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Abstract

Heterogeneous Information Networks (HINs) are
ubiquitous structures in that they can depict com-
plex relational data. Due to their complexity, it is
hard to obtain sufficient labeled data on HINs, ham-
pering classification on HINs. While domain adap-
tation (DA) techniques have been widely utilized
in images and texts, the heterogeneity and com-
plex semantics pose specific challenges towards do-
main adaptive classification on HINs. On one hand,
HINs involve multiple levels of semantics, mak-
ing it demanding to do domain alignment among
them. On the other hand, the trade-off between
domain similarity and distinguishability must be
elaborately chosen, in that domain invariant fea-
tures have been shown to be homogeneous and un-
informative for classification. In this paper, we
propose Multi-space Domain Adaptive Classifica-
tion (MuSDAC) to handle the problem of DA on
HINs. Specifically, we utilize multi-channel shared
weight GCNs, projecting nodes in HINs to multi-
ple spaces where pairwise alignment is carried out.
In addition, we propose a heuristic sampling algo-
rithm that efficiently chooses the combination of
channels featuring distinguishability, and moving-
averaged weighted voting scheme to fuse the se-
lected channels, minimizing both transfer and clas-
sification loss. Extensive experiments on pairwise
datasets endorse not only our model’s performance
on domain adaptive classification on HINs and con-
tributions by individual components.

1 Introduction
Heterogeneous Information Networks (HIN) are one of the
most prevalent data structures and have been wildly utilized
to store complex relational data. Node classification in HINs
is an important but equally challenging task in that HINs
contain various types of nodes and edges, hence rich se-
mantics. Up to now, many representation learning or col-
lective classification models have been proposed to support
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semi-supervised classification on HINs [Zhang et al., 2018;
Wang et al., 2019].

However, supervised models highly rely on labeled data,
which may be costly or even impossible to obtain for complex
structures like HINs [Jin et al., 2020]. As a result, we intu-
itively resort to transfer learning when labeled data on HINs
are scarce.

Domain Adaptation (DA), which supports transfer learning
from a source domain with sufficient labeled data to an unla-
beled target domain by minimizing their domain discrepancy
[Mansour et al., 2009; Long et al., 2015], has already caught
interests from Computer Vision (CV) and Natural Language
Processing (NLP) [Long et al., 2018; Rozantsev et al., 2018].
Domain adaptation methods, such as Maximum Mean Dis-
crepancy (MMD) [Dziugaite et al., 2015] and Generative Ad-
versarial Network (GAN) [Goodfellow et al., 2014], are able
to align the embedding distributions of different domains, en-
abling the transfer of downstream machine learning models.
We hence resort to DA techniques as potential solutions to the
problem of transfer learning on HINs.

Many embedding models on HINs apply a multi-channel
architecture based on meta-paths [Sun et al., 2011], where
nodes are projected to several embedding spaces through
multiple GNN channels before finally fused to a single col-
lection of representations for downstream tasks [Zhang et al.,
2018]. While it seems that transferable classification on HINs
can be accomplished by simply adding a regularization to
such an architecture to minimize distribution discrepancy, it
should be noted that the heterogeneity and rich semantics of
HINs pose specific challenges:

• HINs feature multiple levels of semantics where domain
alignment should be done, which makes it difficult to
simultaneously align them in a single embedding space.

• Domain adaptation underscores domain invariant fea-
tures, which are likely to be homogeneous and unin-
formative for classification [Chen et al., 2019]. On the
other hand, features indicative for classification are gen-
erally domain-variant. We hence conclude that the trade-
off between transfer and classification, domain similar-
ity and distinguishability is necessary for the task of DA,
especially on HINs where classification is hard.

To solve these problems, in this paper we propose Multi-
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Space Domain Adaptive Classification (MuSDAC)1, which
adopts multi-channel shared weight GCNs [Kipf and Welling,
2016] to project the nodes from both source and target
domains to multiple embedding spaces, where multi-space
alignment is applied, such that the rich levels of semantics of
HINs are preserved independently within each space. By do-
ing so, only one pairwise domain alignment, instead of mul-
tiple pairs, is needed in each space.

In addition, we propose a Two-level Selection strategy
that efficiently aggregates embedding spaces to ensure both
domain similarity and distinguishability, in response to the
trade-off mentioned above. First, we utilize Heuristic Combi-
nation Sampling Algorithm, a polynomial-time algorithm that
selects spaces featuring clear class boundaries, alleviating the
need for combinatorial search of spaces. In what follows,
we propose Moving-averaged Weighted Voting, a weighting
scheme to elaborately fuse the selected spaces, hence min-
imizing both transfer and classification loss. We evaluate
MuSDAC quantitatively on three pairs of networks where
MuSDAC outperforms various baselines on transferable clas-
sification. We also carry out model analysis and visualization
to verify contributions of individual model components.

Our contributions are summarized as follows:

• We address the unexplored problem of transferable clas-
sification among HINs with MuSDAC, which adopts
multi-channel shared weight GCNs [Kipf and Welling,
2016] and applies multi-space alignment to enable do-
main adaptation on different semantic spaces.

• To achieve the trade-off between transfer and classifica-
tion, we design Heuristic Combination Sampling Algo-
rithm to pick out discriminative combinations efficiently
and apply Moving-averaged Weighted Voting to assem-
ble the outputs from all channels. We also theoretically
analyze the weighted voting in multi-space alignment.

• We carry out both quantitative and qualitative experi-
ments where MuSDAC demonstrates itself by outper-
forming competitive counterparts.

2 Related Work
2.1 HIN Classification
Many models have been designed to perform classification
on HINs [Hosseini et al., 2018]. [Zhang et al., 2018] pro-
posed GraphInception to handle collective classification on
HINs by learning the deep relational features. Besides, het-
erogeneous network embedding models, which project nodes
in HINs to a low-dimensional space, also enables classifica-
tion [Gui et al., 2016; Dong et al., 2017; Shi et al., 2018;
Lin et al., 2019]. HAN [Wang et al., 2019] learns represen-
tations based on hierarchical attention, while NEP [Yang et
al., 2019] leverages distributed embeddings to represent ob-
jects and dynamically composed modular networks to model
their complex interactions. However, these models may fail
on new domains without labeled instances due to domain dis-
crepancies.

1Code available on https://github.com/PKUterran/MuSDAC

2.2 Domain Adaption
Domain adaption is wildly used to enable transfer learning
among different but relevant domains without manual tagging
in fields like CV and NLP. Recent studies mainly focus on
learning the domain invariant features for instances in differ-
ent domains by minimizing their distribution discrepancy via
regularizations such as MMD or GAN. [Long et al., 2018;
Rozantsev et al., 2018]

To the best of our knowledge, DANE [Zhang et al., 2019] is
the only work considering domain adaption among homoge-
neous networks in the field of network representation. How-
ever, DANE is unable to deal with the rich semantics in HINs
as the shared weight GCN architecture is specially designed
for homogeneous networks.

3 Problem Statement
3.1 Definitions
Definition 1 (Heterogeneous Network [Shi et al., 2016]). A
heterogeneous network G consists of a node set V =

⋃n
i=1 Vi

with n types of nodes and an edge set E =
⋃m

i=1 Ei with m
types of edges.

In heterogeneous networks, a meta-path Φi is the path in

the form of Vi1
Ei1−−→ Vi2

Ei2−−→ · · ·
Eil−−→ Vi(l+1), which defines

a composite relationship between two nodes Vi1 ,Vi(l+1).

Definition 2 (Multi-channel Network [Zhang et al., 2018]).
Given V1 as the node type pending classification. We de-
compose HIN to a multi-channel network with meta-path
set Φ = {Φ1, · · · ,ΦN}, where each channel is a homo-
geneous network containing nodes V1 connected via a cer-
tain type of meta-path. The resulting network is defined as
G = {(Vl, Al)|l = 1, · · · , N}, where meta-path adjacency
matrix Al represents the number of meta-path Φl connecting
each node pair in V1.

3.2 Problem: Transferable Classification on HINs
Given two HINs (GS ,XS) and (GT ,XT ), where GS ,GT share
the same node and edge types and X represents the features
of V1, transferable classification on HINs aims to utilize the
structural information on both networks as well as labels on
VS,1 to predict the labels on VT,1.

4 Proposed Method
4.1 Overview of MuSDAC
In this section we introduce MuSDAC, an unsupervised do-
main adaptive classification model on HINs (see Fig. 1 for an
overview). We first introduce general pipelines before elabo-
rating on details of individual components.

Multi-channel Shared Weight GCN
To process the heterogeneous information, we decompose
source and target HINs GS ,GT to multi-channel networks
with meta-path set Φ, and feed both of them through N inde-
pendent GCNs [Kipf and Welling, 2016] to produce original
channel embedding sets C = {Cl|l = 1, · · · , N}:

Cl = Âlσ(ÂlXW (0)
l )W

(1)
l (1)
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Figure 1: An overview of MuSDAC, which uses multi-channel shared weight GCNs to process HIN based on meta-path and applies multi-
space alignment to recognize transferable semantic information for DA classification task.

where Â = D̃−
1
2 ÃD̃−

1
2 with Ã = A + IN and D̃ii =∑

j Ãij . Inside channel l, we apply a shared parameter set

{W (0)
l ,W

(1)
l } to project the nodes in both networks to the

same embedding space.

Multi-space Alignment
To extract complex relational features in HINs, we combine
CZ = {Cl|l ∈ Z}, a subset of C with combination Z ⊆
{1, · · · , N} and Z 6= ∅, through 1-dimensional convolution
[Zhang et al., 2018]. We denoteMZ to be the embeddings
of aggregated channel with combination Z.

Here we utilize Algorithm 1 to generate a set of combi-
nations Z = {Zj |j = 1, · · · ,M}, containing M = O(N)
combinations featuring distinguishability, which will be elab-
orated in Section 4.2. We then re-project the nodes to several
new embedding spaces and get aggregated channel embed-
ding setM = {MZj

|j = 1, · · · ,M} whereMZj
is a single

embedding matrix.
In the j-th aggregated channel Zj , we denote

MZj ,S ,MZj ,T as the embeddings of source and target
instances, upon which a classifier is employed for prediction

Ŷj = softmax(MZj
WC

j ) (2)

whereWC
j are parameters of the classifier in the j-th channel.

Model Learning
Theorem 1 (Domain Adaptive Classification (DAC) [Ben–
David et al., 2010]). The upper-bound of prediction error on
target domain can be reduced by minimizing: (a) the error
of hypothesis h on source domain; (b) the H∆H distance
between both domains, which measures the domain discrep-
ancy; (c) the error λ of the ideal joint hypothesis h∗:

εT (h) ≤ εS(h) +
1

2
dH∆H(MS ,MT ) + λ (3)

According to Theorem 1, we apply DAC, where the predic-
tion error on target labels in the j-th channel can be reduced
by minimizing the classification loss on MZj ,S as well as the

distance between MZj ,S and MZj ,T :

LZj ,D = CE(Ŷj,S ,YS), LZj ,T = MMD(MZj ,S ,MZj ,T )

LZj = LZj ,D + γLZj ,T

(4)
where CE is the cross entropy function, MMD is the Maxi-
mum Mean Discrepancy measuring the distribution distance
and γ is a hyper-parameter controlling the gradients.

In LZj ,D the final prediction is a weighted voting of the
outputs from all classifiers with a weight vector θ. The over-
all loss is also a weighted sum of DAC losses from the aggre-
gated channels, where the same weight θ is adopted.

Ŷ =
∑
j

θjŶj L =
∑
j

θjLZj
(5)

4.2 Heuristic Combination Sampling Algorithm
In this section we introduce our design of Heuristic Combi-
nation Sampling Algorithm. We first introduce and verify an
important assumption related to the design of our algorithm,
before introducing the algorithm.

Assumption of Estimating Distinguishability
Inspired by [Rafailidis and Weiss, 2019], we formally define
distinguishability and domain similarity of a combination.
Definition 3. Given Z, by minimizing LZ = LZ,D + γLZ,T

according to Eq.4, we measure Z’s distinguishabilityDZ and
domain similarity TZ by:

DZ = −LZ,D, TZ = −LZ,T (6)

Definition 4 (Sub-combination). Z̃ is a sub-combination of
Z iff Z̃ ⊂ Z ∧ Z̃ 6= ∅. We denote Z’s sub-combination set as
S(Z) 1.

Based on the definitions we present an important assump-
tion on estimating DZ .

1In this paper we use lowercase z ∈ {1, 2...n} to denote a chan-
nel id, capitalized Z to denote a combination, i.e. set of channels
Z ⊆ {1, 2...n} and calligraphy Z to denote a set of combinations
Z = {Zi}.
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Assumption 1 (Estimation of Distinguishability). For a com-
bination Z and ZT = arg max

Z′∈S(Z)

TZ′ , It is satisfied that:

|DZ −DZT | ≤ δ with p > 1− ε (7)

In brief, DZ can be estimated by the distinguishability of
Z’s sub-combination with highest domain similarity.

Analysis of Assumption 1
In this section we present analysis of Assumption 1 from both
theoretical and empirical point-of-view.
Definition 5 (Emphasis of features in embedding matrix).
Given a matrix M, we apply singular value decomposition
(SVD), yieldingM = UΣVT. We define Ui (i-th singular
vector) to be an extracted feature and its corresponding sin-
gular value Σii to be its emphasis. The features embodied in
M is defined as F = {Ui,Σii > ε}.

In domain adaptation, the singular vectors representing the
domain invariants are more likely to be emphasized. In ad-
dition, some of them might be excessively emphasized and
hence acquire an unduly high singular value. We refer to them
as “trap-vectors”, in that they boost domain similarity at the
expense of other singular vectors that embody rich semantics
crucial for distinguishability [Chen et al., 2019].

Based on this phenomenon, we formulate how features are
extracted during aggregation. Denote FZ to be the features
embodied in the aggregated channels with combination Z:

FZ ⊆
⋃

Z′∈S(Z)

φZ′(FZ′) + φ̃(F̃Z) (8)

where F̃Z refers to the features after aggregating all channels
in Z and φ is a function mapping the features to the corre-
sponding embedding spaceMZ . When filtering the features,
the combination ZT = arg maxZ′∈S(Z) T

′
Z should generally

be favorable in domain adaptation. However, such combina-
tion is vulnerable to “trap-vectors” as it is likely to impose
excessive weight on domain invariants [Chen et al., 2019]
and stifle semantics from other channels. On such occasions,
low DZT indicates low DZ and vice versa. Consequently,
we claim that DZ can be approximated by DZT since ZT is
most likely to be extracted in domain adaptation, where “trap
vectors” are likely to be produced.

Alternatively from the empirical point of view, we visu-
alize the relationship between DZ and DZT in Fig.2. The
result shows that DZT approximately follows ZT in most of
the times, hence verifying Assumption 1.

Algorithm: Heuristic Combination Sampling
To select linear number of combinations with high distin-
guishability, a naive method is to minimize Eq.4 (referred
to as pre-test) for every combination Z and compare DZ .
However, such enumeration would bring prohibitive com-
plexity (O(2N )). Alternatively, we design a heuristic algo-
rithm to select the combinations Z, which is presented in
Algo.1. In the first iteration, we pre-test the combinations
in Ztest(|Z| = 1, ∀Z ∈ Ztest), then we try to append a new
channel for each in Ztest and predict DZ (Line 7-13) accord-
ing to Assumption 1. Finally, a linear number of combina-
tions that have high DZ will form new Ztest, and so on.

�����������������������
����

����

����

����

����

���

�

���

Figure 2: The relationship between Z and ZT ’s distinguishability.
31 out of 45 points (68.9%) lie in |y − x| < 0.05.

Algorithm 1 Heuristic Combination Sampling Algorithm

1: Pre-tested set Z̃ := ∅.
2: Under-test set Ztest := {{i}|i = 1, · · · , N}
3: for w = 1, 2, · · · , N do
4: Pre-test the combinations in Ztest.
5: Z̃ := Z̃ ∪ Ztest, Z̃test := ∅
6: if w 6= N then
7: for Z ∈ Ztest do
8: for i ∈ 1, 2, · · · , N ∧ i /∈ Z do
9: Z̃ = Z ∪ {i}

10: Predict L̃Z̃,D according to Assumption 1

11: Z̃test := Z̃test ∪ {Z̃}
12: end for
13: end for
14: Ztest := up to N −w elements in Z̃test with lowest

L̃Z̃,D

15: end if
16: end for
17: return M elements in Z̃ with lowest LZ,D

4.3 Moving-averaged Weighted Voting

In this section we introduce our scheme of weighted voting.
We first extend DAC theory, which links voting weights θ to
classification error, before introducing methods to decide θ.

Theoretical Foundation of Weighted Voting

Theorem 1 proves that DAC works for a single embedding
space in unsupervised domain adaption, while it remains un-
explored for domain adaption in multiple embedding spaces.
We hence extend it towards the scenario where multiple em-
bedding spaces exist.

Theorem 2 (Multi-space Domain Adaption). The upper-
bound of prediction error in target labels can be reduced by
minimizing the weighted sum of DAC loss in all embedding
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spaces: (λ is treated as a constant [Chen et al., 2019])

εT ≤
∑
j

θj(εj,S(hj) +
1

2
dH∆H(Mj,S ,Mj,T )) + λ (9)

Proof. While the optimization objective L =
∑

j θjLZj
is a

weighted sum of DAC loss in individual combinations, instead
of loss on the assembled final label, we find that due to a
consistent weight θ, the prediction error is upper bounded by
the objective L through Jensen Inequality and Theorem 1.

εT = −
∑
i∈V1

yi log(
∑
j

θj ŷi,j)

≤
∑
j

θj(−
∑
i∈V1

yi log(ŷi,j))

=
∑
j

θjεj,T (hj)

≤
∑
j

θj(εj,S(hj) +
1

2
dH∆H(Mj,S ,Mj,T )) + λ

Moving-averaged Strategy
As Theorem 2 draws the connection between the final pre-
diction error and errors on individual embedding spaces, we
hence focus on the appropriate choice of θ. To obtain voting
vector θ corresponding to the performance of each channel,
we first calculate θ̃ by their loss values: [Zhu et al., 2017]

βj = −ηLZj
θ̃i =

expβj∑
i expβi

(10)

where η is a hyper-parameter. The higher η is, the larger dis-
parity among θ̃j will be. However, directly using θ = θ̃
may cause Weight Dominance, where a converged combina-
tion illustrates a much lower loss and obtains overwhelming
voting power, stifling the other combinations that may be po-
tentially helpful. To address this problem, the voting power
θ is moving-averaged here to avoid the abrupt change of θ
and hence assure that every combination will have adequate
gradients to converge in early training periods. At the end of
each iteration, we update θ with θ ← αθ + (1 − α)θ̃. Note
that 0 < α < 1 and θj is originally set to 1/M .

5 Experiments
5.1 Experiment Setup
Datasets
We sample pairs of structurally different graphs respectively
from ACM [Kong et al., 2012], AMiner and DBLP [Wang
et al., 2019]. The statistics of these datasets are presented
in Tab.1, hence showing their structural difference. For each
pair of graphs, the density of meta-path edges is quite differ-
ent between each other, which shows that these graph pairs
are domain compatible (i.e. structurally dissimilar).1

1The explicit description of datasets is on https://github.com/
PKUterran/MuSDAC/blob/master/data/DATA.md.

Dataset Graph A Graph B
Nodes Edges Nodes Edges

ACM 1500
4,960

1500
759

6,691 3,996
26,748 75,180

AMiner 1500
4,360

1500
462

554 3,740
89,274 67,116

DBLP 1496
2,602

1496
3,460

673,730 744,994
977,348 1,068,250

Table 1: Datasets used in experiments

Baselines
We select some state-of-the-art baselines to verify the ability
of MuSDAC to handle transferable classification on HINs.
For baselines working on homogeneous networks, we merge
the adjacency matrices of all meta-paths into one adjacency
matrix, hence obtaining a unified network.

• GCN [Kipf and Welling, 2016]: a typical graph neural
network designed for homogeneous networks.

• GraphInception [Zhang et al., 2018]: a deep GCN for
collective classification on HINs.

• HAN [Wang et al., 2019]: a heterogeneous graph em-
bedding method based on hierarchical attention.

• DANE [Zhang et al., 2019]: It adopts domain adaption
to learning transferable embeddings on different homo-
geneous networks.

• MuSC: a variant of MuSDAC, which removes MMD
loss in Eq.4.

• SingleDAC: a variant of MuSDAC, which uses only one
combination with the best distinguishability.

• MuSDAC-GAN: a MuSDAC variant applying GAN and
average voting instead of MMD and weighted voting.

Hyper-parameter Settings
We use default parameter settings for GCN, GraphInception,
HAN and DANE. In MuSDAC and its variants, the dimen-
sionality of the first and second hidden layers of the multi-
channel GCN is 64 and 32 respectively, before aggregated to
16 in the aggregated channel. The number of sampled com-
binations |Z| = M = 2N − 1. In DAC, we use 5 Gaussian
kernels for MMD and γ = 10. In weighted voting, we take
η = −25 and α = 0.95.

5.2 Classification Results
The results of classification with different transfer settings are
shown in Tab. 2, where we are able to draw four observations.

1. Compared to GraphInception, HAN, MuSC which ne-
glect transfer learning, MuSDAC achieves improvement
especially in ACM B→A and AMiner A→B where a
significant difference in meta-path density between the
graph pair is observed (as shown in Table 1).
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Accuracy ACM AMiner DBLP AVGA→B B→A A→B B→A A→B B→A

GCN 0.701 0.574 0.476 0.750 0.428 0.363 0.549
GraphInception 0.593 0.534 0.539 0.603 0.709 0.700 0.613
HAN 0.683 0.682 0.695 0.663 0.808 0.761 0.715
DANE 0.724 0.602 0.701 0.795 0.672 0.636 0.688
MuSC 0.688 0.757 0.651 0.776 0.804 0.769 0.741
SingleDAC 0.717 0.769 0.751 0.810 0.808 0.787 0.775
MuSDAC-GAN 0.688 0.771 0.754 0.817 0.808 0.783 0.770
MuSDAC 0.726 0.790 0.755 0.799 0.817 0.798 0.781

Table 2: Experiment results of transferable node classification

2. Compared to DANE which deals with homogeneous
networks, a significant improvement by MuSDAC is ob-
served, especially in DBLP where heterogeneity is most
prominent (as shown by denser meta-paths).

3. MuSDAC is able to recover more complex semantics
than SingleDAC via multiple channel combinations,
hence performing better.

4. MuSDAC-GAN fails to outperform MuSDAC as MMD
is able to more precisely reflect domain distances
while GAN losses cannot, hence facilitating the use of
weighted voting.

5.3 Analysis of Two-level Selection

Accuracy ACM AMiner
A→B B→A A→B B→A

Random+Average 0.702 0.762 0.726 0.681
Random+Moving 0.717 0.786 0.732 0.793
Heuristic+Average 0.717 0.794 0.746 0.775
Heuristic+Weighted 0.707 0.782 0.730 0.806
Heuristic+Moving 0.726 0.790 0.755 0.799

Table 3: Two-level Selection Analysis

In this section, we analyze two-level selection strategy
from the following perspectives.

• Selection: whether to randomly select M combinations
(Random) or use heuristic algorithm (Heuristic).

• Voting: whether to use average voting (Aver-
age), weighted voting (Weighted) or moving-averaged
weighted voting (Moving).

The results are shown in Table 3 which shows that two-
level selection strategy is indeed able to significantly improve
the performance compared to simpler counterparts, especially
when they are used simultaneously.

5.4 Hyper-parameter Sensitivity
We test the sensitivity of γ in Eq.4 on AMiner A→B and plot
the results in Fig.3(a). It can be shown that as long as regular-
ization is used (γ > 0), no significant change in performance
is observed.

�������
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Figure 3: Hyper-parameter Sensitivity of γ (left) and combination
number when N = 3 (right)

We also vary the number of combinations to sample M =
1 to 6 (with N = 3) on ACM B→A and plot the results in
Fig. 3(b). We conclude that better performance is attained as
we sample more combinations and levels of semantics.1

5.5 Visualization

0.364 0.281 0.000

Figure 4: Visualization of AMiner A→B generated by MuSDAC.
Two graphs in the same column refer to the source and target em-
bedding distribution in an aggregated channel, whose final voting
power is listed beneath the graphs.

We visualize 3 out of 5 aggregated channels on AMiner
A→B in Fig.4 to provide an intuitive understanding about
our voting scheme. It can be shown that the first two chan-
nels with high voting power perform well in that they illus-

1More experimental materials can be found on https://github.
com/PKUterran/MuSDAC/tree/master/result.
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trate both clear boundaries among categories, and similar em-
bedding distributions. Contrarily, the last channel is hardly
effective in voting due to its blurred boundaries. The result
qualitatively shows that MuSDAC is able to pick indicative
combinations for transferable classification task.

6 Conclusion
We propose MuSDAC featuring multi-space architecture and
two-level selection, which succeeds in solving the problems
underlying in domain adaptive classification on HINs. Com-
pared to various baselines, MuSDAC shows promising per-
formance from both prediction accuracy and visualization.
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