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Abstract

This paper suggests a new paradigm for the de-
sign of collaborative autonomous agents engaged
in executing a joint task alongside a human user.
In particular, we focus on the way an agent’s fail-
ures should affect its decision making, as far as user
satisfaction measures are concerned. Unlike the
common practice that considers agent (and more
broadly, system) failures solely in the prism of their
influence over the agent’s contribution to the exe-
cution of the joint task, we argue that there is an
additional, direct, influence which cannot be fully
captured by the above measure. Through two series
of large-scale controlled experiments with 450 hu-
man subjects, recruited through Amazon Mechan-
ical Turk, we show that, indeed, such direct influ-
ence holds. Furthermore, we show that the use of
a simple agent design that takes into account the
direct influence of failures in its decision making
yields considerably better user satisfaction, com-
pared to an agent that focuses exclusively on maxi-
mizing its absolute contribution to the joint task.

1 Introduction

In many situations in modern life, people find themselves as-
sisted by Al-based systems. Such systems can take the form
of mobile applications, robots, virtual characters on websites,
and many more. These systems can actively make sugges-
tions to the user, e.g., in the case of route-suggesting GPS
navigation systems such as Waze and GoogleMaps, make de-
cisions on behalf of the user (with various levels of auton-
omy), e.g., making financial investments [Vaidya et al., 2018;
Altshuler and Sarne, 20181, or work collaboratively, either
alongside or directly together with the user to jointly com-
plete tasks [Ramchurn et al., 2016], e.g., agents supporting
workers in factory environments, and robots and intelligent
planning agents assisting soldiers in military missions.
Naturally, being based on hardware and software, systems
are prone to failures. A system failure can be fully objec-
tive, resulting from a bug or technical malfunction, e.g., a
physical service robot that unexpectedly freezes or falls down
[Correia et al., 2018]. However, it is also possible that even
a good decision made by the system will be perceived as a
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failure by the user. For example, in dynamic uncertain set-
tings, optimal decisions may, at times, result in poor out-
comes (e.g., weather in the recommended vacation location
turned out to be rainy against all odds, or a poker bot makes
a good bet and still loses money). Or, when a decision is
made based on incomplete information (e.g., bids in online
auctions [van Wissen er al., 2012]), or simply violates so-
cial norms that are unknown to the system [Alkoby et al.,
2019]. While system faults are known to negatively affect
user satisfaction and trust with it [Dabholkar and Spaid, 2012;
Correia et al., 2018], the typical design of assisting agents
does not address them directly as a factor influencing user
satisfaction. Instead, whenever performance is measurable,
most designs would aim merely to maximize that measure,
as they fully correlate user satisfaction with it [Gelderman,
1998]. Examples for such measures can be the expected time
to get somewhere in the case of a navigation system and the
coverage achieved per time unit in the case of a robotic vac-
uum cleaner. In such designs, system failures and faults affect
user satisfaction exclusively through their influence on sys-
tem performance in the context of task execution (see Figure
1(a)), i.e., indirectly.
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Figure 1: System design principles: (a) system failures affect task
performance measure (e.g., task completion time) and consequently
user satisfaction; (b) both system failures and task performance mea-
sure affect user satisfaction.
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We argue that a better design for such systems is one that
considers, alongside the influence of failures over the sys-
tem’s performance in terms of task execution, also their di-
rect effect on user satisfaction. This paradigm shift in design
is illustrated in Figure 1(b). We provide a proof of concept
for our proposed approach in a class of collaborative systems
(Pagents”) that work alongside the user, aiming to achieve
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a shared goal. Specifically, we rely on a game called The
Keyboard Challenge, where the shared goal is reaching a pre-
specified joint score. In this game, agent failures during the
interaction hurt its individual score, hence its contribution
to task completion. Therefore, for a fully rational user, the
agent’s performance is fully captured by its individual accu-
mulated score. The agent’s failures, if exhibited throughout
the game, should not count, as their influence is already re-
flected in the individual score the agent achieved.

Our evaluation is based on two sets of comprehensive con-
trolled experiments. The first, aiming to explore the roles
played by an agent’s failures and its absolute score contri-
bution. The results show that agent failures have an effect
beyond their influence over score— in different treatments
that fixate the agent’s contribution to the joint score, however
differ in the number of failures exhibited by the agent, the
average reported user satisfaction decreases as the number
of failures increases. The second set of experiments evalu-
ates an agent design that directly takes into account failures
in its decision making logic. Comparing average user sat-
isfaction measures obtained with the new agent and with an
agent that merely attempts to maximize its contribution to the
overall score, suggests a substantial (statistically significant)
improvement.

2 Related Work

The research of failures of Al-based systems is quite recent.
While our work focuses on failures in the context of Human-
Agent Interaction (HAI), we also review existing important
literature from the field of Human-Robot Interaction (HRI).

In recent years, there has been an increasing amount of lit-
erature considering the effect of incidences of robots’ failure
on interaction and human perception. Correia et al. have
shown that a faulty robot is perceived as significantly less
trustworthy by people [Correia et al., 2018]. Other negative
effects related to failures are a decrease in users’ satisfaction
[Dabholkar and Spaid, 2012], and robot’s perceived reliabil-
ity, understandability and technical competence [Salem et al.,
2015]. Wang et al. report that an agent that makes conversa-
tional mistakes is capable of social influence [Wang et al.,
2013]. Other studies have shown that users’ perception of a
failure is also related to its timing [Gompei and Umemuro,
2015; Lucas et al., 2017]. While the above works investigate
the effects of failure events and their characteristics (timing,
severity, etc.) on users’ satisfaction metrics, they tend to ig-
nore the overall robot’s task performance metrics and as such
do not provide design principles for an agent’s decision mak-
ing in a task-oriented environment. Our work, on the other
hand, incorporates the effects of failures together with task
execution considerations.

One highly related active research question is which strate-
gies should be adopted to mitigate the effects of a failure.
Several studies have focused on the strategies that robots
should apply after a failure situation, reporting that recovery
strategies can mitigate the negative impacts of robotic failures
[Correia er al., 2018]. The recovery strategy of justifying the
failure was able to mitigate the negative impact of the failure
when the consequence was less severe [Correia et al., 2018].

It was also reported that the timing of a trust repair attempt is
critical for its success [Robinette et al., 2015].

Another important point to consider is that there are differ-
ent types of failures. Most studies have addressed the issue of
technical failures, including some hardware errors and soft-
ware bugs [Correia et al., 2018; Honig and Oron-Gilad, 2018;
Kwon et al., 2018]. Only a few have investigated the impact
of social norms violations [Short et al., 2010; Salem et al.,
2013; Mirnig et al., 2017; Alkoby et al., 2019]. Woerdt et al.
divided robots’ failures in completing a task to lack of abil-
ity and lack of effort [van der Woerdt and Haselager, 2016].
They found that a robot that displays a lack of effort and fails
may lead to blame and disappointment.

Finally, a somehow tangential stream of literature is the
study of sub-optimal advising. Previous work has shown
that since people are known to be rationally bounded [Kah-
neman, 2000] they do not always recognize the optimal-
ity of the decisions made by the agent they interact with.
This has led to various designs based on sub-optimal de-
cision making methods, resulting in greater user satisfac-
tion [Altshuler and Sarne, 2018; Elmalech et al., 2015;
Levy and Sarne, 2016]. Still, these do not explicitly model
system faults as a direct influencing factor but merely rely on
a more detailed performance measure in the form of the com-
plete set of values obtained over time (in the case of repeated
interaction) as opposed to the aggregated value.

3 The Model

We consider a collaborative agent engaged in executing a
joint task alongside a human user. The agent’s efforts con-
tribute to progressing the joint task. Formally, at each time
step the agent needs to choose an action from a set A =
{ai1,... ,an} of actions available to it. The outcome of each
action a; is a priori uncertain, and with some probability may
be positive (i.e., progressing the completion of the task), or
negative (delaying the completion of the task, i.e., failures).
We assume that negative outcomes are more rare than positive
outcomes, yet the influence of the first in delaying the task is
significantly greater than the influence of the latter in pro-
gressing the task. It is assumed that the human user is aware
of the immediate outcomes resulting from the agent’s actions,
and can easily distinguish between those progressing the task
and failures. Furthermore, by the end of the task, the user
fully recognizes the extent to which the agent’s efforts con-
tributed to completing the task. This latter measure will be
denoted (agent’s) absolute contribution onward. The goal of
the agent is to maximize some user-satisfaction-related mea-
sures (e.g., perception of agent’s competence, overall satis-
faction with it, tendency to use it again).

The above is the minimal collaborative-interaction model
for properly studying the interplay between direct and indi-
rect effects of agent failure over user satisfaction. Naturally,
it can be extended in various ways, e.g., incorporating an un-
derlying distribution of outcomes for each action, and using
complex modeling of how a user may perceive the contribu-
tion of each outcome to completing the task in terms of failure
and success. Furthermore, the set of actions available to the
agent and the possible resulting outcomes may change over
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time. Still, for the purpose of empirically establishing the
benefit of considering direct effects of agent failure in its de-
sign, the use of our basic model is highly advantageous and
effective.

4 Experimental Framework

As a framework for our experiments, we use a two-player
game called The Keyboard Challenge. In the game, both play-
ers play in parallel, side-by-side way. One of the players is
human and the other is an autonomous computer agent. A
player’s score in the game is the number of game points she
accumulates. The game layout includes a virtual keyboard
that occupies most of the screen (see screenshot in Figure 2).
Each of the keys is colored one of three colors: yellow, blue,
or red, and the coloring randomly changes every four sec-
onds. At any given time, the keys colored yellow are con-
sidered participant’s keys, those colored blue are considered
agent’s keys and those colored red are considered “forbid-
den” keys. The goal of the human player at any given time
is to press (on her physical keyboard) keys from the set of
those considered participant’s keys (i.e., those colored in yel-
low) at the time of pressing. Each successful (i.e., valid) press
warrants the player an additional game point, after which the
pressed key will be colored white and will not respond to up-
coming presses until the next key colors change. Similarly,
the agent receives one game point whenever it hits a key from
the agent’s keys (i.e., those colored blue at that time), and
the key turns white until the next color change. Pressing the
other player’s keys (i.e., having the human player pressing a
blue key or the agent pressing a yellow key) has no implica-
tion over individual scores. However, if the agent presses a
red key (i.e., a forbidden key), it is penalized and five points
are deducted from its individual score. This enables emula-
tion of an agent’s failure. If the human player hits a red key,
there is no penalty, as we only attempt to investigate the ef-
fect of agent failures. The players’ scores are presented in
signified counters at the top of the screen, while the middle
one is the joint counter, representing the sum of both players’
scores.

The game ends when the joint score counter shows 300,
hence the collaborative nature of the game. The choice of dis-
playing the players’ counters separately, along with the joint
score counter, was made in order to allow the human player
to compare the relative contribution of each player to the joint
task. At the end of the game, a screen containing summary in-
formation, including the final scores, is presented, compelling

You: 0 IOIIIt: 0 Bob: O
12/3(a5@78 9 0
QWER@YBMOr
AsDFcHEEL
ZxcMBNM

Figure 2: A screenshot of The Keyboard Challenge interface.
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the participant to review them before continuing.

S Experimental Design

We hereby provide the specific implementation details and
the procedures used for running the experiments.

5.1 Framework Implementation

The Keyboard Challenge game was implemented as a web-
based game, so that participants could interact with the sys-
tem using a relatively simple graphical interface.

5.2 Subjects and Data Collection

Participants were recruited and interacted with through the
crowd-sourcing framework of Amazon Mechanical Turk
(AMT or MTurk). We restricted participation in our exper-
iments to AMT workers from the US only, who have already
completed more than 1000 HITs on the platform, and for
whom at least 98% of the HITs they have worked on had been
successfully approved.

5.3 Experimental Procedure

Each participant first received thorough instructions of the
game rules and her goal in the game, emphasizing, among
other things, that the game is not competitive. Following
the instructional phase, participants had to correctly answer
a short quiz, making sure that they fully understood the game
rules. Prior to moving on to the actual game, participants
were asked to complete a practice session. In the practice ses-
sion participants were told they will play alongside a ’demo”
player, to prevent any carryover effect. Then, participants
were directed to the actual game. Finally, participants were
asked to complete a post-treatment questionnaire, designed
to evaluate their satisfaction with the agent, and the way they
perceived the experience in general (see details below).

5.4 Experimental Treatments

Experiments were divided into two sets. To prevent any car-
ryover effect, a between-subjects design was used, assigning
each participant to one treatment in one set only.

Set 1. Here, we aimed to investigate the effects of the two
primary factors studied in this research over user satisfac-
tion: agent absolute score contribution to the joint task and
the number of agent failures exhibited throughout the task.
To meet this goal, we designed the experimental treatments
such that the number of the agent’s failures and the agent’s
individual contribution were a priori controlled. Controlling
the number of failures is trivial as it can be pre-set. For the
individual contribution, we continuously adjusted the agent’s
progression rate according to the participant’s score accumu-
lation pace, with proper adaptation according to the number
of required failures. Overall, we had fifteen treatments in this
part, differing in the combination of:

e Agent’s individual contribution - since the game ends
when the agent and the participant reach a joint total of
300 game points, we set agents’ absolute score contribu-
tion € {100, 150, 200}, representing a slow, moderate,
and fast agent, respectively.
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e Agent’s failures - we set the number of agent’s failures
throughout the game € {0, 1, 2, 5, 10}. The failures
occurred at predetermined points in the game, based on
the joint score, such that they were spread equally (with
some noise) throughout the game.

Set 2. Here, we aimed to provide a proof of concept for the
effectiveness of an agent that takes into account, as part of
its design, both its contribution to the joint task and the num-
ber of failures throughout. For this purpose, we configured
the environment such that at each time, the agent can choose
between acting fast and riskily or slowly and safely. Acting
fast and riskily means that the agent gets to press keys at a
pace of ~3.6 keys per second, however there is no guarantee
that a key pressed is from the agent’s keys set (i.e., marked in
blue) at the time of pressing. Instead there is a 0.038 chance
that the key is red (i.e., forbidden, hence failure, reducing five
game points) and 0.962 chance that it is blue (i.e., warrant-
ing one game point). Acting slowly and safely means that the
agent gets to press keys at a pace of ~0.7 keys per second,
however there is a guarantee that all keys pressed are from
the agent’s keys set (i.e., marked in blue) at the time of press-
ing. The choices of the pace and failure chance used for the
different actions available to the agent, were made primarily
to comply with the first experimental set. That is, given the
goal of jointly accumulating 300 game points, the fast and
risky strategy yields, on average, 200 game points, and fails,
on average, 10 times, when playing alongside an average hu-
man subject. The slow and safe strategy, on the other hand,
yields, on average, 100 game points, with no failures.

We tested three agent designs, differing in the strategy they
use:

e Fast and risky agent - this agent keeps acting fast and
risky, regardless of the number of failures obtained
throughout its operation, aiming to maximize its indi-
vidual absolute score contribution.

e Slow and safe agent - this agent keeps acting slow and
safe, aiming to keep the number of failures at zero.

e Adaptive agent - this agent initially adopts the fast and
risky strategy, accumulating game points in a relatively
high pace. However, upon failing five times, it shifts
to (and continues using) the slow and safe strategy, until
300 game points are jointly collected (i.e., the successful
completion of the joint task).! Naturally, there is no as-
surance for this agent’s individual contribution and the
number of failures it will exhibit (though the latter is
bounded by 5), as failures are probabilistic. Therefore,
the shift between strategies can happen at any time. Still,
this agent takes into consideration in its design both the
direct and indirect influences of failures, by consider-
ing both the number of failures and the expected indi-
vidual absolute score contribution. Indeed, this some-
how naive design can be greatly improved by properly
modeling and predicting the effect of different com-

!"The choice of using a threshold of five failures is justified by the
results received in experimental set 1 (see next section), suggesting
a relatively sharp decrease in user satisfaction measures after that
number of failures.
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binations of individual score contribution and number
of failures over the user’s satisfaction, and using some
look-ahead method (e.g., Monte-Carlo based) for decid-
ing on the strategy to be adopted at each stage. Still,
our goal was to provide a proof of concept for a design
that combines the two effects, hence showing that this
agent gains greater user satisfaction (compared to the
two other agents) is sufficient for this purpose.

5.5 Measures

As mentioned above, in all experimental treatments partici-
pants were asked to evaluate the collaborative agent they have
been experimenting with. The first three measures, for which
a numerical rating was requested (from 1, being the worst, to
10, the best), relate to different perspectives of user satisfac-
tion:

e Competence. (Question: To what extent did you find

your collaborator to be a competent partner?)

o Satisfaction. (Question: To what extent are you satis-
fied with your collaborator?)

¢ Recommendation. (Question: To what extent would
you recommend your collaborator to a friend, as a part-
ner to work with?)

The fourth measure is With Collaborator Rather With-
out. (Question: If you could choose - would you rather play
with or without the collaborator?). Based on a two-choice
question, this measure aims to test whether, in participants’
opinion, the agent was beneficial, or if they felt they would
be better off completing the task on their own. We consider
this measure to be crucial for the acceptance and continuous
use of Al-based systems by people.

6 Results and Analysis

A total of 450 participants took part in our experiments. Par-
ticipants ranged in age (19-73, mean 38) and gender (52%
women and 48% men), with a fairly balanced division be-
tween treatments.

Statistical significance was calculated using the Mann-
Whitney-Wilcoxon (MWW) test, which is a non-parametric
test. Results were considered significant if p — value < 0.05.
We note that the same statistical significance was obtained
using the unpaired t-test. For the two-choice fourth question
of the post-treatment questionnaire, we calculated statistical
significance using the Chi-Square test for proportions.

6.1 Experimental Set 1 - Effect of Failures

A total of 300 participants took part in this experimental set,
where 20 participants were assigned to each of the fifteen
treatments. The analysis of the results revealed similar behav-
iors, qualitatively across all user satisfaction measures used,
therefore for space considerations we occasionally present
graphs only for the agent competence measure. We believe
this measure is the most important one, as it focuses directly
on the agent, whereas the others (satisfaction and recommen-
dation) may include some external (environmental and indi-
vidual) considerations.
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Figure 3: Agent’s competence rating for different number of failures
and individual absolute score contributions.

The average reported competence for the different agent’s
individual absolute score contributions (i.e., taking all inter-
actions where that individual score contribution was made
by the agent, regardless of the number of failures exhib-
ited), was found to be 5.67, 7.26, 8.31 for agent’s individ-
ual absolute score contribution of 100, 150, 200, respec-
tively. As one would expect, the agent’s individual score
contribution has a substantial influence over users’ percep-
tion of its competence— the higher the agent’s contribution
to the overall task, the greater the agent’s competence rating.
Similarly, the average reported competence for the different
agent’s number of failures exhibited (i.e., taking all interac-
tions with that number of failures, regardless of the individ-
ual score contribution the agent made) was found to be 7.95,
7.88, 7.27, 6.7, 5.6 for agent’s that exhibited O, 1, 2, 5, 10
failures, respectively. That is, apart from the indirect effect
of failures over agent’s perceived competence through its ef-
fect over score, it definitely also has a direct influence— even
though the distribution of agent’s individual score contribu-
tion within each specific failure level is the same, agents’
perceived competence decreases as the number of failures in-
creases. Proper agent design thus needs to take into consid-
eration not just the expected agent’s individual score contri-
bution, but also the number of failures the agent is likely to
exhibit.

Figure 3 provides a more in-depth analysis of the perceived
competence according to agent’s individual score contribu-
tion and number of failures. Each curve relates to a different
agent score contribution level (i.e., 100, 150, 200) and each
point is the perceived competence averaged over the report-
ing of the 20 participants experiencing an agent with that in-
dividual score contribution, and the corresponding number of
failures marked on the horizontal axis.”

From the figure we observe that agents that made the
same individual contribution, obtained in many cases differ-
ent competence ratings, depending on the number of fail-
ures the agent exhibited. This strengthens the claim that an
agent’s failures directly affect user satisfaction, beyond their
indirect influence in the form of affecting the agent’s individ-
ual contribution to the joint task. In particular, we see that
for each specific score contribution level, the increase in the

2We note that the linear lines drawn between the points do not
represent real experimental data but only shown for clarity.
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number of failures results in a decrease in user perception of
the agent’s competence.® The decrease is not linear and ap-
pears to be affected by the individual score contribution made.
With high and low agents’ individual score contribution val-
ues (with one exception discussed below), there is very little,
if any, difference in perceived competence between different
numbers of failures. Here, apparently, users are more for-
giving as they are mostly happy with the high contribution
the agent made, or are initially highly disappointed with the
agent’s poor contribution, such that the exact number of fail-
ures does not change much. The decrease in user perception
of the agent’s competence in the transition from 5 failures to
10 failures, when the overall agent individual score contribu-
tion is high (i.e., 200), is relatively steep. Here, despite the
high contribution the agent made, its image suffers substan-
tially from the high number of failures (even though their in-
fluence is already embodied in the agent’s score contribution).
The most interesting behavior observed is in the case of the
score contribution of 150. Here, there seems to be a substan-
tial influence of the number of failures, even with relatively
low numbers of failures. Apparently, when reaching 5 fail-
ures, users’ dislike reaches its maximum, and further failures
have no additional effect on perceived competence. Interest-
ingly, with many failures (10 in our case), all three curves
reach almost the same value. Meaning that with a high num-
ber of failures the agents’ individual score contribution plays
no role whatsoever and the user’s perception of the agent’s
competence is exclusively influenced by the agent’s failures.
Figure 3 illustrates best the importance of incorporating the
direct effect of agent failures in its design. In our settings,
an agent with a moderate individual score contribution to the
task yet with small number of failures (e.g., with a contribu-
tion of 150 and one or zero failures) is considered way more
competent than an agent who failed several times (>5) and
yet managed to contribute substantially more to task execu-
tion (e.g., contribution of 200). In fact, an agent that per-
forms poorly (e.g., contribution of 100) but is not associated
with failure during the task is perceived just as good as a high-
performing agent that exhibits many failures (10).

6.2 Experimental Set 2 - Agent Design

A total of 150 participants took part in this experimental set,
where 50 participants were assigned to each of the three treat-
ments (fast and risky, slow and safe, and adaptive). Figure 4
depicts the agents’ average individual score contribution and
the average number of failures, with each of the agent de-
signs. As expected from the agents’ designs, the fast and
risky agent contributed most, on average, to the joint effort
in terms of individual score contribution (198 compared to
152 and 106 with the adaptive and the slow and safe agents,
respectively). It also failed most (10 failures on average, com-
pared to 4.8 and O with the adaptive and the slow and safe
agents, respectively).* We re-emphasize that the above indi-
vidual score contributions already include the delays incurred

3Slight increases appearing in the curves are considered noise.

“Even though the adaptive agent switches to the slow and safe
strategy upon exhibiting 5 failures, failure is probabilistic, hence in
a few cases less than 5 failures were exhibited throughout, hence the
average is 4.8.
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Figure 4: Average score contribution and number of failures.

in terms of the reductions in agents’ individual contribution
resulting from failures.

While the fast and risky agent managed to contribute 30%
more, compared to the adaptive agent, it is the latter that
gained (substantially) greater user satisfaction. Figure 5 de-
picts the average ratings that each of the three agents received,
according to the different measures used. The table below the
graph details the appropriate p-values, suggesting that the dif-
ference is statistically significant in all measures used. The
improvement achieved with the adaptive agent compared to
the two other agents ranges between 16% — 26%.
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Figure 5: Agents’ average rating according to different measures.

Similarly, with the adaptive agent we observe a statistically
significant (p = 0.012) increase in the reported willingness
of participants to play with the agent rather than without it if
this could be chosen: 76% with the adaptive agent compared
to 52% with the fast and risky agent.

Interestingly, the differences in all measures between the
fast and risky and the slow and safe agents were found to be
non-statistically significant. This is despite the fact that the
first contributed to score twice as much as the second. Mean-
ing that the direct influence of failures can, at times, reach
levels of similar magnitudes as the influence of the agent’s in-
dividual absolute contribution to the joint task (which already
reflect the influence of those failures in the form of their effect
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on individual score contribution).

All in all, the findings support the claim that user satisfac-
tion is not fully influenced by agent’s individual contribution.
Instead, failures have a direct effect that goes way beyond
their indirect influence in the form of affecting the agent’s ab-
solute individual contribution to the joint task. Our adaptive
agent, despite its simplicity, provides a proof of concept that
designs that take both effects into consideration can result in
substantially better user satisfaction.

7 Discussion and Future Work

The analysis of the results provided in the former section
supports our hypothesis that alongside the indirect influence
of agent failures over user satisfaction, through their effect
over the agent’s contribution to the joint task, there is also a
partially-correlated direct influence. This latter effect should
be modeled and properly incorporated in the decision mak-
ing process and design of collaborative agents. Other than
providing a proof of concept for the above, the experiments
carried out with our adaptive agent, which has a simple de-
sign that obeys the above principle, illustrate the magni-
tude of the effect one may achieve— even though its con-
tribution to the joint task was 23% smaller (compared to
the expected-score-contribution-maximizing agent), its user-
satisfaction assigned measures were 16% — 26% greater.

We see many important directions for extending this work,
out of which we mention five. The first is the use of more
efficient designs, possibly using a more accurate modeling
of the direct effect of failures on user satisfaction. Indeed
our goal in this paper is merely to provide a proof of concept
through the use of a somewhat simplistic design, however fur-
ther more can be potentially achieved by considering domain-
specific effects and advanced modeling tools. Second, while
our work focuses on collaborative agents, we believe the de-
signs of various other agent types can benefit from incorpo-
rating similar principles. These include agents making rec-
ommendations to people (e.g., decision support systems) and
agents acting on behalf of people (e.g., negotiating or mak-
ing investments). Third, we believe better performance can
be obtained by applying user-modeling and personalization
methods, refining parameters for the specific user the agent
is collaborating with. Fourth, we aim to further investigate
failures’ timing effects over user perception of agents’ com-
petence, and intelligently incorporate these effects in agents’
design [Cohen and Sarne, 2018]. Finally, we aim to explore
how people’s own failures affect the remainder of the interac-
tion with the agent and their perception of the interaction in
general, enriching agents’ design with the findings.
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