
 

 

Abstract 
Using a convolutional neural network to build visual 
encoding and decoding models of the human brain 
is a good starting point for the study on relationship 
between deep learning and human visual cognitive 
mechanism. However, related studies have not fully 
considered their differences. In this paper, we as-
sume that only a portion of neural network features 
is directly related to human brain signals, which we 
call shared features. In the encoding process, we ex-
tract shared features from the lower and higher lay-
ers of the neural network, and then build a non-neg-
ative sparse map to predict brain activities. In the 
decoding process, we use back-propagation to re-
construct visual stimuli, and use dictionary learning 
and a deep image prior to improve the robustness 
and accuracy of the algorithm. Experiments on a 
public fMRI dataset confirm the rationality of the 
encoding models, and comparing with a recently 
proposed method, our reconstruction results obtain 
significantly higher accuracy. 

1 Introduction 
In recent years, many studies of the visual information pro-
cessing mechanism of the human brain, the encoding and de-
coding of brain signals, and artificial intelligence technology 
using convolutional neural networks (CNNs) have been mu-
tually enlightening and synergistic [Pei et al., 2019; 
Rajalingham et al., 2018]. In this context, we built an encod-
ing model for human brain activation based on widely used 
convolutional neural networks, and then decoded the human 
brain’s visual information by reversing the encoding process. 
This research can facilitate our understanding of the visual 
information processing mechanism of the human brain, as 
well as further explore the relationship between the human 
brain and deep learning. 
 
 
 
 

The framework proposed in this paper has two parts (see 
Figure 1), the first of which is “encoding.” In this part, we 
assume that only some of the features of the neural network 
have a clear relationship with human brain signals, which are 
called shared features. They are obtained by projecting the 
features of low and high layers of the neural network into 
their respective shared spaces. Then a non-negative sparse 
map is established between the shared features and brain ac-
tivity to achieve the encoding process. The second part of the 
framework is “decoding,” in which visual stimuli are recon-
structed through neural network visualization technology, 
meanwhile, dictionary learning and sparse representation are 
introduced to improve the robustness of the algorithm. We 
tested the proposed framework on an open fMRI dataset [Kay 
et al., 2008, 2011; Naselaris et al., 2009] and the experi-
mental results verified the rationality of the encoding models 
and demonstrated that this method can reconstruct the basic 
contours and textures of natural image stimuli. 

The main innovations presented in this article are as fol-
lows: 
 First, based on known neural cognitive mechanisms and 

machine learning methods, neural network features are 
projected onto a shared feature space that can be used to 
build a better encoding model to predict brain activation. 
We find that encoding models based on low-level fea-
tures of a neural network can be more accurate than clas-
sic models based on Gabor wavelet features. 

 Second, dictionary learning technology is used to train 
a corresponding dictionary for the shared features, and 
the sparse representation method is used to estimate fea-
tures from measured brain signals. This method is ro-
bust to noise from fMRI signals and significantly im-
proves the accuracy of feature estimation. 

 Third, an unconditional model is used to generate an im-
age, and the unbiasedness of the generated model en-
sures the interpretability of our method. In our proposed 
method, low-level visual features determine the con-
tours of the generated image, and its principles are easy 
to explain. High-level features enrich the details of the 
image, and although their physical meaning is difficult 
to explain, related effects are constrained by low-level 
features, thereby making the results controllable. 
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2 Related Work 
This work includes the encoding and decoding process, as 
well as implementing image reconstruction by using the re-
cently developed neural network visualization technology. 
The related works are described as below. 

A good encoding model can describe the information pro-
cessing mechanism of human visual cortex and can accu-
rately predict brain activities. It has been shown that simple 
cells in V1 are sensitive to stripes at specific spatial locations, 
spatial frequencies and orientations [Hubel and Wiesel, 1968; 
Olshausen and Field, 1996]. Based on this characteristic, Kay 
et al. used Gabor wavelets to extract the visual features in 
specific receptive fields, and established a voxel-wise encod-
ing model to predict the activation of early visual areas [Kay 
et al., 2008]. In addition, some recent studies have found that 
deep neural networks can also be used to extract effective fea-
tures for modeling. For example, St-Yves and Naselaris used 
low-level features extracted from deep neural networks as in-
put to obtain higher encoding accuracy [St-Yves and 
Naselaris, 2017]. Since then, researchers have extracted hier-
archical visual features from deep networks and proved that 
there is a certain correspondence between the low / high-level 
features of neural networks and the low-level / high-level vis-
ual regions of the human brain [Horikawa and Kamitani, 
2017; Wen et al., 2018]. 

The task of decoding is to recover the information of visual 
stimulus from the measured brain signals, where reconstruct-
ing visual stimuli is a challenging branch. According to the 
visual stimulus materials, related works can be divided into 
reconstruction of artificial images and reconstruction of nat-
ural images. Artificial images include binary images 
[Miyawaki et al., 2008] and handwritten characters [Du et al., 
2017; van Gerven et al., 2010]. Because this type of images 
is limited to a specific category, its reconstruction task is rel-
atively simple. However, the reconstruction of natural images 
does not limit the content of the images, so it requires a higher 
generalization capability of the reconstruction model. The re-
lated research can be traced back to the works of the Gallant 
Lab team. The idea of these works is to select the images / 
videos that best match to the measured subject's brain re-
sponses from a large data set based on the encoding model to 

approximate the observed images [Naselaris et al., 2009] or 
videos [Nishimoto et al., 2011]. These studies make good use 
of relevant results of encoding models. However, these meth-
ods are difficult to generate images flexibly. Since then, re-
searchers have been trying to achieve image reconstruction 
based on deep learning. Seeliger et al. first established a map-
ping between brain activation and hidden variables of a pre-
trained deep generation network, and then used the deep gen-
eration network to generate stimulus images [Seeliger et al., 
2018]. Shen et al. first built decoding models to estimate the 
features of each layer of a deep CNN, and then used a deep 
generation network to perform iterative calculations for the 
reconstruction of images [Shen et al., 2019]. The results ob-
tained by their methods have high structural and semantic ac-
curacy, but because of relying on deep generation networks 
as strong prior information, there may be structural and se-
mantic deviations in the generated results due to prior bias. 

This paper is also related to the visualization of neural net-
works. Here we briefly introduce the feature inversion of con-
volutional neural networks. Mahendran and Vedaldi pro-
posed a TV-norm-based energy function to reconstruct the 
natural pre-image from the features of different CNN layers 
[Mahendran and Vedaldi, 2016]. Since then, image recon-
struction methods based on CNN and deep generation net-
works have been developed to further improve the accuracy 
of reconstructed images [Dosovitskiy and Brox, 2016a, 
2016b]. However, these methods rely on training, which may 
cause deviations in generated results due to prior bias. Re-
cently, Lempitsky et al. proposed deep image prior, which is 
an unconditional model and can generate image from a single 
feature by iterating a full convolutional network [Lempitsky 
et al., 2018]. Considering this method does not require addi-
tional training and can effectively recover images, we use it 
as a prior to achieve feature-to-image reconstruction. 

3 Method 
In this study, we extract features from pre-trained AlexNet 
with Caffe version, then build and test encoding models on a 
public functional MRI dataset. In this section, we first intro-
duce the functional MRI dataset, and then describe the encod-
ing and decoding methods. 

 
Figure 1: Schematic diagram of encoding and decoding. 

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

739



 

 

3.1 Functional MRI Dataset  
In this study, we use the fMRI dataset collected by Kay et al. 
[Kay et al., 2008, 2011; Naselaris et al., 2009]. In the exper-
iment, a 4T scanner was used to obtain fMRI data (BOLD 
signal) with a spatial resolution of 2 × 2 × 2.5 mm3 and a TR 
of 1s. All stimuli are grayscale natural images with circular 
masks and fixed points. The image size is 500 px × 500 px, 
and the field of view is 20 × 20° . Two subjects participated. 
The data set consists of a training set and a test set. The train-
ing set contains 1,750 different images and the test set con-
tains 120 new images. In the preprocessing procedure, the re-
sponse amplitude (single value) of each stimulus image is es-
timated by deconvolving the response time course of each 
voxel. For each voxel response in the training set, calculating 
the ratio between the absolute value of the response and its 
standard error, and defining the median of the ratio as the 
voxel's signal-to-noise ratio (SNR) [Kay et al., 2011]. In our 
study, we further divide the training set into two parts: train-
ing set 𝑇𝑟𝑛1  is used to train the encoding models, which con-
tains 1,575 images; training set 𝑇𝑟𝑛2 is used to evaluate the 
models, which contains 175 images. A test set of 120 images 
is used to evaluate the performance of the decoding method. 

3.2 Encoding (Feature to Brain Signals) 
Recently, related research has confirmed that there is a cer-
tain correspondence between the low/high-level features of 
convolutional neural networks and the low/high-level visual 
regions of human brain [Wen et al., 2018]. However, the fea-
ture space of the neural network and the representation space 
of brain activity are unlikely to completely overlap. Therefore, 
we first give the definition of shared feature space: the inter-
section between the feature space of a particular layer of a 
neural network and the representation space of brain activa-
tion. Then we try to find the shared features from the features 
of neural network using a linear transform and use them to 
estimate brain activation. It can improve the encoding accu-
racy and can facilitate our understanding of the similarities 
and differences between human brain and neural network. 

Encoding with Low-Level Features 
Early literatures supports that early visual areas of the human 
brain are sensitive to low-level features such as Gabor wave-
lets [Kay et al., 2013, 2008], and AlexNet's first convolu-
tional layer shares similarity with Gabor wavelets, so we use 
the features of the first convolution layer as the low-level fea-
tures to build encoding models for early visual areas. In ad-
dition, since the BOLD signal of a voxel reflects the popula-
tion response characteristics of neurons within the voxel, the 
response characteristics of a voxel are likely to be related to 
the features of multiple convolution channels [Li et al., 2018]. 
In general, we use AlexNet's pool1 feature 𝛷𝑝𝑜𝑜𝑙1 ∈

 𝑅27× 27×96 as the initial feature, and for a single voxel, try to 
construct an encoding map as follows: 

min
𝒘,𝑏

∑ [< ℳ𝑝𝑜𝑜𝑙1 (𝛷𝑝𝑜𝑜𝑙1(𝒙)) , 𝒘 > +𝑏 − 𝑟(𝒙𝟎)]𝒙∈𝑻𝒓𝒏𝟏

𝟐

𝑠. 𝑡.  |𝒘|1 + |𝑏|1 < 𝜆                                                                   
        𝒘, 𝑏 > 0,                                                                             

(1) 

where 𝑥0 and x are original and down-sampled stimulus, re-
spectively; 𝛷𝑝𝑜𝑜𝑙1(𝑥)  is the feature of pool1 layer when 
AlexNet takes 𝑥 as input; ℳ𝑝𝑜𝑜𝑙1 is a linear mapping, which 
is responsible for projecting the pool1 features into a shared 
space, and the outputs of it is represented as a vector; <⋅,⋅> 
is product operation, 𝒘  is regression coefficients for the 
shared feature, 𝑏 is a constant, 𝑟 is the evoked brain activity 
when the subject observes the image 𝑥0 . When ℳ𝑝𝑜𝑜𝑙1  is 
known, 𝒘, 𝑏 can be calculated by Lasso regression. 

Here pool1 feature is obtained by convolution and pooling 
operations with 96 convolution kernels. Therefore, this fea-
ture has 96 channels. The convolution kernel of each channel 
is shown in Figure 2a. Some convolution kernels are probably 
not significantly related to brain activity, so we use the fol-
lowing steps to evaluate and select the channels: 
1) Initialization: Denoting the selected channel set is 𝑆, and 

the feature’s tensor form is 𝛷𝑝𝑜𝑜𝑙1
𝑖,𝑗,𝑘 , where 𝑖, 𝑗, and 𝑘 are 

the indexes of width, height, and channel of feature pool1, 
respectively. Let 𝑆 = {1,2, … , 96} , ℳ𝑝𝑜𝑜𝑙1(𝛷𝑝𝑜𝑜𝑙1

𝑖,𝑗,𝑘
) =

 ∑ 𝛷𝑝𝑜𝑜𝑙1
𝑖,𝑗,𝑘

𝑘∈𝑆 /|𝑆|, where |𝑆| is the size of 𝑆. Calculate the 
encoding map for all voxels in early visual areas and let 
𝑉0  be the number of voxels whose predictive power is 
greater than 0.4 (The predictive power of a voxel model 
is defined as the Pearson correlation between predicted 
and measured voxel responses for the images in 𝑇𝑟𝑛2). 
Let 𝑖𝑛𝑑 = 1. 

2) Taking the number of voxels with high predictive power 
(predictive power greater than 0.4) as the evaluation index, 
iteratively calculate the value of this index after removing 
a channel in 𝑆, thereby obtaining the most useless channel 
in 𝑆. Remove the most useless channel, let 𝑉𝑖𝑛𝑑  be the 
number of voxels with high predictive power at this time, 
and 𝐶𝑖𝑛𝑑 be the index of the removed channel. Let 𝑖𝑛𝑑 =
𝑖𝑛𝑑 + 1. 

3) Repeat 2) until 𝑖𝑛𝑑 = 96. 
 

The curve of 𝑉𝑖𝑛𝑑 is shown in Figure 2b. It can be seen that 
when 𝑖𝑛𝑑 = 85, the highest value is obtained, so we select 
the 12 channels remaining at this time as the elements in 𝑆, 
and let  ℳ𝑝𝑜𝑜𝑙1(𝛷𝑝𝑜𝑜𝑙1

𝑖,𝑗,𝑘
) = ∑ 𝛷𝑝𝑜𝑜𝑙1

𝑖,𝑗,𝑘
𝑘∈𝑆 /|𝑆| to build the final 

encoding models. 
 

 
Figure 2: (a) The convolution kernels of AlexNet's first convolution 
layer. (b) The curve of 𝑉𝑖𝑛𝑑. (c) The kernels corresponding to the 
selected channels. 
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Encoding with High-Level Features 
High-level features reflect more semantic information, and 
the encoding and decoding of high-level features can obtain 
additional information outside early visual areas, so it is very 
important for reconstruction. According to the research by 
Wen et al., AlexNet's first fully connected layer (FC6) has 
relatively high encoding accuracy for V4, MT, PPA, FFA, 
LO and other brain regions [Wen et al., 2018]. Therefore, we 
select the FC6 layer as the key layer and extract high-level 
shared features from it, and then build encoding models based 
on the features. Due to the lack of knowledge about the acti-
vation rules of mid- and high-level visual areas, we use an 
unsupervised learning method to estimate the shared feature 
space. Here, we train a non-negative dictionary, and use this 
dictionary as a projection matrix to map features into the 
shared space. There are two advantages in this way: Firstly, 
under the influence of non-negative properties, the elements 
in the dictionary tend to represent the local structure of fea-
tures [Lee and Seung, 1999], which makes the dimensions of 
shared features more independent; Secondly, projection can 
reduce the dimension of features, which can avoid overfitting 
in subsequent modeling. 
 To avoid overfitting, we extract FC6 features from a public 
image database (Webvision) and train a non-negative diction-
ary. Denoting the extracted feature sample set is {𝜱𝒇𝒄𝟔

𝒊 ∈

ℝ4096×1, 𝑖 = 1, . . . , 𝑁}, and the non-negative dictionary 𝑫𝒇𝒄𝟔 
is obtained by calculating the following formula: 

min
𝑫∈𝒞,𝜶𝒊∈ℝ𝑘×1

  ∑
1

2
‖𝜱𝒇𝒄𝟔

𝒊 − 𝑫𝒇𝒄𝟔𝜶𝒊‖
2

2
 𝑁

𝑖=1

 𝑠. 𝑡.       𝑫𝒇𝒄𝟔 ≥ 0, ∀𝑖, 𝜶𝒊 ≥ 0,
                (2) 

where 𝒞 ≡ {𝑫 ∈ ℝ𝑚×𝑘: 𝑫 = [𝒅𝟏, … , 𝒅𝒌], ‖𝒅𝒋 ‖2 ≤ 1, ∀𝑗 =

 1, … , 𝑘}, we set 𝑘 = 700 to reduce the dimension, 𝜶𝒊 is the 
representation vector. Denoting ℳ𝑓𝑐6(𝜱𝒇𝒄𝟔) =  𝑫𝒇𝒄𝟔

𝑻 𝜱𝒇𝒄𝟔 , 
then a voxel-wise encoding model can be established by solv-
ing the following formula: 

min
𝒘,𝑏

  ∑ [< ℳ𝑓𝑐6 (𝛷𝑓𝑐6(𝒙)) , 𝒘 > +𝑏 − 𝑟(𝒙𝟎)]
2

𝒙∈𝑻𝒓𝒏𝟏

+𝑅(𝒘, 𝑏),
 (3) 

where 𝑅 (𝒘, 𝑏) is the L2 regularization term. 

3.3 Decoding (Brain Signals to Features to Image) 
Estimation of Low-Level Feature 
In order to achieve feature estimation, after constructing the 
encoding map, we first give a measure of encoding loss in the 
general form as follows: 

𝐸(𝓜) = ∑  𝑜𝑘( 𝒘𝒌
𝑻𝓜 + 𝑏𝑘−𝑟𝑘)

𝟐
𝑘 ,             (4) 

where 𝓜 is the shared feature, and 𝑜𝑘, 𝑟𝑘, 𝒘𝒌, and 𝑏𝑘 are the 
predictive power, measured brain activity, mapping coeffi-
cients, and mapping offset of the 𝑘th voxel, respectively. The 
shared feature can be estimated just by finding the minimum 
value of 𝐸, but this method will be affected by the high noise 
of the fMRI signal and the deviation of the encoding map, 
making the estimated feature accuracy low. In order to im-
prove the robustness and accuracy of feature estimation, 
when estimating low-level shared features, we first train a 

non-negative dictionary for shared feature 𝓜𝒑𝒐𝒐𝒍𝟏, then esti-
mate features using the dictionary. Specifically, we can esti-
mate the low-level shared features by solving the following 
formula: 

𝜶̂ = argmin
𝜶

   𝐸ℳ𝑝𝑜𝑜𝑙1(𝑫𝓜𝒑𝒐𝒐𝒍𝟏𝜶)

+𝜆𝛼‖𝜶‖1 + 𝛽‖𝜶‖2
2 + 𝛾‖𝑫𝓜𝒑𝒐𝒐𝒍𝟏𝜶‖

2

2
 

𝑠. 𝑡.      𝜶 > 0

  (5) 

 
𝓜̂𝒑𝒐𝒐𝒍𝟏 = 𝑫𝓜𝒑𝒐𝒐𝒍𝟏𝜶̂,                              (6) 

where 𝑫𝓜𝒑𝒐𝒐𝒍𝟏  is the dictionary, 𝜆𝛼  and 𝛽  are constants 
used to control the sparsity and variance of 𝜶, respectively. 𝛾 
is used to control the variance of 𝓜̂𝒑𝒐𝒐𝒍𝟏. 

Low-level features are sensitive to the contours and posi-
tions of objects in the image (see Section 4.3). When estimat-
ing high-level features, we can use the estimated low-level 
features as a priori information, and simultaneously generate 
images and estimate high-level features, so that the estimated 
high-level features and low-level features are coordinated. 

High-Level Feature Estimation and Image Reconstruc-
tion 
After getting low-level features, back-propagation is used to 
simultaneously reconstruct the stimulus image and estimate 
high-level features. Without regularization, it is difficult to 
reconstruct the image. Here we use the deep image prior as 
the regular term [Lempitsky et al., 2018], the formula is as 
follows: 

𝜃̂ = argmin  
𝜃

𝜎𝑝 ‖ℳ𝑝𝑜𝑜𝑙1 (𝛷𝑝𝑜𝑜𝑙1(𝑓𝜃(𝒛))) − 𝓜̂𝒑𝒐𝒐𝒍𝟏‖
2

2

+𝜎𝑓𝐸ℳ𝑓𝑐6
(ℳ𝑓𝑐6 (𝛷𝑓𝑐6(𝑓𝜃(𝒛)))) ,

 (7) 

𝑥̂ = 𝑓𝜃̂(𝒛),                                    (8) 
𝓜̂𝒇𝒄𝟔 = ℳ𝑓𝑐6 (𝛷𝑓𝑐6(𝒙̂)),                       (9) 

where 𝑓𝜃 is a randomly initialized hourglass network with 6 
layers, 𝜃 is the parameter, 𝒙̂ ∈ ℝ𝑊×𝐻×1 is the estimated im-
age, and 𝒛 ∈ ℝ𝑊×𝐻×𝐶 is a random code vector subject to the 
distribution 𝑈[0, 1], 𝜎𝑝 and 𝜎𝑓 are the coefficients of the two 
loss terms, respectively. The above method constructs a non-
linear mapping 𝑓𝜃 by optimizing the parameter 𝜃 in the hour-
glass network, thereby mapping the random code vector 𝒛 to 
the image we want to reconstruct. (The code for 𝑓𝜃 is avail- 
able at https://github.com/Nehemiah-Li/Deep-image-prior.) 
Although the deep image prior does not have a learning pro-
cess, the experimental results show that as long as the feature 
estimation is accurate, back propagation based on the prior 
can effectively reconstruct the observed image.  

4 Experimental Results  

4.1 Analysis for Encoding Process 
In order to know which brain regions the encoding model can 
be well applied to, we calculated the correlation coefficient 
between the predicted responses and measured responses for 
each voxel model on the test set, and counted the proportion 
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of voxels with significant correlation coefficients (P < 0.01) 
in each brain region (for comparison, the significance test 
method is exactly the same as that of literature [Kay et al., 
2008]). Figure 3a shows that the proportion is highest in the 
V1 region, and the more the number of high SNR voxels, the 
more the number of significant voxels. The distribution of the 
two subjects shows consistency. In addition, we also com-
pared our models with Gabor-wavelet-based encoding mod-
els [Kay et al., 2008] (see Figure 3a). It can be seen that the 
encoding models based on the low-level shared features have 
higher accuracy. Because the function of the first convolu-
tional layer is easy to explain, the models based on the low-
level features have strong interpretability. The proportion of 
encoding models based on the high-level features in each vis-
ual region is shown in Figure 3b. High-level features are used 
to model all brain regions in the data set (the data set gives a 
total of 8 visual areas). It can be seen that the high-level fea-
tures can encode mid- and high-level areas such as V3A, V3B, 
V4 and lateral occipital area (LOC). A considerable number 
of encoding models have also been built in undivided (other) 
visual area (it has a large cardinal number). 

4.2 Representation Ability of the Dictionaries 
In the process of feature estimation, the dictionary plays an 
important role. After training the dictionaries, we analyze the 
key attributes of the dictionaries on another dataset. Table 1 
shows the dictionary names, feature dimensions, the root 
mean square error (RMSE) and correlation coefficients be-
tween the normalized actual features and the represented fea-

tures, the average number of non-zero values in the represen-
tation vectors and the atoms in the dictionaries. It can be seen 
that the dictionary 𝑫𝓜𝒑𝒐𝒐𝒍𝟏  have sufficient representation 
ability for the low-level shared features and can achieve such 
representation accuracy using less than 200 non-zero ele-
ments. In theory, if the shared space does not completely 
overlap with the feature space, some information will be lost 
after the projection transformation. Therefore, as a projection 
matrix, 𝑫𝒇𝒄𝟔 has no special requirement for its representation 
ability.  

4.3 Analysis for Decoding Process 
Figure 4 shows some reconstructed images in the test set. It 
is shown that the reconstructed results can capture the con-
tours of the observed images, and the textures in some images 
are consistent. The reconstruction accuracy of the data of sub-
ject 1 is stronger than that of subject 2, which is consistent 
with the difference between the encoding accuracy of two 
subjects. Because the estimation accuracy of the shared fea-
tures directly affects the quality of the reconstructed image, 
we first analyze the accuracy of feature estimation by com-
paring the RMSE and correlation between the estimated fea-
tures and the actual features. Table 2 shows the average val-
ues of accuracy indexes of the estimated features in the test 
set of 120 images. It is shown that the accuracy of estimated 
features on the data of subject 1 is slightly higher than that on 
the data of subject 2, and the estimation accuracy of low-level 
features is higher than that of high-level features.  

In addition, in order to qualitatively analyze the impact of 
low-level features and high-level features on the reconstruc-
tion results, we separately use low-level features and high-
level features to reconstruct the image, and the results are 
shown in Figure 5. We can see that the images reconstructed 
from low-level features have basic contours, and the positions 
of edges are more accurate. Moreover, by comparing the re-
construction result with the estimated low-level feature map, 
we can see that the estimated feature map reflects the main 
information such as the contour and edge of image. The po-
sition of the contours of the images reconstructed by high-
level features alone may not be accurate, but the topological 

Dictionary Dimension    RMSE Corre-
lation 

Non-
zeros 

Atoms 

𝑫𝓜𝒑𝒐𝒐𝒍𝟏 729 0.061 0.959 145.21 4000 
𝑫𝒇𝒄𝟔 4096 0.029 0.765 206.08 4000 

 
Table 1: The representation ability of dictionaries. 

Feature Dimension Max 
Value 

Subject RMSE Corre-
lation 

𝓜𝒑𝒐𝒐𝒍𝟏 729 123.71 Subject1 17.033 0.803 
Subject2 18.454 0.764 

𝓜𝒇𝒄𝟔 700 72.364 Subject1 11.105 0.494 
Subject2 10.523 0.468 

 
Table 2: Accuracy of feature estimation. 

 
Figure 3: (a) Distribution of low-level-feature-based encoding mod-
els in early visual areas. The vertical axis represents the proportion 
of the counted voxels to all voxels in the region. GWP represents 
the encoding model based on Gabor wavelet pyramid, and the rele-
vant data comes from the literature [Kay et al., 2008]. (b) The pro-
portion of high-level-feature-based encoding models in each 
scanned brain region. 
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structure is consistent with original image. It may be that the 
high-level features have a wider receptive field and are more 
abstract. When the high-level features and low-level features 
are combined to reconstruct the image, the contour and tex-
ture accuracy of the result are significantly improved.  

Finally, we compared our method with the method pro-
posed by Seeliger et al. [Seeliger et al., 2018]. To our 
knowledge, their method is the latest method based on this 
dataset. For comparison, we use the same quantitative evalu-
ation method for the reconstruction results: performing a be-
havioral perceptual study using Amazon Mechanical Turk 
(www.mturk.com). Specifically, in each test, the worker is 
presented with an original image in the test set, and mean-
while he is required to choose between a real reconstruction 
and a different reconstruction randomly selected from the test 
set. This process is repeated ten times for each image in the 
test set, and different reconstructions randomly selected in 
each test were used as interference terms. More details about 
the evaluation method can be seen in [Seeliger et al., 2018]. 
Table 3 shows the statistical results of this test. Decision ac-
curacy represents the total number of correct decisions in all 
comparisons. Image accuracy indicates the number of images 
in the test set that can be correctly identified after a majority 
vote is applied to ten decisions for each image. If there are at 

least 8 correct decisions out of 10 comparisons, it means that 
the image is identifiable. Table 3 shows that our lowest accu-
racy (S2) is slightly lower than the accuracy achieved by 
Seeliger et al., while the highest accuracy (S1) and average 
accuracy are significantly higher than the accuracy of their 
results. (Note that Seeliger et al. used hyperalignment method 
to average the multiple subjects' data into a single hyper-
aligned subject data with improved SNR. In theory, the SNR 
of the data of subject 1 is closer to that of hyperaligned data.) 

5 Conclusion  
Based on the concept of shared features, we built encoding 
models to explore the relationship between the deep CNN and 
human brain activity, and then proposed a reconstruction 
method for decoding brain signals. Experimental results 
show that the low-level shared features of the deep CNN can 
efficiently encode the early visual areas of the human brain, 
while the shared features of the fully connected layer can en-
code the mid- and high-level visual areas of the human brain. 
The reconstruction method effectively integrates the infor-
mation of low- and high-level shared features, and nearly half 
of the reconstructions retain the main features of visual stim-
uli. Further research on the encoding mechanism of the high-
level visual regions of the human brain and its intrinsic rela-
tionship with neural networks will be important for under-
standing the human brain's visual cognitive mechanism and 
improving the accuracy of decoding brain information. 
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Method Decision 
accuracy 

Image 
accuracy 

Identifiable 
images 

Seeliger et al. 66.4% 70.0% 43.3% 
Ours (S1) 76.2% 89.2% 58.3% 
Ours (S2) 66.1% 71.7% 38.3% 

Ours (average) 71.2% 80.5% 48.3% 
 

Table 3: Accuracy of reconstructed images. 

 
Figure 4: Image reconstruction results. 

 
Figure 5: (a, b) Estimated and real feature maps of 𝓜𝒑𝒐𝒐𝒍𝟏. (c, d) 
Images reconstructed from estimated and real low-level features. (e, 
f) Images reconstructed from estimated and real high-level features. 
(g, h) Images reconstructed from estimated and real shared features. 
The original image is shown in Figure 4 (penultimate column). 
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