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Abstract

Image captioning aims to describe an image with
a concise, accurate, and interesting sentence. To
build such an automatic neural captioner, the tra-
ditional models align the generated words with a
number of human-annotated sentences to mimic
human-like captions. However, the crowd-sourced
annotations inevitably come with data quality is-
sues such as grammatical errors, wrong identi-
fication of visual objects and sub-optimal sen-
tence focuses. During the model training, exist-
ing methods treat all the annotations equally re-
gardless of the data quality. In this work, we ex-
plicitly engage human consensus to measure the
quality of ground truth captions in advance, and
directly encourage the model to learn high qual-
ity captions with high priority. Therefore, the pro-
posed consensus-oriented method can accelerate
the training process and achieve superior perfor-
mance with only supervised objective without time-
consuming reinforcement learning. The novel con-
sensus loss can be implemented into most of the ex-
isting state-of-the-art methods, boosting the BLEU-
4 performance by maximum relative 12.47% com-
paring to the conventional cross-entropy loss. Ex-
tensive experiments are conducted on MS-COCO
Image Captioning dataset demonstrating the pro-
posed human consensus-oriented training method
can significantly improve the training efficiency
and model effectiveness.

1 Introduction

Visual content understanding has become an emerging re-
search topic in the multimedia research areas recently. In
the conventional multimedia retrieval systems, the image or
video items can be retrieved by keywords, image snippets or
video clips, whilst the textual descriptions can be searched by
visual content. Furthermore, in the modern multimedia in-
telligent system, the underlying semantics in the vision and
language are demanding elements for human to efficiently
manage big volumes of images and videos. Image captioning
system automatically generates descriptions for visual con-
tents, which can benefit applications such as multimedia re-
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Figure 1: Human-annotated captions inevitably come with label
quality issues, but the existing methods treat them equally during
training. Our proposed consensus-oriented captioning model explic-
itly diminishes the inherent label noise. Up: The sentence in red box
only bluntly describes the objects without revealing the interactions
such as “drinking”, “bending down”. Bottom: Then sentence in red
box is the longest caption, but the quality is the poorest due to the
lack of information. BLEU-4 metric fails to distinguish the quality
in these cases.

trieval, data management and recommender system [Li ez al.,
20201, etc. Notably, the challenging image captioning task
requires the model to accurately identify and interpret visual
features into high-level natural language descriptions. The
current approaches for image captioning follow the encoder-
decoder architecture. In particular, the convolutional neural
network (CNN) encoder projects the image into a feature vec-
tor conserving the salient elements, and the decoder language
model generates natural language descriptions by maximising
the posterior probability of word predictions given the image
representations.

In the standard MSCOCO Image Captioning dataset, each
image comes with five annotations shown in Figure 1. The
captions are annotated by different online annotators. Al-
though they are all human-annotated captions, the quality is
apparently different. The captions may be correct, but they
sometimes come with poor grammar and lack of information.
For example, in Figure 1, a good example like the second sen-
tence gives all the details about the giraffe and its interaction
of drinking water, but the bad annotation such as the third
caption only describes the pure motion of bending down. In
addition, instead of describing the items from the image, the
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annotators may write some “one-caption-fit-all” captions. In
the bottom example of Figure 1, the fourth sentence is the
longest, but it does not include any useful information from
the given visual content. During the training, the existing
models are encouraged to generate captions via supervised
objectives. They treat all the annotations of the same image
equally during training without considering the quality of dif-
ferent labels.

The successive work mainly focuses on improving the per-
formance with fine-grained visual representations. There are
several ways to improve visual encodings, for example, the
objects from the images are detected to form a detailed de-
scription [Herdade er al., 2019], the visual attributes of items
are classified to accurately describe objects [Yao et al., 2017],
and the visual attention mechanisms are equipped to focus
on salient areas while generating captions [Xu ef al., 2015;
Anderson er al., 2018]. However, despite the benefits from
the visual information, the cross-entropy objectives encour-
age the model to fully rely on the ground-truth annotations,
lacking the self-critical evaluation mechanism to adjust the
gradient.

Built on the encoder-decoder baselines, the policy gradi-
ent reinforcement learning captioning models [Rennie et al.,
2017; Zha et al., 2019] are further proposed to minimise
the gap between the cross-entropy loss and the evaluation
metrics. The captioning task is formulated as a sequential
decision-making problem, in which the language policy are
directly optimised based on rewards from the caption evalua-
tor. However, in practice, the reinforcement learning cannot
start from scratch, due to the fact that the action searching
space is tremendous with random initialisation. The normal
practice is to “warm-up” the policy network with supervised
training, followed by very slow fine-tuning process with re-
inforcement learning loss. This process is time-consuming,
with turbulent learning curve and the performance is over-
sensitive to network initialisation.

To alleviate the intrinsic annotation imperfect and model
fine-tuning inefficient deficiencies, in this work, we introduce
a Human Consensus-Oriented (HCO) objective to improve
model performance with faster training. The proposed con-
sensus loss can automatically assess human annotation qual-
ity in advance, aiming to encourage the model to learn more
accurate and informative training samples in priority. To eval-
uate the effectiveness of the proposed training objective, we
perform comprehensive experiments on both basic and ad-
vance models, and demonstrate prominent improvements on
different metrics.

The contributions in this paper are three-fold:

1. To the best of our knowledge, it is the first work to ex-
plicitly identify and tackle the annotation quality issues
in image captioning, which allows the model to effi-
ciently learn the higher quality annotations in priority.

The proposed consensus loss is agnostic to the base
model, so it can be easily implemented into most of the
existing methods to improve the performance with su-
pervised training.

Quantitative and qualitative experiments are conducted
on the challenging COCO Captioning dataset. The re-
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sults show that in the supervised learning setting, our
model outperforms all the cross-entropy trained base-
line models. In the reinforcement learning fine-tuning,
the method still achieves competitive performance com-
paring the state-of-the-arts.

The rest of the paper is organised as follows: Section 2
reviews visual captioning methods, Section 3 introduces the
consensus loss and the framework, Section 4 describes exper-
iments, and Section 5 summarises the proposed method.

2 Related Work

2.1 Visual Captioning

Recently, visual captioning has been widely studied in the
computer vision and natural language processing fields. The
existing deep captioning models follow the encoder-decoder
framework, aiming to map the visual content into a full sen-
tence [Karpathy and Fei-Fei, 2017] or a paragraph [Krause
et al., 2017; Wang et al., 2018; Luo et al., 2019], given
the image or video [Gao er al., 2019; Yang et al., 2018;
Song er al., 2018] representations. Benefiting from the fea-
ture extraction ability of convolutional neural networks, the
early captioning work focuses on preserving effective im-
age representations to generate high quality descriptions.
In [Vinyals et al., 2015], Vinyals et al. proposed a CNN-
LSTM architecture to recurrently predict the caption word-
by-word to form a full sentence based on the CNN-encoded
image features.

Attention Model

The successive models focus on improving the visual repre-
sentations by different attention mechanism designs. The at-
tention mechanism can be categorised into three types: the
visual attention [Xu er al., 2015], language attention [You et
al., 2016], and hybrid attention [Lu er al., 2017]. The vi-
sual attention [Xu ef al., 2015; Anderson et al., 2018] aligns
the salient image areas while generating word sequence to
improve the relevance of the generated caption. The lan-
guage attention [You er al., 2016] detects semantics of the
given image, and then the decoder refer to these semantic at-
tributes when generating the captioning. The hybrid meth-
ods [Lu et al., 2017] combines visual and textual attention
to simultaneously consider both types of information. The
more recent attention-based models take a step further to en-
tirely utilise the Transformer attention [Herdade er al., 2019;
Wang et al., 2020] to encode visual features and decode word
sequences.

Reinforcement Learning

Another line of work formulate image captioning as a rein-
forcement learning problem [Rennie er al., 2017; Zha et al.,
2019; Luo et al., 2019]. In the reinforcement learning set-
ting, the action is predicting next word, the state is the vi-
sual features, current word embeddings and context vectors,
and the reward is the evaluation score of a group of sam-
pled captions. Most of the existing methods need to warm-up
the network with supervised training, then utilise the REIN-
FORCE [Williams, 1992] algorithm to optimise the gradient
for model fine-tuning. The SCST model [Rennie ef al., 2017]
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Figure 2: The overview of the proposed human consensus-oriented
captioner. Annotations with higher quality are encouraged to be
learned in priority.

further introduces a baseline subtracted from the reward to
reduce the variance caused by Monte-Carlo sampling. In the
CAVP model [Zha et al., 2019], the model improves the vi-
sual policy with previous context, and optimises the network
with the Actor-Critic policy gradient method.

2.2 Dataset Bias

The deep intelligence systems rely on large volume of train-
ing data, so the bias in data could be magnified during gra-
dient descent. It is commonly existed in varies tasks such
as object detection, word embedding, and image caption-
ing. In particular, in the object detection, the RetinaNet [Lin
et al., 2018] tackles the class imbalance problem by down-
weighting the loss of already well-classified instances, there-
fore guiding the model to learn more on the hard exam-
ples. The word embedding model [Bolukbasi ef al., 2016]
identifies and equalises the gender-related and gender-neutral
words, while maintaining good clustering performance. The
image captioning models [Hendricks et al., 2018] also fo-
cus on gender-specific word generates, and they increase the
penalty for the wrongly generated gender words while model
training.

3 The Proposed Approach

In this section, we introduce the proposed Human Consensus-
Oriented (HCO) image captioning model. As shown in the
Figure 2, during the encoding phase, the object regions in the
input image are firstly detected by Faster-RCNN. Then, in
the decoding phase, the language model generates word se-
quences based on the visual representation. During the word
prediction, the visual attention is engaged to shift the sentence
focus on the salient object regions.

3.1 Problem Formulation

We denote the image captioning task formally in this section.
The original RGB image is denoted as the input I. The final
objective of the image captioning model is to generate a de-
scription S = {51, ..., Sy} given I, where N is the length of
caption.

3.2 Consensus Loss

The Consensus Loss (CL) is designed to address the annota-
tion quality issue, in which the annotated captions have differ-
ent levels of quality. In the training dataset, each image has
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several captions from different annotators as shown in Fig-
ure 1. The existing methods force the model to learn these
captions equally without considering the quality of them-
selves. The proposed consensus loss explicitly puts different
learning weights for different quality of training examples.

Ground Truth Consensus Scores
We denote the reference captions of the given image I as
= {R},--- ,RL;}, where M is the number of ground-
truth annotations of image /. Before the model training, we
split RT into M-folds. For each caption R}, we measure
the consensus score Cscore(RiI) based on the common interest
among all the other M/ — 1 human annotators. These M — 1
references can be denoted as Q{ for simplicity.

The choice of consensus score measurement is not lim-
ited to the existing metrics, however, in practice, we adopt
CIDEr [Vedantam er al., 2015] to quantify the label quality.
CIDEr calculates the cosine similarity between the candidate
sentence and a set of reference sentences. In particular, the
sentence is represented by a vector of Term Frequency In-
verse Document Frequency (TF-IDF) weightings for all the
n-gram phrase, where n = 1,2, 3,4 in practice. Finally, all
the n-gram cosine similarity are averaged to form a single
score for each candidate sentence.

The Cyeore (R ) is computed as follows:
"(R]) - r™(Qf)
CIDEr, (R, Q}) = 2 — (1)
-1 Z H’P" (RI7(Q})
= Z CIDEr, (R, Q}), )
n=1
where r™ is the TF-IDF weightings of all the n-gram phrases

for the corresponding sentence.

Cross-Entropy with Consensus Loss

The standard cross-entropy (CE) loss measures the classifi-
cation model performance based on the probability outputs
from the model. The loss of the entire sentence is measured as
the mean of all the words” CE loss. The standard CE loss sim-
ply treats all the annotations as golden standards, and gives
different quality captions with the same weights.

The consensus loss adjusts the sentence-level loss, which
increases the weights of high quality examples, but reduces
the loss of the low quality ones. Therefore, higher penalty
will be given to model if the “good” captions are not learned
well. Meanwhile, the poorly written captions will be as-
signed with lower loss, so the model will not learn too much
about bad examples. This follows the common practice of hu-
man learning behaviour: We learn well-written articles in the
school first, and later we have the ability to identify poorly-
written negative examples.

We write the simple Consensus Loss (CL) as:

Z log pi(St),

where N is the length of caption, R% is the ¢-th annotation for
image I, p; € [0, 1] is the likelihood for the correct word S;.

CL(I,S) = 3)

SCOTC
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Intuitively, the sentence with poor quality will have low
loss contribution, whilst the high quality examples are learned
in priority benefited from the high loss contribution. The loss
of the perfect learned sentences will have zero CL loss, so it
will not be contributing to model training any more despite
its consensus score.

Variants of Consensus Loss

The extract composition and acquisition of consensus loss are
not fixed, we introduce some alternative designs of the con-
sensus loss. The different weights of CL loss and consen-
sus evaluation metrics are compared in Section 4.5 and Sec-
tion 4.6, respectively.

Balancing Factor. The proportion of consensus loss can be
further adjusted empirically to balance the standard cross-
entropy and consensus loss. We use the Consensus Loss with
balancing factor « in practice:

1 N
CL(L,8) = —(1 + aCune(RY)) - = D logpi(S) ()
t=1

Label Quality Measurements. The calculation of consen-
sus score can be reshaped to other automatic evaluation met-
rics or expert annotations. The commonly adopted metrics
automatically measure the similarity of the candidate caption
with reference annotations, such as BLEU [Papineni et al.,
2002], METEOR [Banerjee and Lavie, 2005], CIDEr [Vedan-
tam et al., 2015], etc.

3.3 Human Consensus-Oriented Captioner

The consensus loss can be implemented in most of the image
captioning models trained by cross entropy loss. In this sec-
tion, we briefly introduce two consensus-based models built
on CNN-LSTM and Transformer framework.

CNN-LSTM

We implement consensus loos on the state-of-the-art Top-
down attention-based model [Anderson et al., 2018]. The vi-
sual features are extracted from Faster-RCNN, and the LSTM
language decoder is equipped with visual attention to adap-
tively shift sentence focus.

Transformer

Similar to CNN-LSTM model, the visual features are
extracted from Faster-RCNN, however, the Transformer
model [Vaswani et al., 2017] utilises a self-attention mecha-
nism to generate sentence without using recurrent units. Dur-
ing decoding phase, the visual region features are attended to
calculate the relevance scores and output the context vectors.

4 Experiments

4.1 Experimental Settings

Dataset

We evaluate the proposed HCO model on the MS-COCO [Lin
et al., 2014] image captioning dataset following the “Karpa-
thy” [Karpathy and Fei-Fei, 2017] split. The Train, Val, Test
splits contain 113 287, 5 000, 5 000 images, respectively.
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Evaluation Metrics

The performance is evaluated using automatic language
evaluation metrics: BLEU [Papineni et al., 2002], ME-
TEOR [Banerjee and Lavie, 2005], Rouge-L [Lin, 2004], and
CIDEr [Vedantam et al., 2015]. BLEU-n indicates the n-
gram precision of the candidate caption, METEOR considers
both precision and recall, and CIDEr measures the n-gram
similarity with considering TF-IDF weights.

4.2 Baselines

We compare the proposed HCO with a number of state-of-
the-art methods (see Table 1) including: NIC [Vinyals et al.,
2015], Adaptive [Lu ef al., 20171, Att2all and Att2in [Ren-
nie et al., 2017], Topdown [Anderson ef al., 2018], Standard
Transformer and Object Transformer [Herdade et al., 2019],
CAVP [Zha et al., 2019].

In the following comparison, CL- indicates reshaping the
original Cross-Entropy Loss to the proposed Consensus Loss.
RL- denotes the model is optimised with Reinforcement
Learning (Self-critical model from [Rennie ez al., 2017]). All
the models with region visual features use Faster-RCNN with
ResNet-101 [Anderson et al., 2018]. The specific variations
will be discussed in the following sections.

4.3 Implementation Details

The RGB image is encoded with ResNet-101 convolutional
neural network, and the regions are detected via Faster-
RCNN. The model is optimised using Adam with learning
rate of 5e-4. Different settings are implemented in the CNN-
LSTM and Transformer architectures. The details will be re-
leased in the Github repository.

CNN-LSTM. In the LSTM language decoder, the hidden
state is empirically set as 1024, with 1-layer. In the attention
module, the encoding size is 1024.

Transformer. In the Transformer attention framework, the
embedding dimension is 512, the positional encoding size is
2048, and the number of attention layer is 6.

4.4 Comparison with State-of-The-Art

Quantitative Analysis

We compare our model with state-of-the-art methods on
MSCOCO dataset. All the visual features are using Faster-
RCNN region features for fair comparison, so some of the re-
ported results are slightly higher than the original papers. As

Method Base Attention Feature
NIC CNN-LSTM No Global
Adaptive CNN-LSTM Yes Region
Att2all CNN-LSTM Yes Region
Att2in CNN-LSTM Yes Region
Topdown CNN-LSTM Yes Region
CAVP CNN-LSTM Yes Region
Transformer  Transformer Yes Region
Obj. Trans. Transformer Yes Region,

Obj. Relation

Table 1: Comparison methods summary.
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Figure 3: Case studies of HCO, Topdown baseline, and human annotations in different scenes.

shown in the Table 2, all the compared models are trained on
the standard cross-entropy (CE) loss without reinforcement
learning. Our CL-trained model CL-Topdown improves the
CE-trained Topdown baseline with 3.2% relatively improve-
ment on CIDEr It also surpasses the more recent state-of-the-
art model Object Transformer model, which is very signif-
icant because the Object Transformer method utilises more
powerful Transformer model and uses auxiliary region box
relationship features. Another comparison demonstrated in
the Table 3 compare the models after the reinforcement learn-
ing fine-tuning process. The RL-optimised CL-RL-Topdown
further improves the CIDEr by 5.27, and also performs bet-
ter than the original RL-Topdown. This shows that the CL
loss can also provides self-critical RL training with a better
starting point.

Qualitative Analysis

We present case studies in Figure 3 to intuitively understand
the HCO model performance. The proposed model is able
to generate sentences with accurate observation of salient ob-
jects from the images in most of the cases. Besides, com-
paring to the baseline method, it is able to describe more in-
teresting elements. For example, in the first picture, rather
than only describing the rider on the street, our model finds
the interesting point “train”, and gains higher CIDEr score

Model B-4 M Rouge CIDEr
NIC 30.34 25.05 53.58 96.29
Adaptive 30.88 2540 53.82 98.26
Att2in 31.83 2573 5450 102.29
Att2all 33.25 2625 55.19  105.60
Topdown 36.20 27.00 5640 113.50
Transformer 3496 27.58 5582 111.89
Obj. Trans. 3549 2798 56.58 115.37
CL-Topdown 37.08 27.85 57.22 117.10
CL-Transformer 35.65 27.68 56.42 114.75

Table 2: Performance comparison on MSCOCO Karpathy test split
w/o reinforcement learning
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since it is the human annotators’ common interest. Similar
phenomenons also appear in the third and forth pictures, in
which the interesting elements of “sprinkles” and “clock™ are
accurately identified. Moreover, in the second picture, it not
wrong that the zebra is “standing”, but the motion of “graz-
ing” is more accurate. In addition, the grammar and language
usages of the generated captions are more appropriate.

4.5 Ablation Study

Effectiveness of Consensus Loss

In this section, a number of state-of-the-art methods are im-
plemented with consensus loss to compare the effectiveness
the the consensus loss (Table 4). All the CNN-LSTM based
models(see Table 1) are implemented with Faster-RCNN vi-
sual features, and the hidden size of 1-layer LSTM is 512.
The Transformer model parameters remain the same.

From the comparison, we can clearly observe that the con-
sensus loss works in all the compared methods without aux-
iliary visual information. In particular, the CL loss boosts
BLEU-4 score of the Att2in model by 12.47 % relatively.
Similarly, the Adaptive model has a giant relative increment
of 12.08 % and 9.75 % for BLEU-4 and CIDEtr, respectively.
Notably, when the standard Transformer model utilises CL
loss, the performance nearly achieves the heavy Object Trans-
former model.

Model B-4 M Rouge CIDEr
RL-Att2all 3420 26.70 5570  114.00
RL-Topdown 3630 27.70  56.90  120.10
RL-Ob;j. Trans. 38.60 28.70 5840  128.30
RL-CAVP 38.60 28.30 5850 126.30
CL-RL-Topdown 36.56 27.56 57.31 12237
CL-RL-Transformer  37.13 28.23 57.65 126.13

Table 3: Performance comparison on MSCOCO Karpathy test split
w/ reinforcement learning
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Model Cross-Entropy Consensus Loss Improvement
B-4 M Rouge-L. CIDEr B-4 M Rouge-. CIDEr B-4 CIDEr
NIC 30.34  25.05 53.58 96.29 | 3295 25.54 54.32 101.84 8.60% 5.76 %
Adaptive 30.88  25.40 53.82 98.26 | 34.61 26.45 55.58 107.84 | 1208 % 9.75 %
Att2in 31.83  25.73 54.50 102.29 | 35.80 26.87 56.33 11147 | 1247 % 897 %
Att2all 3325  26.25 55.19 105.60 | 36.36  27.05 56.64 112.97 935% 6.98 %
Topdown 33.14 2645 55.37 106.14 | 36.52 27.42 56.90 11422 | 1020% 7.61 %
Trans. 3496 27.58 55.82 111.89 | 35.65 27.68 56.42 114.75 1.97% 2.56 %
Obj. Trans. 3549 27.98 56.58 115.37 | 36.25 28.10 56.71 117.73 214 %  2.05%

Table 4: Effectiveness of Consensus Loss. The models remain the identical structure, but the loss function is replaced with consensus loss.
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Figure 4: Training comparison of consensus loss. X-axis: Training
steps; Y-axis: CIDEr score in Val split.

Efficiency of Model Training

In this section, we study the training efficiency of CL loss
comparing to the standard cross-entropy loss illustrated in
the Figure 4. In the graph, the X-axis is the training steps,
in which each step contains a mini-batch of 100 examples,
and the Y-axis is the CIDEr score of the validation set with
greedy search. In most of the cases, the model can achieve
the original performance in only third to half of the training
steps without extra training cost.

Model Structure Comparison

In section 3.2, we introduce the balancing factor « to regulate
the contribution of consensus loss. As shown in the Table 5,
when the ratio of cross-entropy and consensus loss is 1 : 2,
the model performs the best in METEOR and CIDEr metrics,
and other metrics are competitive to other settings.

4.6 Label Quality Measurements Comparison

As described in the Section 3.2, the training performance of
different consensus loss measurements are compared. In the
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Model B-4 M Rouge CIDEr
a=0.5 36.55 2776  56.89  114.60
a=1 37.26 28.00 57.20 116.42
a=2 3720 28.03 57.10 117.51
a=5 36.66 27.86 57.02 115.67
a=10 37.12  27.85 57.02 116.84
Pure CL 37.08 27.85 5722 117.10

Table 5: Balancing factor comparison. Performance comparison on
MSCOCO Karpathy test split. The backbone model is Topdown.

120
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100

Ok 10k 20k 30k 40k 50k 60k 70k

(a) CIDEr

27.6
27.2
26.8

26.4

—— CIDEr_Loss_RL
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—— CIDEr_Loss_RL
—— METEOR Loss_RL
—— BLEU-4_Loss_RL

26.0

25.66k 10k 20k 30k 40k 50k 60k 70k

(b) METEOR

Figure 5: Variants of consensus measurement. X-axis: Training
steps; Y-axis: Evaluation scores in Val split.

Figure 5, the 5a is the CIDEr scores, the 5b is the METEOR
scores. We train the model with different CL in the first 35k
steps, and then optimise the model with self-critical reinforce-
ment learning [Rennie et al., 2017]. In the figures, the differ-
ent lines indicate different CL choices. We can find that the
CIDEr consensus loss works well in both metrics, and it also
attains a smoother training curve comparing to other metrics.

5 Conclusion and Future Work

In this work, we propose a human consensus-oriented model
for image captioning. Towards retaining common interests
among the references, the proposed model explicitly lever-
ages the consensus scores to encourage captioner to learn
high quality examples in priority. The model boosts the cap-
tion generation performance without overwhelming training
time effectively, and generates the concise, accurate and inter-
esting examples efficiently. The experiments demonstrate the
effectiveness of the proposed consensus-oriented captioner.
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