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Abstract

Facial action unit (AU) intensity estimation aims
to measure the intensity of different facial muscle
movements. The external knowledge such as AU
co-occurrence relationship is typically leveraged to
improve performance. However, the AU character-
istics may vary among individuals due to different
physiological structures of human faces. To this
end, we propose a novel geometry-guided represen-
tation learning (G2RL) method for facial AU inten-
sity estimation. Specifically, our backbone model
is based on a heatmap regression framework, where
the produced heatmaps reflect rich information as-
sociated with AU intensities and their spatial distri-
butions. Besides, we incorporate the external geo-
metric knowledge into the backbone model to guide
the training process via a learned projection ma-
trix. The experimental results on two benchmark
datasets demonstrate that our method is compara-
ble with the state-of-the-art approaches, and vali-
date the effectiveness of incorporating external ge-
ometric knowledge for facial AU intensity estima-
tion.

1 Introduction
Most facial expression recognition (FER) systems have
achieved high accuracy in recognizing a set of prototypical
expressions, e.g., angry, happy, sad, etc., following the pi-
oneer work of Ekman [1993]. However, they cannot pro-
vide detailed descriptions of the fine-grained physical appear-
ance changes in human facial expressions. To describe emo-
tions more systematically, the Facial Action Coding System
(FACS) [Friesen and Ekman, 1978] encodes the movements
of some specific facial muscles, named Action Units (AUs),
and quantifies AU intensities into six discrete levels. Based
on FACS, human coders can manually deconstruct any possi-
ble facial expression into several AUs and their correspond-
ing intensities. Therefore, estimating the intensities of AUs is
important for interpreting and analyzing facial expressions.

Facial AU intensity estimation has attracted increasing at-
tention in affective computing community. It has potential ap-
plications in human-computer interaction [Lin et al., 2019b;
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Figure 1: Examples of facial displays (row 1) and the corresponding
facial landmark locations (row 2) and AU intensities (row 3). Differ-
ent human faces have different morphological aspects and different
ways of expressing emotions. Hence, we expect the facial geometric
information of different facial expressions could help to enhance the
feature representation learning, thus facilitating distinguishing the
subtle differences among facial AU intensities.

Lin et al., 2019a], health care, games, marketing, etc. Nev-
ertheless, AU intensity estimation remains a difficult prob-
lem given the differences among individuals and large varia-
tions in facial geometry. As shown in Figure 1, the locations
of facial points characterize the face shape patterns of dif-
ferent subjects. Intuitively, the facial geometric information
may influence the performance of AU intensity estimation.
For example, the intensity of AU12 (Lip Corner Puller) is
highly correlated with the height of the mouth opening and
the distance between lip corners. Given that AUs appear as
the movements of facial muscles, we propose to use geomet-
ric features as the external knowledge in learning better AU
representations. Moreover, facial geometric information can
be obtained reliably and quickly with the progress of facial
landmark detection algorithms.

Meanwhile, prior knowledge can be used to guide and fa-
cilitate the model learning. For AU intensity estimation, re-
searchers have begun to investigate how to leverage exter-
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nal knowledge such as co-occurrence relationship between
AUs [Walecki et al., 2017], facial symmetry [Zhang et al.,
2018a], and temporal label smoothness [Zhang et al., 2019].
The facial geometric features have been shown to be effec-
tive for FER [Jung et al., 2015] and facial AU detection [Niu
et al., 2019]. However, they are rarely utilized in previous
studies to improve AU intensity estimation. Considering the
low computational cost, geometric features offer much room
for injecting external knowledge into the deep neural network
during its training stage. In addition, there is a strong corre-
lation between the geometric positions of facial points due
to the physiological structure of the human face, which can
be used to enrich the geometric information via relationship
learning. In the era of geometric deep learning, existing stud-
ies such as PointNet [Qi et al., 2017] and its various exten-
sions have explored flexible geometric representation suitable
for modeling the geometric data. Motivated by such applica-
tions in computer graphics, we propose to capture geometric
properties of facial points by constructing a graph convolu-
tional neural network (Graph CNN) [Kipf and Welling, 2016]
to learn more robust AU-related representation. The Graph
CNN is an ideal model for modeling spatial vector data since
it can learn complex relationships and interdependency be-
tween vectors. In our case, for each person, a set of facial
landmarks is represented as a graph, where vertices corre-
spond to the 2D coordinates and edges represent their spatial
relations.

On the other hand, the heatmap can provide a per-pixel
likelihood for keypoint locations in an image, e.g., human
pose estimation [Xiao et al., 2018] and face alignment, and
has shown its effectiveness in AU localization and intensity
estimation [Sánchez-Lozano et al., 2018]. Thus, in our ex-
periments, we incorporate both the intensity information and
spatial configuration of AUs into the heatmap regression-
based network. Most AU-related methods usually train a
model to output a vector representing AU intensities. In
contrast, the heatmap regression-based framework can jointly
regress AU intensities and their locations. The most common
method of illustrating a heatmap is representing the values
stored in a matrix with gradually-changed colors. Specifi-
cally, the heatmap in our framework is utilized to represent
the varying intensity of facial muscles, where the lighter color
indicates a lower AU intensity while the darker color reflects
a higher AU intensity. In our experimental setting, we define
the locations of AUs using a set of facial points, as shown in
Figure 2.

In this work, we also explore how to incorporate the ge-
ometric knowledge into the heatmap regression framework.
Inspired by the work of [Ning et al., 2017], which employs
knowledge projection for guided learning, we inject geomet-
ric features that are inferred from facial landmarks as the ex-
ternal knowledge to enrich the representation power of the
predicted heatmaps. In our framework, as illustrated in Fig-
ure 3, the external geometric knowledge is encoded into a la-
tent representation that characterizes the constraints of facial
points and their interdependencies. Besides, we introduce an
auxiliary loss function for the knowledge projection module,
enforcing the geometry-guided representation learning dur-
ing the training process. During the testing stage, the external
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Figure 2: Facial AU locations defined by a set of facial landmark
coordinates. Each white point denotes the location of a specific AU.
Note that most AU locations are in pairs.

knowledge representation and its associated modules are re-
moved without increasing computational cost.

In summary, our key contributions are three folds:

• We present a new approach that incorporates the exter-
nal geometric knowledge to guide the training of the
heatmap regression network for facial AU intensity esti-
mation.

• We propose to capture the facial geometric constraints
and relationships among facial points by constructing a
graph convolutional neural network to learn more robust
AU-related representation.

• The experimental results on BP4D and DISFA datasets
show that G2RL achieves better or comparable perfor-
mance than current state-of-the-art methods in estimat-
ing facial AU intensities.

2 Related Work
2.1 Facial Action Unit Intensity Estimation
The focus of most existing studies have been on facial expres-
sion recognition or facial action unit detection, whereas rel-
atively few works have investigated the intensity estimation
of facial AUs. As an earlier work, [Li et al., 2013] consid-
ered the temporal information and the dependencies among
multiple AU intensities in a unified probabilistic framework.
Similarly, [Sandbach et al., 2013] integrated traditional hand-
crafted features with AU intensity combination priors in
Markov Random Field (MRF) Structures. They demonstrated
that MRF structures were able to model the interdependen-
cies between AUs. Later on, [Kaltwang et al., 2015] built a
latent tree model for structure learning based on the Bayesian
Expectation Maximization (EM) algorithm to capture higher-
order relationships between the observable features and AU
intensities. To model the non-linear dependencies among
multiple AUs, [Walecki et al., 2016] proposed a copula ordi-
nal regression framework by considering the ordinal structure
in output AU intensities. However, these approaches depend
heavily on the quality of the extracted features and the choice
of the probabilistic models.

To ameliorate this issue, several methods began to lever-
age the discriminative capabilities of deep neural networks
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for AU intensity estimation. For instance, [Walecki et al.,
2017] utilized a Copula CNN deep learning model for joint
learning of multiple AU intensity outputs. [Sánchez-Lozano
et al., 2018] jointly performed facial AU localization and in-
tensity estimation via heatmap regression. In the work of Li
et al. [2018], a new network architecture, named Edge Con-
volutional Network (ECN), was designed to learn edge-like
detectors for capturing subtle facial muscle changes.

2.2 Knowledge-based Methods for AU Intensity
Estimation

Recently, researchers recognize that using external knowl-
edge representation can bring significant advantages in es-
timating AU intensities. [Zhang et al., 2018a] proposed a
knowledge-based semi-supervised deep model, which could
identify four types of domain knowledge including facial
symmetry, ordinal intensity, etc. Meanwhile, [Zhang et al.,
2018b] emphasized domain knowledge on the relevance in
sequential data to learn a feasible frame-level AU intensity
regressor. More recently, the follow-up work of Zhang et
al. [2019] incorporated different types of human knowledge,
e.g., temporal label smoothness, label ranking, etc., as regu-
larization terms or other constraints to learn AU representa-
tions and estimator simultaneously.

Different from previous methods, we propose a new ap-
proach that explores the geometric knowledge associated
with facial point locations as well as their dependencies. We
expect this external knowledge would help in analyzing spon-
taneous facial AUs and boosting the performance of AU in-
tensity estimation. To our knowledge, the approaches intro-
duced in [Niu et al., 2019; Wu and Ji, 2017] also take into ac-
count the geometric constraints in the face shape. However,
they ignore the underlying latent relationship between differ-
ent facial landmarks, which can provide more robustness than
only using the basic face shape and coordinate information.

3 Methodology
3.1 Backbone Model
The backbone model illustrated in Figure 3 is a heatmap
regression-based network, where feature maps contain rich
semantic information of AU intensities and locations. In our
framework, we adopt the simplest network structure [Xiao
et al., 2018] to generate heatmaps. Let us denote the set of
training images as I ⊆ RC×W×H (C: image channels, W :
image width, H: image height). Given an image X ∈ I,
according to its corresponding facial landmark annotations,
we calculate its coordinates of AU locations and denote them
as L ∈ RK×2, where K is the total number of AUs; On
the other hand, the corresponding AU intensities are repre-
sented by I ∈ RK×1. The network ΦφI is trained to pre-
dict the set of AU locations and intensities, where φI denotes
the set of weight parameters of Φ. For each AU location
Lk = (ik, jk)(k = 1, ...,K), the ground-truth heatmap is
produced by applying a Gaussian function as follows

Sk(i, j;X) =
Ik

2πσ2
exp(−

‖(i, j)− (ik, jk)‖22
2σ2

), (1)

where σ is the standard deviation. Hence, each im-
age is labeled with a set of ground-truth heatmaps S =

{S1, ..., SK} ⊆ RW
′
×H

′

(W
′
: heatmap width, S

′
: heatmap

height). From Equation 1, it can be observed that the pixel lo-
cation (i, j) that is farther away from the AU location (ik, jk)
would result in a lower value in Sk(i, j;X).

To optimize the network parameters φI , we utilize the
mean squared error (MSE) loss to minimize the difference be-
tween the heatmaps predicted by ΦφI and the ground-truth.
Therefore, the optimization process is formulated as

LS = min
φI

∑
X∈I
‖ΦφI (X)− S(X)‖22 . (2)

During the inference stage, the estimated AU locations are
given by L̂ = arg max ΦφI (X) while the corresponding AU
intensities are obtained from the highest values of the pro-
duced heatmaps, i.e., Î = max ΦφI (X).

3.2 External Geometric Knowledge Module
The facial geometry is represented as a set of facial landmarks
{p|i = 1, ..., n}, where each point pi is a 2-D vector of its po-
sition coordinate. Similarly to principles in geometry model-
ing [Qi et al., 2017], those facial points should be correlated
with each other and the interaction among them is expected to
enhance the learned representation. The goal of the external
geometric knowledge module is to summarize the face shape
pattern and the interdependencies of facial points into a latent
vector G. Therefore, we design a model derived from graph
convolutional network (GCN) to aggregate the geometric in-
formation in the graph structure. The position coordinates
of facial landmarks are obtained through the Dlib1 library.
Based on the position coordinates of n points, denoted by
P ∈ Rn×2, the external geometric knowledge module builds
a graph G = (N , E), where N is the vertices and each edge
ei,j ∈ E indicates the relationship between two nodes. In our
case, we use three GCN layers to extract geometric features
and the lth GCN layer can be represented as

F l = ReLU(Al−1F l−1W l−1), (3)

where W l−1 represents a trainable weight matrix for the spe-
cific layer, Al−1 is the adjacency matrix determined by the
Euclidean distances between the nodes, and ReLU(·) is used
as the activation function. By integrating the information of
each node and its neighbors, the representation for each node
would be updated after each GCN layer.

Accordingly, three GCN layers execute the transformation
of Equation 3, after which their features are concatenated into
the following feature representation

F
′

=‖3k=1 ReLU(Al−1F l−1W l−1), (4)

where ‖ represents concatenation, and F 0 = P . Finally, three
fully-connected layers are applied to obtain the latent vector
G, which can be formulated as

G = Fc(Fc(Fc(Conv(F
′
)))), (5)

where Fc is the fully connected layer and Conv means the
1 × 1 convolution operation to aggregate the concatenated

1dlib.net
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Figure 3: Illustration of our framework. During the training process, a Graph CNN is utilized to capture knowledge associated with the facial
geometric constraints and interdependencies among facial points. Besides, an auxiliary loss function is introduced to enforce geometry-
guided representation learning via a projection matrix. The gradients generated from the auxiliary loss are propagated back to the backbone
model. During the test process, the knowledge representation and its associated modules removed and the predicted heatmaps are directly
inferred from the learned backbone model.

features. Hence, in the external geometric knowledge mod-
ule, we first obtain a multi-resolution feature representation
integrating both low- and high-level geometric information
via Equation 4, and then transform it into a latent vector us-
ing Equation 5 for the following guided learning.

3.3 Knowledge Projection Layer

As shown in Figure 3, during the training process, we aim
to inject geometric knowledge to guide the learning of the
basic framework, so as to enrich the representation power of
the predicted heatmaps. To this end, a linear projection W
is applied between the geometric knowledge representation
G and the feature maps M before the predicted heatmaps.
Inspired by [Ning et al., 2017], we apply an auxiliary loss
LG to generate gradients enforcing the backbone model to
learn the external knowledge

LG = min
φI,P
‖G−W ×M‖22 , (6)

where P refers to facial landmark annotations of the training
set. The learned projection (Figure 3) can affect the gradients
propagated back to the backbone model. We inject the geo-
metric knowledge into the feature maps M as they are highly
correlated with the predicted heatmaps. Moreover, they share
the same parameters on former layers and can influence the
parameter learning of these layers.

With the geometric knowledge introduced, the MSE loss in

Equation 2 is then reformulated as

L
′

S = min
φI,P

∑
X∈I,P∈P

∥∥ΦφI,P (X,P )− S(X)
∥∥2
2
. (7)

Finally, the overall loss for joint training is a weighted com-
bination of LG and L

′

H

L = min
φI,P

(λ× LG + (1− λ)× L
′

S), (8)

where λ is a weight parameter that controls how much guid-
ance is imposed during the training. During the test stage, the
external geometric knowledge module is removed, with only
the backbone model retained. For inference, the heatmaps
are directly produced by the backbone model that has learned
external geometric knowledge.

4 Experiments
4.1 Datasets and Evaluation Methods
We adopt two benchmark datasets, BP4D [Zhang et al., 2014]
and DISFA [Mavadati et al., 2013], for our experiments. The
BP4D database contains 328 videos of 41 subjects perform-
ing 8 emotion-related tasks, each of which elicits the specific
emotion. Each frame is annotated with intensity information
of five AUs, i.e., AU6, AU10, AU12, AU14, and AU17. The
AU intensity is indicated by the value in the range of 0-5,
with 0 indicating the absence whereas 5 indicating the maxi-
mum. The DISFA database has 27 videos of 27 subjects, and
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Database BP4D DISFA
AU 6 10 12 14 17 Avg. 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

ICC

KJRE .71 .61 .87 .39 .42 .60 .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35
BORMIR .73 .68 .86 .37 .47 .62 .20 .25 .30 .17 .39 .18 .58 .16 .23 .09 .71 .15 .28
CCNN-IT .75 .69 .86 .40 .45 .63 .20 .12 .46 .08 .48 .44 .73 .29 .45 .21 .60 .46 .38

KBSS .76 .75 .85 .49 .51 .67 .23 .11 .48 .25 .50 .25 .71 .22 .25 .06 .83 .41 .36
Baseline .70 .77 .78 .59 .49 .67 .46 .16 .74 .02 .32 .38 .71 .02 .35 .02 .93 .74 .40
G2RL .70 .81 .83 .59 .51 .69 .71 .31 .82 .06 .48 .67 .68 .21 .47 .17 .95 .75 .52

MAE

KJRE .82 .95 .64 1.08 .85 .87 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91
BORMIR .85 .90 .68 1.05 .79 .85 .88 .78 1.24 .59 .77 .78 .76 .56 .72 .63 .90 .88 .79
CCNN-IT 1.17 1.43 .97 1.65 1.08 1.26 .73 .72 1.03 .21 .72 .51 .72 .43 .50 .44 1.16 .79 .66

KBSS .56 .65 .48 .98 .63 .66 .48 .49 .57 .08 .26 .22 .33 .15 .44 .22 .43 .36 .33
Baseline .61 .60 .55 .83 .39 .60 .20 .16 .29 .03 .29 .16 .33 .15 .20 .08 .31 .36 .21
G2RL .62 .55 .50 .87 .38 .58 .16 .16 .28 .04 .25 .15 .31 .14 .20 .11 .25 .39 .20

Table 1: Performance comparison with related work on two spontaneous AU intensity datasets. The best results are shown in bold.

it also provides the six-point scale intensity labels for 12 AUs,
i.e., AU1, AU2, AU4, AU5, AU6, AU9, AU12, AU15, AU17,
AU20, AU25, and AU26.

In our experiments, we evaluate our method on BP4D us-
ing the official training/development partitions. While for
DISFA, the 3-fold subject independent cross-validation is
adopted for evaluation. To compare the performance with
the state-of-the-art approaches, we empirically use the intra-
class correlation coefficient (ICC) and the mean absolute er-
ror (MAE) as evaluation metrics for measuring the perfor-
mance of AU intensity estimation.

4.2 Implementation Details

To pre-process the data, the landmark detector based on a
C++ library Dlib is firstly employed to locate the 68 facial
landmarks. Next, the face images are cropped and aligned to
size 256×256 as the input of the network. Similarly to [Xiao
et al., 2018], in Figure 3, our backbone network is initial-
ized by the ResNet-50 [He et al., 2016] model pre-trained on
ImageNet, and combines the upsampling and convolution op-
erations into three deconvolutional layers to produce a set of
64 × 64 heatmaps. For the external knowledge module, the
network used for extracting geometric features mainly con-
sists of three GCN layers and three fully-connected (fc) lay-
ers. Besides, a concatenation layer is included to summarize
the GCN outputs as a new feature descriptor. The multi-scale
geometric features from three previous GCN layers are trans-
formed into a 256-D latent vector after three fc layers.

The framework is implemented in Tensorflow2 and
NVIDIA GeForce GTX 1080Ti GPUs are used. In the train-
ing phase, we use the Adam optimizer [Kingma and Ba,
2014], with the base learning rate of 5e-4. For parameter
setting, we set the value of the standard deviation σ to 2 in
the heatmap ground-truth generation (Equation 1), and assign
0.05 to λ in the overall loss function (Equation 8) according
to the performance of G2RL.

2https://www.tensorflow.org/

label:4  pred:4.393 label:4  pred:4.479 label:5  pred:4.882 label:2  pred:1.876 label:0  pred:0
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Input

Figure 4: Visualizations of the predicted AU heatmaps from two
testing samples in the BP4D dataset. The redder colors represent the
higher AU intensity.

4.3 Experimental Results and Analyses
Quantitative Evaluation
We evaluate our G2RL method on two benchmark datasets,
and the comparative results are summarized in Table 1. To
verify the effectiveness of the external geometric knowledge,
we also report the performance of the backbone model (Base-
line) without any knowledge incorporated. Furthermore, we
compare with the state-of-the-art approaches (KJRE [Zhang
et al., 2019], BORMIR [Zhang et al., 2018b], CCNN-
IT [Walecki et al., 2017], and KBSS [Zhang et al., 2018a]).

Table 1 provides the performance comparison on the BP4D
and DISFA datasets. The results show that G2RL is able
to estimate AU intensities with higher overall performance.
The baseline model has achieved comparable performance
with KBSS, which indicates the superiority of using the
heatmap regression-based framework. Furthermore, the pro-
posed G2RL outperforms the baseline version in terms of ICC
and MAE on average, highlighting the importance of consid-
ering the geometric knowledge. Comparing to other existing
approaches, G2RL achieves promising performances with an
ICC score of 0.69 and a MAE score of 0.58 on BP4D, as well
as an ICC score of 0.52 and a MAE score of 0.2 on DISFA.
More importantly, G2RL does not introduce additional pa-
rameters during the inference stage since the external knowl-
edge module has been removed. The experimental results
well demonstrate that G2RL can enhance the AU representa-
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Figure 5: Predicted AU1 and AU2 intensities by G2RL for one
randomly selected subject from DISFA, as compared to the corre-
sponding ground-truths.

tions by incorporating the external geometric knowledge into
the heatmap regression-based framework.

From the results in Table 1, it is notable that all the meth-
ods perform relatively better for some specific AUs, e.g.,
AU6, AU10, and AU12 for the BP4D database, and AU6,
AU12, and AU25 for the DISFA database. One possible rea-
son is that these AUs contain more discriminative features
for distinguishing the subtle differences among their intensi-
ties. Second, the six-level intensities data of most AUs in two
datasets are highly imbalanced, while “Cheek Raiser” (AU6),
“Upper Lip Raiser” (AU10), “Lip Corner Puller” (AU12), and
“Lips Part” (AU25) might have more data of high intensity
since they occur more frequently in the real-world scenario.
A more balanced distribution of AU intensities would defi-
nitely be a benefit in feature representation learning.

Qualitative Evaluation
We show further examples of the heatmaps produced by
our G2RL for two subjects from the testing set of BP4D in
Figure 4. It can be seen that the predicted heatmaps cap-
ture the varying intensities of different facial AUs and their
corresponding locations. The redder colors represent the
higher AU intensity that causes more visible facial appear-
ance changes. The predicted AU intensities are inferred from
the maximum values of the produced heatmaps. Besides, we
plot the estimated AU1 and AU2 intensities of the same sub-
ject from the DISFA dataset and the ground-truth intensities
in Figure 5. Note that the subject is from the validation set,
following the 3-fold cross-validation protocol. We only show
two correlation curves for the qualitative evaluation of our
proposed method due to the page limit. It can be observed that
the estimated intensities by G2RL are generally close to the
ground-truth, validating the effectiveness of G2RL for frame-
level AU intensity estimation.

4.4 Parameter Sensitivity Analysis
Additional experiments are conducted to explore the sensitiv-
ity of G2RL to various parameters. In Equation 1, the stan-
dard deviation σ defines the peak width of the Gaussian func-
tion, which means σ influences the pattern of the generated
ground-truth heatmaps. To achieve optimal performance un-
der a range of typical values w.r.t. σ, we report the results
on BP4D and DISFA by varying σ in {

√
0.2,
√

0.5, 1, 2,
√

5}.
We plot ICC and MAE w.r.t. different values of σ in Figure 6.
Studying the results, G2RL performs well and steadily when

(a) ICC w.r.t σ (b) MAE w.r.t σ

Figure 6: Parameter sensitivity study for G2RL on BP4D and
DISFA datasets with varying values of σ.

(a) ICC w.r.t λ (b) MAE w.r.t λ

Figure 7: Parameter sensitivity study for G2RL on BP4D and
DISFA datasets with varying values of λ.

σ varies and both the ICC and MAE are not overly sensitive
to σ. Additionally, we investigate the effect of the parame-
ter λ in Equation 6, which determines the degree of guidance
on the joint training. Intuitively, a good trade-off between the
knowledge-guided learning and the heatmap regression learn-
ing can enrich the representation power of the final predicted
heatmaps. Figure 7 provides an illustration of the variation of
estimation performance as λ ∈ {0.005, 0.01, 0.05, 0.1, 0.5}.
We can observe that similar trends on BP4D and DISFA are
shown with ICC first increasing and then decreasing. Accord-
ing to the curves, G2RL reaches the best performance when
λ = 0.05. This validates that injecting the geometric knowl-
edge can indeed help improve the performance provided that
a proper trade-off is achieved.

5 Conclusion
In this work, we have proposed a novel geometry-guided rep-
resentation learning (G2RL) framework for facial AU inten-
sity estimation. Based on the heatmap regression framework,
a Graph CNN is utilized to encode the external geometric
knowledge associated with facial geometric constraints and
relationships among facial points. Particularly, an auxiliary
loss is tailored to generate gradients enforcing the backbone
model to learn the external knowledge. Our method has
considered the differences between individuals for learning
more robust AU-related representations. Finally, the empir-
ical evaluation on two benchmark datasets demonstrates the
efficacy of the proposed G2RL against previous approaches
and the potential of using the external geometric knowledge.
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