences, a naive representation of such set
functions would require exponential (in the number of goods)
values, one for each subset of the goods. Hence, to primar-
ily focus on the underlying computational aspects and not on
the representation details, much of prior work assumes that
the valuations are provided via oracles that can only answer
particular type of queries. The most basic oracle considered
in literature answers value queries: given a subset of the indi-
visible goods, the value oracle returns the value of this subset.
In this value oracle model, the work of Vondrak (2008) con-
siders submodular valuations and provides an efficient _<5-
approximation algorithm for maximizing social welfare. Us-
ing this method as a subroutine and, hence, completely in
the value oracle model, our algorithm achieves the above-
mentioned approximation guarantee for identical submodular
valuations.

Another well-studied oracle addresses demand queries.
Specifically, such an oracle, when queried with an assign-
ment of prices pi,...,pm € R to the m goods, returns

MAaXgCm] (v(S )= 2ies pj> , for the underlying valuation

function v.°> Demand oracles have been often utilized in prior

3For example, consider the work on price of fairness [Bertsimas
etal.,2011; Bei et al., 2019]

*We note that, under nonidentical additive valuations, there ex-
ists a polynomial-time 1.45-approximation algorithm for maximiz-
ing Nash social welfare [Barman et al., 2018al. Furthermore, under
identical additive valuations, maximizing Nash social welfare ad-
mits a polynomial-time approximation scheme [Nguyen and Rothe,
2014; Barman et al., 2018b].

>Observe that a value query can be simulated via polynomially
many demand queries. Though, the converse is not true [Nisan et
al., 2007].
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work for addressing social-welfare maximization in the con-
text of subadditive and XOS valuations [Nisan er al., 2007].
In particular, the work of Fiege (2009) shows that, under sub-
additive valuations and assuming oracle access to demand
queries,6 the social-welfare maximization problem admits an
efficient 2-approximation algorithm. Demand queries are un-
avoidable in the subadditive case: one can directly extend the
result of Dobzinski et al. (2010) to show that, even under
identical (subadditive) valuations, any sub-linear (in n) ap-
proximation of the optimal social welfare requires exponen-
tially many value queries. At the same time, we note that our
algorithm requires demand oracle access only to implement
the 2-approximation algorithm of Fiege (2009) as a subrou-
tine. Beyond this, we can work with the value oracle.

1.2 Related Work

Multiple algorithmic and hardness results have been devel-
oped to address welfare maximization in the context of indi-
visible goods. Though, in contrast to the present paper, prior
work in this direction has primarily addressed one welfare
function at a time.

As mentioned previously, maximizing social welfare and
Nash social welfare (see, e.g., [Cole and Gkatzelis, 2018]
and references therein) has been actively studied in algorith-
mic game theory. Egalitarian welfare has also been addressed
in prior work—this welfare maximization problem is also re-
ferred to as the max-min allocation problem; see, e.g., [Anna-
malai er al., 2017; Chakrabarty er al., 2009]. Specifically, un-
der nonidentical submodular valuations, the problem of max-
imizing egalitarian welfare (among n agents) is known to ad-

mit an O(n'/*m'/?)-approximation [Goemans et al., 2009];
here m is the number of goods. Note that, in contrast to this
sublinear approximation, this paper shows that, if the agents’
valuations are identical, then even under subadditive valua-
tions the problem of maximizing egalitarian welfare admits a
constant-factor approximation guarantee.

2 Notation and Preliminaries

An instance of a fair-division problem corresponds to a tu-
ple ([m], [n], v), where [m] = {1,2,...,m} denotes the set
of m € N indivisible goods that have to be allocated (parti-
tioned) among the set of n € N agents, [n] = {1,2,...,n}.
Here, v : 2™ — R, represents the (identical) valuation
function of the agents; specifically, v(S) € Ry is the value
that each agent i € [n] has for a subset of goods S C [m].

We will assume throughout that the valuation function v is
(i) normalized: v(@) = 0, (ii) monotone: v(A) < v(B) for all
A C B C [m], and (iii) subadditive: v(AUB) < v(A)+4v(B)
for all subsets A, B C [m].

Write II,,([m]) to denote the collection of all n partitions
of the indivisible goods [m]. We use the term allocation to
refer to an n-partition A = (A4,,...4,) € II,,([m]) of the
m goods. Here, A; denotes the subset of goods allocated to
agent ¢ € [n] and will be referred to as a bundle.

®This result holds even if the agents have distinct, but subaddi-
tive, valuations.

"Recall that this work addresses fair-division instances in which
all the agents have a common valuation function.



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

For an exponent parameter p € R, the pth generalized
mean of n nonnegative numbers zy,...,z, € R, is defined
as M;D(xlv e 7.7;”) = (% Z?:l :Cf);

Note that, when p = 1, M,, reduces to the arithmetic
mean. Also, as p tends to zero, M, in the limit, is equal
to the geometric mean and lim, o My(zy,...,2,) =
min{xzy,2s,...,2,}. Hence, following standard conven-
tion, we will write Mo(z1,...,2,) = ([T, z) "
M_o(21,...,2,) = min; ;.

Considering generalized means as a parameterized col-
lection of welfare objectives, we define the p-mean wel-
fare, M,(A), of an allocation A = (Ay,As,...,A,) as
M, (A) == M, (v(A1),...,v(An) = (2 30, o(4:)P) "
Here, v is the (common) valuation function of the agents. In-
deed, with p equal to one, zero, and —oo, the p-mean welfare,
respectively, corresponds to (average) social welfare , Nash
social welfare, and egalitarian welfare.

Given a fair-division instance Z = ([m], [n],v) and p €
(=00, 1], ideally, we would like to find an allocation A =
(A1,...,A,) with as large an M,,(A) value as possible, i.e.,
maximize the p-mean welfare. An allocation that achieves
this goal will be referred to as a p-optimal allocation and de-
noted by A*(Z,p) = (A3,..., AL). If required, for clarity,
we will specifically associate Z and p with these bundles, i.e.,
write {Af(Z)}; or {Af(Z,p)}; to denote the bundles in the
p-optimal allocation A*(Z, p) of instance Z.

‘We note that, under identical subadditive valuations and for
all p € (—o0, 1], finding a p-optimal allocation is APX-hard;
[Dobzinski et al., 2005] establish this hardness result for p =
1.3 Hence, the current work considers approximation guaran-
tees. In particular, for fair-division instances Z in which the
agents have a common subadditive valuation, we develop a
polynomial-time algorithm that computes a single allocation
A with the property that M,(A) > =M, (A*(Z, p)) for all
p € (—o0,1].

The work of Feige (2009) shows that, for subadditive val-
uations, the social-welfare maximization problem (equiva-
lently, the problem of maximizing M (-)) admits an efficient
2-approximation algorithm, assuming oracle access to de-
mand queries. In particular, such an oracle, when queried
with an assignment of prices p1,...,p,m € R to the m

goods, returns maxgcim (U(S) - Zjespj). Our algo-

and

rithm requires demand oracle access only to implement the
2-approximation algorithm of [Feige, 2009] as a subroutine.
Beyond this, we can work with the basic value oracle, which
when queried with a subset of goods S C [m], returns v(9).”

For a fair-division instance Z, write F(Z) to denote the 1-
mean welfare M (i.e., the average social welfare) of the allo-
cation computed by the algorithm of [Feige, 2009]. The ap-

8 An extension of this APX-hardness result to all p € (—oo, 1] is
deferred to a full version of this work.

°In fact, if the underlying valuation is submodular, then one can
invoke the result of [Vondrak, 2008] (instead of using the approx-
imation algorithm by [Feige, 2009]) and efficiently obtain a _*5-
approximation for the social-welfare maximization problem in the
value oracle model. Hence, under a submodular valuation, our algo-
rithm can be implemented entirely in the value oracle model.
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Algorithm 1 ALG

Input: A fair-division instance Z ([m], [n], v)
with demand oracle access to the subadditive valua-
tion function wv. Output: An allocation A
(A17A27 s 7An)

1: Initialize the set of agents U = [n], the set of goods G =
[m], and bundle A; = () forall i € U

2: Index all the goods in non-increasing order of value
U(gl) > U(QQ) 2.2 U(gm)

3: Set Z° = (G, U,v) and initialize ¢ 1 {Recall that
F(Z) = M;(S), where S denotes the allocation obtained
by executing Feige’s algorithm [Feige, 2009] on instance
7}

4: while v(g;) > 31z F(Z'!) do

5:  Allocate A; < {g:} and update G < G \ {g:} along

withU + U \ {t}

6: SetZ! = (G,U,v)and update t <t + 1

7: end while

8: Set(Ay, Aita,. .., An) = ALGLOW(G, U, v) {This step
corresponds to the second phase of the algorithm which
assigns bundles to the remaining |U| = n —t + 1 agents.
Also, note that, in the current instance J = (G, U, v),
for every good g € G we have v(g) < 7£zF(J).}

9: return allocation A = (Aj, A, ...,An%.

proximation guarantee established in [Feige, 2009] ensures
that—for any instance Z with a subadditive valuation—we
have F(Z) > $M;(A*(Z,1)). Here, A*(Z,1) denotes a 1-
optimal allocation in Z.

3 Maximizing p-Mean Welfare

Addressing fair-division instances with identical subadditive
valuations, this section presents an efficient algorithm for
computing a constant-factor approximation to the p-mean
welfare objective, uniformly for all p € (—oo, 1].

The algorithm consists of two phases; see Algorithm 1
(ALG) and Algorithm 2 (ALGLOW). In the first phase, “high-
value” goods are assigned as singletons—we use the approx-
imation algorithm of [Feige, 2009] to obtain an estimate of
the optimal 1-mean welfare and deem a good to be of high
value if its valuation is at least a constant (specifically, 3.53)
times this estimate. Intuitively, the estimate provides a useful
benchmark, since the optimal 1-mean welfare upper bounds
the optimal p-mean welfare for all p € (—oo, 1] (this bound
essentially follows from the generalized mean inequality and
is stated in Proposition 1).

Therefore, in phase one of the algorithm, we sort the goods
in non-decreasing order by value and iteratively select goods,
which by themselves provide a value comparable to that of
the optimal p-mean welfare. In each iteration, the selected
good is assigned as a singleton to an agent and this agent-
good pair is removed from consideration. Note that such
an update leads to a new fair-division instance with one less
good and one less agent, as well as a potentially different op-
timal 1-mean welfare. The key technical issue here is that the
change in the optimal 1-mean welfare (and, hence, its esti-
mate obtained via Feige’s algorithm) can be non-monotonic.
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Algorithm 2 ALGLow
Input: A fair-division instance J = (G,U,v)
with demand oracle access to the subadditive val-

uation function wv. QOutput: An allocation B =
(B1,Ba,...,Bjy))

1: Execute Feige’s approximation algorithm [Feige, 2009]
on the given instance J to compute allocation & =
(S1,82,...,Sy)). {Note that allocation S provides a
2-approximation to the optimal 1-mean welfare of 7,
My(S) =F(J) = 3M; (A*(J, 1))}

2: Index the bundles such that v(S1) > ... > v(S)y|) and

initialize i = a = 1 along with B, = () for 1 < ¢ < |U]|

{Lemma 1 shows that the following loop runs to comple-

tion}
while agent index a < |U| do
Consider an arbitrary good g € S;
if (B, U{g}) < F(J) then
Update B, «+ B, U {g} and S; «+ S;\ {g}
{Here good g¢ is assigned to bundle B, to increase
its value}

else

8: Update a < a + 1 {This update is performed when

sufficient value has been accumulated in a bundle}

9: endif

10:  if v(S;) < 3F(J) then

11: Update i < i+ 1 {Once the value of .S; drops below

+F(J) we consider the next bundle in S}

12 endif

13: end while

AN

~

lUl-1
14: Bjy| < By U (G\( U Ba)> {Assign the remain-
a=1
ing elements to By}

15: return partition B = (B, ..., By).

Nonetheless, we show that the welfare contribution of the
goods assigned (as singletons) in the first phase is sufficiently
large (Lemma 2).

The first phase terminates when we obtain an instance J
wherein each good is of value no more than a constant times
its optimal 1-mean welfare. The second phase (ALGLOW) is
designed to address such a fair-division instance. In particu-
lar, we show that, in the absence of high-value goods, we can
efficiently find an allocation 5 = (B;); such that each bundle
B; is of value at least constant times the optimal p-mean wel-
fare of 7. To obtain the allocation B, we first compute (via
Feige’s approximation algorithm) an allocation S = (5;);
that provides a 2-approximation to the optimal 1-mean wel-
fare of J. Subsequently, we show that the subsets Sjs, that
have appropriately high value, can be partitioned to form the
desired bundles B;s, which constitute the allocation .

We note that, while the above-mentioned ideas hold intu-
itively, the formal guarantees are obtained by analyzing dif-
ferent ranges of the exponent parameter p separately. Also,
at a high level, the approximation ratio of 40 is obtained by
balancing different factors (e.g., the threshold that identifies
high-value goods) and other analytical considerations so as to

achieve the best-possible approximation ratio across all val-
ues of p € (—o0, 1].
The following theorem is the main result of this work.

Theorem 1 (Main Result). Let Z = {([m], [n], v) be a fair-
division instance wherein all the agents have an identical,
subadditive valuation function v. Given demand oracle ac-
cess to v, ALG computes in polynomial time an allocation A
that, for all p € (—o0, 1], provides a 40-approximation to the
optimal p-mean welfare, i.e., My(A) > 55 My(A*(Z,p)),
forallp € (—o00,1]; here, A*(Z,p) is the p-optimal alloca-
tion in L.

We start with the following observation to upper bound the
optimal p-mean welfare in terms of the optimal 1-mean wel-
fare. In the interest of space, proofs of the following proposi-
tion, Lemma 1, and Lemma 2 are deferred to a full version of
this work.

Proposition 1. Let 7 be a fair-division instance in which all
the agents have an identical, subadditive valuation v. Then,
for each p € (—o0, 1], the optimal 1-mean welfare is at least
as large as the optimal p-mean welfare: My (A*(Z,1)) >
M, (A*(Z,p)) for all p € (—o0, 1].

Next we address the second phase of the algorithm
(ALGLOW) that—by the processing performed in the while-
loop of ALG—solely needs to consider fair-division instances
J = (G,U,v) wherein all the goods g € G satisfy v(g) <
ﬁF(] ), i.e., the goods are of “low value.” Lemma 1 asserts
that, for such an instance [/, ALGLOW finds an allocation in
which the value of every bundle is comparable to the optimal
average social welfare of 7. In Section 4, we use this fact and
Lemma 2 to prove Theorem 1 for p € (—o0,0.4). Finally, in
Section 5, we prove the main result for p € [0.4, 1].

Lemma 1. Let J = (G,U,v) be a fair-division in-
stance in which all the agents have an identical subad-
ditive valuation function v, and every good g € G sat-
isfies v(g) < $F(J). Then, in the demand oracle
model, the algorithm ALGLOW efficiently computes an al-
location B = (B, ..., Bjy|) with the property that v(B;) >
wM1(A*(T, 1)) = 5Mp(A*(T,p)), forall 1 < i < |U.

With an approximation guarantee for ALGLOW in hand,
we next analyze the first phase of the algorithm—specifically,
analyze the while-loop in ALG. Note that in each iteration
of this while-loop (Steps (4) to (7)) a good of value at least
constant times the optimal 1-mean welfare (of the current
instance) is allocated as a singleton to an agent. Lemma 2
shows that these singleton assignments complement the sub-
sequent use of ALGLOW, in the sense that the two phases
together retain welfare guarantees. Lemma 2 holds for p €
(—00,0.4); for the complementary range [0.4, 1], we develop
different techniques in Section 5.

Given a fair-division instance Z = ([m], [n],v) as input,
let {g1,..., gk} denote the set of goods that get assigned as
singletons in the while-loop of ALG (Algorithm 1). Also, let
J = T* be the instance that remains after the termination of
the while-loop in ALG. Note that 7 is passed on to ALGLOW
as input and it consists of n — k agents. Hence, in 7, any
p-optimal allocation A* (7, p) contains (n — k) bundles. For
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notational convenience, we will index these bundles from &+

1ton,ie., A*(J,p) = (AZH(j) .,A;(J)).

Lemma 2. Given a fair-division instance T = ([m], [n],v)
with an identical subadditive valuation v, let {g1,...,gr}
denote the set of goods that get assigned as singletons in the
while-loop of ALG and let 7 = ([m] \ {g1,---,9x},[n] \
[k],v) be the instance that remains after the termination of
this loop. In addition, let A*(Z,p) = (A5(2),...,AL())
and A*(J,p) = (A; 1 (T), ..., A5 (T)) denote p-optimal
allocations of instances T and J, respectively. Then, with
constant o = 40,

(i) For p € (—00,0), we have ozpz_l v(gi)? +
D1 VAS(I))P < 30 v(AF(T))P.
(ii) For p 6 (0,0.4), we have ozpz,lv(gl) +
Z] k+1“( ) > > v(AF(D)P.

(iii) For p = 0, we have o* Hi:l v(g;) Hj:k+1 v(A";(j))
[Tz v(47(2)).

Using these lemmas, we now prove Theorem 1 for expo-
nent parameter p € (—o0, 0.4).

4 Proof Sketch of Theorem 1 for
p € (—00,0.4)

Write 7 = ZF = ([m] \ {g1,---, 91}, [n] \ [k],v) to denote
the instance obtained at the termination of the while loop in
ALG. Also let A*(J,p) = (4;,,(J). ..., A} (J)) denote
the p-mean optimal allocation of the instance 7.

Lemma 2 establishes that, for p € (—o0,0.4), the alloca-
tion C := ({91}, -, {9}, A5 1(J)s- -, A5 (T)) achieves
welfare comparable to the optimal p-mean welfare, i.e., com-
parable to M,, (A*(Z, p)).

In contrast to this allocation C considered in
Lemma 2, the algorithm ALG returns the allocation

= ({o1},{92},-- -, {9x}, Brt1,..., Br), where Bjs are
the bundles computed by ALGLOW.!® However, Lemma 1
ensures that, for p € (—o0, 1], the value of each bundle B;
(with £ 4+ 1 < j < n) is comparable to the p-optimal welfare
inJ,ie.,is comparable to M, (A*(T,p)):

W(Bj) 2 M (AT, 1) 2 My (A (T.p)

At a high level, these bounds imply that replacing the bun-
dles {A7}7_; ., (in the allocation C) by {B;}"_; ., main-
tains the welfare guarantee, up to a constant factor loss. Since
this replacement gives us the computed allocation A, the de-
sired approximation guarantee follows. Formally proving
these approximation bounds requires a case analysis, depend-
ing on the sign of p in the range (—o00, 0.4). These technical
details are deferred to a full version of the paper.

Also, note that Lemma 2 holds only for p € (—o0,0.4)
and,!' hence, the above-mentioned arguments apply to this
range. To complete the proof of Theorem 1, next we address
the complementary range [0.4, 1].

>

10Specifically, with instance 7 as input, ALGLOW computes the
allocation B = (Bj+1, - - ., Byr); here, for notational convenience,
we index the bundles in B from k + 1 to n.

''By contrast, Lemma 1 holds for all p € (—o0, 1].
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5 Proof of Theorem 1 for p € [0.4, 1]

Write G = {g1, . . ., gx } to denote the k highest-valued goods
assigned as singletons in the while-loop (Step 4) of ALG.
Instance J = ([m] \ G,[n] \ [k],v) is passed as input to
ALGLoOwW, which returns allocation B = (Bg1,..., Bn).
Recall that B satisfies Lemma 1. Finally, let A
({o1},---,{9x}, Bkt1,- .., By) denote the allocation re-
turned by ALG.

We will prove the following bound for p € [0.4,1]
and, hence, establish the stated approximation guarantee
My {A) > M, (A" (Z.p))

Write A*(Z,p) \ G to denote the allocation (specifi-
cally, an n-partition) obtained by removing the goods G =
{91, ..., g%} from the bundles in A*(Z,p), i.e., A*(Z,p) \

G = (4@p\C)
for all ¢ € [n], the bundle A* (Z,p) satisfies
04} (T.p) <o (41Z,0)\G) +

. Subadditivity of v ensures that,

2.

9€GNAZ (Z.p)
Since p > 0, exponentiating the previous inequality by p
gives us

v(g).

oA @)y < v (A@T\G)+ D )
g€GNAZ(Z,p)
< (A @p\G) + > ey
gEGNAZ(T,p)
ey

The last inequality follows from the fact that (x + y)? <
aP +yP, forallp € [0.4,1] and z,y € Ry
Summing equation (1) over i € [n] leads to

k n n
> v(g) + Y (AT TP\ G = Y v(4
N - - )

To show that the k& goods in G (which are allocated as
singletons) substantially contribute towards p-mean welfare
of the computed allocation A, we will next establish the
following lower bound for all 1 < ¢ < k: wv(g)? >
oo (2 X v (T \ G)P).

Recall that Z denotes the fair-division instance {[m] \
{91, ¢}, ] \ {1,...t}v), for 1 < ¢ < k. Write
A* (Tt p) = (A;‘H( \D)s -, A% (T p)) to denote a p-
optimal allocation of 1nstance It, here, we associate the ex-
ponent parameter p with each bundle, for notational clarity,
and index these bundles from ¢ + 1 to n.

The selection criterion of the while-loop in ALG and the
fact that Feige’s algorithm achieves an approximation ratio of
2 ensure

n

1 1
> Ar(z' 1 3
Index the n bundles in allocation A*(Z,p) \ G in non-
increasing order of value v(Aj(Z,p) \ G) > v(A5(Z,p) \
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G) > ... > v(A%(Z,p) \ G) and note that the arithmetic
mean of the values of the first n — ¢ + 1 bundles is at least as
large as the overall arithmetic mean

1 n—t+1 1 n
p—— > AT\ G) Z%ZU Z,p)\ G)
Jj=1 j=1
“4)

Given that allocation A4* )\ G constitutes an n-partition

(Z,p
of the set of goods [m] \ G and allocation A*(Zt~1 1) =
(A7 (Z71,1),..., AL (T, 1)) is an (n — ¢ + 1)-partition of
[m]\ {g1,-.. ,gt_l} D [m] \ G, we have the following con-
n—t+1 PR n
tainment Ul (A;‘ (Z,p) \G) C Ut (A3(Z1,1)). Fur-
j= j=
thermore, by definition, allocation A*(Z'~1, 1) achieves the
maximum possible average social welfare among all (n — ¢ +
1) partitions of [m] \ {¢1, ..., g:}. Therefore, we have

n

1 * —1
i1 ; v(A5(Z71,1))
1 n—t+1 N
o _t11 Z U(A;(I,p) \G) 5
j=1
Equations (3) and (5) lead to
1 1 n—t+1 N
> | — *
v9) 2 = | ; v(A(Z,p) \ G)
> 11 zn: v(A%(Z,p) \ @) (viaineq. (4))
=706 \ & NP b
> (I waanar)
=706 \ nes T

(via the generalized mean inequality)
Exponentiating both sides of the previous inequality by p €
[0.4, 1] gives us the desired lower bound

crorl DS EHEAONN G

Equation (6) enables us to bound the p-welfare contribution

of the goods G = {g1, . ..
k k

2
" ;”(Qi)p ;U
k

n (7.;@? (i PBUCHEN @)”> )

Recall that ALGLOW—with input instance J = Z' k__returns
allocation B = (Bj41, ... By). Using arguments similar to
the ones mentioned above and Lemma 1, we lower bound the

v(ge)? >

(6)

, gk + assigned as singletons

1
n

values of these bundles By 1, ..., B,.
1
et (15 ar)
v —_— — ’U
4 n]:1 -P)
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Exponentiating by p € [0.4,1] and summing over all j €

{k+1,...n}, we have

1 & n—k 1 [1 ~

- —— | = A (T G)P

n Z n (40)P (n;U( i(p)\ )>
®)

j=k+
Combining inequalities (7) and (8) gives us

j=k+1
1 ko1 1 &
> D4 [ ST w(ANT
= o ;”(g) t 90 7060 n;” P\ G

n—=k 1 1 ! * A\P
o (%”“z‘@’p)\m )

Note that 2 x (7.06)? < (40)P for all p € [0.4, 1], hence,
the previous inequality simplifies to

=
n
i=1

PBECHERON 6>P>
(since (40)? > 2 forp € [0.4,1])

n

1 (1
~ @0 \n 4

> (A (Z.p)
i=1
Taking the pth root on both sides of the last inequal-
ity gives us the desired result for the computed allocation
= ({91}7 LR {gk}7Bk+17' . 7Bn)

My (A) > My (A°(Z, ).

This completes the proof of Theorem 1.

p ) (via inequality (2))

6 Conclusion and Future Work

This work studies the problem of allocating indivisible goods
among agents that share a common subadditive valuation.
We show that, for such settings, one can always (and in
polynomial-time) find a single allocation that simultaneously
approximates a range of generalized-mean welfares, to within
a constant factor of the optimal.

An interesting direction of future work is to address set-
tings in which we have a fixed number of distinct valuation
functions across all the agents. A nontrivial improvement on
the developed approximation guarantee will also be interest-
ing.
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