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Abstract

We revisit the notion of i-extension, i.e., the adap-
tion of the fundamental notion of extension to
the case of incomplete Abstract Argumentation
Frameworks. We show that the definition of i-
extension raises some concerns in the “possible”
variant, e.g., it allows even conflicting arguments
to be collectively considered as members of an
(i-)extension. Thus, we introduce the alternative
notion of i*-extension overcoming the highlighted
problems, and provide a thorough complexity char-
acterization of the corresponding verification prob-
lem. Interestingly, we show that the revisitation
not only has beneficial effects for the semantics,
but also for the complexity: under various seman-
tics, the verification problem under the possible
perspective moves from NP-complete to P.

1 Introduction

Many approaches have been recently proposed for extending
Dung’s Abstract Argumentation Framework (AAF) to deal
with various forms of uncertainty. In this context, a lot of
interest has been gained by the “incomplete Abstract Argu-
mentation Frameworks” (1AAFs) introduced in [Baumeister
et al., 2018b; Coste-Marquis ef al., 2007; Cayrol et al., 20071,
whose difference from the “classical” AAFs is that every ar-
gument/attack is labeled as certain or uncertain, meaning that
it will definitely occur or may not occur in the modeled dis-
pute, respectively. iAAFs are well-suited for a number of sit-
uations, such as the merging of AAFs representing the sub-
jective views of different agents. In fact, it allows the attacks
that must be definitely considered (as they are shared by all
the agents) to be distinguished from those that may not be
true (as agents do not agree on their existence). Analogously,
arguments may need to be marked as uncertain since it is not
known if the agent claiming them will participate the dispute.

An iAAF compactly encodes the possible “scenarios” for
the argumentation, named completions, that are the alterna-
tive combinations of arguments/attacks that can occur. Thus,
a completion is an AAF containing all the certain argu-
ments/attacks of the iAAF plus a subset of its uncertain argu-
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ments/attacks. To deal with the multiplicity of completions,
the classical notion of extension has been re-formulated into
i-extension, in the possible and necessary variants:

“Possible and necessary i-extensions of an iAAF”: A set of
arguments S is a possible (resp., necessary) i-extension of the
iAAF I F if, for some (resp., every) completion F' of I F, the
set S* consisting of the arguments in .S belonging also to F’
is such that S* is an extension of F'.

Example 1 Consider the iAAF IF over the arguments a,b
and the attack (a,b). Assume that a is certain, while b and
(a,b) are uncertain. Then, IF has 3 completions: Fy =
(A1, D1) = ({a},0), > = (A3, D2) = ({a,b},0), F3 =
(As, D3) = ({a,b},{(a,b)}). Let S = {a,b}. It is easy
to see that, under the admissible semantics, S is a possible
i-extension of IF. In fact, S N Ay = {a} is an admissible
extension in the completion Fy (as well as S N A2 = {a, b}
is an admissible extension in F3). S is not a necessary i-
extension of 1F (under the admissible semantics) since S N
Az = {a, b} is not an admissible extension in F.

Now, consider the iAAF IF’ coinciding with IF, except
for the fact that (a,b) in IF' is certain. The completions of
IF are F| = (A}, D}) = ({a},0}), Fy = (A5, Dy) =
({a,b},{(a,b)}). Then, under the admissible semantics,
S = {a,b} is a possible i-extension (as S N A} = {a}
is an extension in F|) but not a necessary i-extension (as
SN A, ={a,b} is not an extension in Fy). O

Looking into Example 1, we can find some aspects of the
definition of i-extension that raise some concerns, in partic-
ular for the possible variant. Consider the case of IF’. The
set {a, b} turns out to be a possible i-extension even though
there is no completion for which {a, b} is an admissible ex-
tension: indeed, they are conflicting (since the attack (a, b) is
certain), thus one would reasonably expect that {a, b} should
not be considered an admissible extension in any sense. A
similar concern arises when using the notion of i-extension
as a cornerstone for building other fundamental notions of
1AAFs, and in particular when defining the notion of accepted
argument as done in classical AAFs. In fact, starting from
the traditional definition of “accepted argument”, it would be
natural to define an “i-accepted argument” as an argument be-
longing to at least one i-extension. The point is that, this way,
in the case of I F”, the argument b would be an i-accepted ar-
gument as it belongs to the i-extension S = {a,b}: but S is
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an i-extension since {a} is an extension in F}, where argu-
ment b does not occur. In other words, despite b is i-accepted,
it belongs to no extension of any completion.

Starting from these observations, in this paper we intro-
duce the “possible i*-extension”, a revisitation of the notion
of possible i-extension defined as follows:

“A set of arguments S is a possible i*-extension of an iAAF
IF if S is an extension of some completion F of [ F”,

that basically differs from the one in the literature since the
completion F’ that certifies that S is an i*-extension must con-
tain all the arguments of S. According to this alternative defi-
nition, S = {a, b} is still a possible i*-extension for the iAAF
IF in Example 1 (since S is an extension in F5, that contains
both a and b) but not for I F’ (the only completion of I F” con-
taining both a and b is F}, where a is in conflict with b). This
new definition avoids the possibility that a set of arguments is
considered an i*-extension even though its arguments never
occur together in an extension of some completion. In turn,
this makes the “natural” definition of i*-acceptable argument
reasonable: now an i*-accepted argument (i.e., an argument
belonging to at least one possible i*-extension) is guaranteed
to belong to at least one extension of a completion.

The main contribution of this paper is a study of the verifi-
cation problem for (possible) i-extensions under this revisited
definition. In particular, we focus on the complexity charac-
terization of this problem and show that, under several seman-
tics, our revisitation also yields beneficial changes in the com-
plexity. In fact, under the admissible, stable, complete, and
grounded semantics, the verification problem, that was shown
to be NP-complete in [Baumeister et al., 2018b] for the “orig-
inal” i-extension, becomes polynomial-time solvable. In this
regard, the proofs of the polynomiality under the complete
and the grounded semantics are based on elaborate strategies
based on removals/insertions of uncertain arguments and at-
tacks that has no analogous counterpart in the literature.

A synopsis of the results on the complexity of the verifi-
cation problem in [Baumeister ef al., 2018b] and of our re-
visitation is in Table 1. Herein, also the case of necessary i*-
extension (whose definition is the possible one’s, after replac-
ing “some” with “every”) is reported. In fact, in order to give
a complete picture, we reason on the effects of revisiting the
original notion of necessary i-extension as done with possible
i*-extension. From a computational point of view, this change
has no impact on the complexity of the verification. From a
“semantics” standpoint, we will show that the original notion
of necessary i-extension does not raise the same concerns as
the possible one (e.g., necessary i-extensions cannot contain
conflicting arguments). However, revisiting the necessary i-
extension in same direction as the possible i*-extension can
be useful to encode more strictly that the arguments in S must
“collectively” represent a strong point in the dispute.

2 Preliminaries

Abstract Argumentation Frameworks (AAFs). An
Abstract Argumentation Framework is a pair (A, D), where
A is a finite set, whose elements are called arguments, and
D C A x Ais a binary relation over A, whose elements are
called defeats or attacks. Given a set of arguments S and an
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i-extensions i*—extjnsions

g pos nec pos nec
ad,st,co,gr | NP-c P P P
pr ¥P-c | NP-c | ¥%-c | NP-c

Table 1: Complexity of the verification problem

argument a, we say that “S attacks a” if there is an argument
b in S such that b attacks a, and that “a attacks S” if there
is an argument b € S such that a attacks b. Moreover, we
say that a is acceptable w.r.t. S if every argument attacking a
is attacked by S, and say that S is conflict-free if there is no
attack between its arguments.

Semantics of AAFs. Several semantics for AAFs have
been proposed to identify “reasonable” sets of arguments,
called extensions [Dung, 1995]. A set S C A is: an
admissible extension (ad) iff S is conflict-free and all
its arguments are acceptable w.r.t. S; a stable extension
(st) iff S is conflict-free and S defeats each argument
in A\ S; a complete extension (co) iff S is admissible
and S contains all the arguments that are acceptable w.r.t.
S; a grounded extension (gr) iff S is a minimal (W.r.t.
C) complete set of arguments; a preferred extension (pr)
iff S is a maximal (w.r.t. C) complete set of arguments.
S EM will denote the set of semantics {ad, st, co,gr, pr}.

Incomplete AAFs (iAAFs). We now recall the notion of
incomplete AAF [Baumeister et al., 2018b].

Definition 1 GAAF) An incomplete Abstract Argumentation
Framework is a tuple (A, A?, D, D*), where A and A* are
disjoint sets of arguments, and D and D"’ are disjoint sets of
defeats between arguments in AU A’. The arguments in A
are said to be certain (i.e., they are definitely known to exist),
while those in A” uncertain (i.e., it is not known for sure if they
occur in the argumentation or not). The defeats in D are said
to be certain (i.e., they are definitely known to exist, if both the
incident arguments exist), while those in D7 uncertain (i..e, it
is not for sure whether they hold in the argumentation, even
if both the incident arguments exist).

AniAAF compactly represents the alternative scenarios for
the argumentation, called completions.

Definition 2 (Completion) A completion for an iAAF IF =
(A, A, D, D" is an AAF F = (A',D') where A C A’ C
(AUA") and DN(A’x A"YC D' C (DUD") N (A’ x A").

In [Baumeister et al., 2018bl, i-extensions have been intro-
duced’ to adapt the fundamental notion of extension to the
presence of incompleteness in iAAFs. Specifically, since an
iAAF encodes several scenarios, the notion of extension was
re-formulated under both the possible and the necessary per-
spective, where the discriminatory condition is required to be
true in at least one and every scenario, respectively.

'The name i-extension was never used explicitly in [Baumeis-
ter et al., 2018b], where the presentation follows the direction of
extending the verification problem (rather than adapting the notion
of extension) to i1AAFs. However, what we call i-extensions are
sets of arguments for which the verification problem introduced in
[Baumeister et al., 2018b] returns “yes” and vice-versa.
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Definition 3 (Possible and necessary i-extension) Given
an iAAF IF and the semantics o € SEM, a set S is said to
be a possible (resp., necessary) i-extension for 1 F (under o)
if, for at least one (resp., for every) completion F = (A’, D"}
of IF, the set S* = S N A’ is an extension of F under o.

Example 1 shows some possible and necessary i-extensions.

3 From i-Extensions to i*-Extensions

As a matter of fact, under the possible perspective, the def-
inition of i-extension proposed in [Baumeister et al., 2018b]
raises some issues that can be hardly reconciled with the ex-
pectation that, even in the presence of uncertainty, an exten-
sion should consist of a set of arguments that collectively rep-
resent a robust point of view in a dispute. In fact:

I;: a set S may be an i-extension of an iAAF IF even if,
for every completion F' where S’s arguments occur all to-
gether, S is not an extension for F'. This happens, for in-
stance, with S = {a, b} in the iAAF I F’ in Example 1.

I5: as an undesirable consequence of the point above, a set S
may be an i-extension of I F’ even if some of its arguments
are definitely conflicting, due to certain attacks between
them (see S = {a, b} in the iAAF I F’ in Example 1);

I3: even in a possible perspective, one would expect that the
fact that an argument belongs to an i-extension (i.e., the
argument is “i-acceptable”) certifies that the argument is
“robust to some extent”. Unfortunately, an i-acceptable
argument may not be robust at all: for instance, in Ex-
ample 1, b is i-acceptable for I F’ (since it belongs to the
i-extension {a, b}) but it can be hardly considered robust
to any extent, since it is defeated through the certain at-
tack (a,b) from the un-attacked certain argument a. The
point is that it can happen that an argument belongs to an
i-extension S, but this argument does not belong to any
completion F' that “certifies” that S'is an i-extension.

These issues can be resolved by modifying Definition 3 by
requiring that the set S itself (rather than S* = SN A’) is an
extension in the completion F', thus obtaining what follows:

Definition 4 (Possible and necessary i*-extension) Given
an iAAF IF and a semantics o € SEM, a set S is said to be
a possible (resp., necessary) i*-extension for I F' (under o) if,
for at least one (resp., for every) completion F' of I F, the set
S is an extension of F' under o.

Example 2 The possible i-extensions of the iAAF I F' of Fig-
ure 1 under the o = ad are 0, {a}, {e}, {a,e}, {a,d},
{e,d}, {a,b}, {e, b}, {a,b,d}, {e,b,d}, {a,d,e}, {a,b, e}
and {a, b, d, e}, while the possible i*-extensions under the ad-
missible semantics are (), {a},{e},{a,e},{a,d},{e,d} and
{a,d,e}. For the possible i-extensions that are not possible
i*-extensions, the issues Iy and I» hold. Moreover, argu-
ment b raises issue Is when considering its membership to
i-extensions. The necessary i-extensions of I F under o0 = ad
are 0, {a},{e} {a,d}, {e,d},{a, e} and {a,d, e}, while the
necessary i*-extensions are (), {a} and {a, d}. Observe that,
under the necessary perspective, neither the i-extensions nor
the i*-extensions raise 11 and I, and no argument raises I3.

As discussed at the end of Example 2, issues I, Is, I3
for the “original” notion of i-extension under the necessary
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Figure 1: Two iAAFs I'F and IF’ (uncertain arguments/attacks are
depicted using dashed lines)

perspective do not hold. Specifically, if S is a necessary
i-extension, no pair of its arguments can be conflicting
(issue I5), since there would be at least a completion where
these arguments occur along with the attack, and S would
not be an extension in this completion. Analogously, no
member of a necessary i-extension can be attacked by an
un-attacked argument (issue I3). Nevertheless, using the
notion of necessary i*-extension instead of the original
i-extension is reasonable when one wants to adopt an even
“more necessary” perspective, where the desiderata that
the arguments in S collectively represent a robust point of
view is applied by strictly interpreting the term “collectively”.

The relationship between i*- and i- extensions. Proposi-
tion 1 below outlines the hierarchy over i- and i*- extensions.

Proposition 1 Given an iAAF IF = (A, A*, D,D") and a
semantics o0 € SEM, let N* and N be the sets of necessary
i*- and i- extensions under o, respectively, and P* and P the

sets of possible i*- and i- extensions under o, respectively.
Then, N*CN C P*CP.

The inclusion N C P* holds since, if S is a necessary
i-extension, it is an extension also in the completions con-
taining all the arguments of S. According to Proposition 1,
any i*-extension is an i-extension. The vice versa is gener-
ally false (e.g., the possible i-extension {a, b} of Example 2
is not an i*-extension), but it holds for i-extensions consisting
of only certain arguments, since definitions 3 and 4 collapse.
This is formalized in the first part of the following statement.

Proposition 2 Let [F'= (A, A*, D, D?) be an iAAF and o €
SEM. 1) Under both the possible and necessary perspectives,
if S is an i-extension and SNA = S, then S is an i*-extension.
2) The vice versa holds only for the necessary perspective.

Point 2) above implies that necessary i*-extensions con-
tain no uncertain arguments. This is false for possible i*-
extensions and for possible and necessary i-extensions (in Ex-
ample 2, {e} is a possible i*-extension, a possible i-extension
and a necessary i-extension although e € A”).

4 Verifying Extensions: Complexity Results

We study the complexity of the following counterparts of the
classical verification problem over AAFs:

Definition 5 (IPOSVER? (S) and INECVER?(S)) Let [F=
(A, A, D,D?) be an iAAF, S C AU A’, ¢ € SEM.

IPOSVER?(S) (resp., INECVER? (S)) asks for checking if S
is a possible (resp., necessary) i*-extension for I I’ under o.

Our results are summarized in Table 1 and their importance
and technical depth are discussed at the end of this section.
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Theorem 1 IPOSVER? (S) is in P under o € {ad, st}.

Proof. Under o = ad, IPOSVER?(.S) is true iff S is an exten-
sion in the completion containing all the arguments of [ F’ but
the uncertain arguments outside S that attack .S, and all the
attacks except the uncertain attacks towards S (and between
arguments in .S). The case 0 = st is analogous. O

The case of the complete semantics is much more complex.
We preliminarily introduce the notion of core argument and
of c-expansion of a core argument.

Definition 6 Let IF = (A, A”, D, D?) be an iAAF, F =
(A*, D*) one of its completions, S C A* and ay € A*/S.
Argument ay is a core argument w.r.t. I F, F and S iff there is
a sequence of arguments ay, . . . , ay, (Withn > 0) such that:
1. {ag,...,an} C A*/S;

2. Vi€0..n], b € S s.t. (b,a;)€D*ND or (a;,b) € D*ND;
3. ifn >0, Vi € [].TL} (ai,ai,l) e D*;

4. 35 € [0..n] such that (a;,a,) € D*.

The set {aq, . .., an} is said to be a c-expansion of ay.

Observe that, for any core argument, there can be several
c-expansions. In what follows, we denote the set of all the
core arguments w.r.t. [ F, F'and S as CORE(IF, F, S).

Example 3 Let [F' = (A, A, D, D") be the iAAF in Fig-
ure 1. Consider F = (AU A", DU D") and let S = {a}.
Argument e is a core argument w.r.t. IF') F and S, and {e}

and {e,d, c} are its c-expansions. The set of all the core ar-
guments w.rt. IF' ) F and S is CORE(IF' | F,S) = {¢c,d, e}.

The notions of core argument and c-expansion have been used
to design Algorithm 1. This algorithm constructs a comple-
tion by first taking all the arguments and attacks, except the
uncertain attacks towards .S and the uncertain arguments that
have a certain attack towards S and are not attacked by S
(lines 1-2). Then, for each a ¢ S that is acceptable w.r.t.
S, it performs the following tasks: first, it tries to make a
unacceptable by checking whether a is attacked by a core ar-
gument b and removing every uncertain attack from S to b
(lines 6-8); next, if a is still acceptable w.r.t. S, it removes
a, if it is an uncertain argument (lines 9-11). As an example,
Algorithm 1 applied to the iAAF I F’ of Figure 1 and the set
S = {a} builds the completion F™* obtained by removing the
attacks (f,a) and (a,d) from TF’. Specifically, (f,a) is re-
moved at line 2, while (a, d) at line 8 when considering the
argument ¢ (which is acceptable w.r.t. S, as S defends it from
the attacks coming from b and d). At the end, Algorithm 1 re-
turns true iff .S is a complete extension of F™*. The following
theorem shows that Algorithm 1 solves IPOSVER? (.5).

Theorem 2 TPOSVER?(S) is in P under o = co.

Proof. Algorithm 1 runs in polynomial time since both the
following tasks are in P: verifying that S is a complete exten-
sion of the AAF F* = (A*, D*) constructed by the algorithm
(line 6), and verifying if an argument b is a core argument
w.r.t. F* and S (line 7). The latter, in fact, can be done with
a minor change to the standard in-depth visit of the argumen-
tation graph of IF', where attacks are walked in their opposite
sense. As for the correctness/completeness of Algorithm 1,
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Algorithm 1 Deciding [IPOSVER?(S) under o = co

Require: AniAAF IF = (A, A’ D, D7> andaset S C AU A’
Ensure: The evaluation of the instance (I F, .S) of IPOSVER? (S)
I: A" = (AU A"\ {a € A"|3(a,b) € Dwithb € S A
#(c,a) € DU D" withc € S}
D" = ((DUD7) \{(a,b) e Db e S}) N (A* x A%)
:CS =10
while 3a € A™ \ S s.t. a is acceptable w.r.t. SAa & CS do
CS =CSU{a}
for all b € CORE(IF, F*, S) such that (b,a) € D* do
for all (c,b) € D*ND” with c€ S do
D* = D* \ {(c, b)} //removing attacks defending a
if a is acceptable w.r.t. S and a € A’ then
A" = A"\ {a}
D* = D"\ ({(z,a) € D"} U{(a,z) € D"})
: return IsCompleteExtension(S, F'*); //where F* = (A*, D™)

—_— =
S e A AN

if S is a complete extension of F™*, then IPOSVER? (S) ob-
viously evaluates to true. Thus, we focus on the inverse im-
plication, and assume by contradiction that .S' is a complete
extension for a completion o« = (A’, D'}, but not for F'*. The
latter implies that either (I) S is not an admissible extension
for F*,or (II) 3x € A*/S s.t. x is acceptable w.r.t. S in F™*.
It rather easy to see that (I) leads to a contradiction, thus we
now consider the case (I7). We distinguish two sub-cases:
x€A andx ¢ A’, and consider only the first one, as the latter
is trivial. Since S is a complete extension for «, then x is not
acceptable w.r.t. S in o. This implies that  in « is attacked
by either 1) an argument y € S, or 2) an argument 21 ¢ S
that is not attacked by S. In case (1), the attack (y, x) is not
in D*, as otherwise x would not be acceptable w.r.t. S in F'*.
Hence, (y,z) was removed at line 8 (as x € A*, (y,z) can-
not have been removed at line 11). Since this requires that
x € CORE(IF, F*,S), then there is z € CORE(/F, F*,S)
such that (z,2) € D* (i.e., z is the argument attacking x in
a c-expansion of x). Hence, in the subsequent steps of Al-
gorithm 1, when x is considered at line 4, the argument z
will be considered at line 6 and all the attacks from S to z
removed from F'* (lines 7- 8). This will make = not accept-
able w.r.t. S in F'* (as it is attacked by z which, in turn, is
not attacked by S), which is a contradiction. In case (2), the
argument x in « is attacked by an argument z; ¢ S that, in
turn, is not attacked by S. First, observe that there can be
no argument g € S such that (z1,x0) € D’, as otherwise
S would not be a complete extension for «. However, since
S is a complete extension for «, it holds that x; is not ac-
ceptable w.r.t S in «. This implies that there is x5 € A’/S
such that (zo, z1) € D’ and x5 is not attacked by S and does
not attack S. By iterating this reasoning, we can find a se-
quence of arguments x, z1,...,%,, with n € [1..]A"\ S]],
that is a c-expansion of z. Hence, x; € CORE(IF, v, S), that
implies 1 € CORE(IF,F*,S) (as Algorithm 1 preserves
arguments/attacks occurring in any c-expansion). Hence, no
attack from S to xq is in F'*, as it is removed at line 8, thus
contradicting that x is acceptable for .S in F™*. O

We now consider ¢ = gr. In what follows, we still use
the notions of core argument ad c-expansion, but applied
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Algorithm 2 Checking IPOSVER’ (S) under 0 = gr

Require: AniAAF [F = (A, A", D, D ) andaset S C AU A",
Ensure true iff the instance (IF S) of IPOSVER? (S) is true;
I: F=(Ar,Dp) =(AUS,DN((AUS) x (AU XS)))
2: 1f S is not conflict free in F then

3:  return false

4: GR = groundedExtension(F’)

5: if GRN S = () then
6.
7
8
9

: return false
: foralla € S\ GR do
: F={Ap, DrU{(a;,b)| (ai,b) € D'A(b,a) E DrAa; € S})
: GR = groundedExtension(F")
10: if S Z GR then
11:  return false
12: F* = (Ap» = AU AT,

D+ = DUDrU(D* N ((Ar+ \ S) x (Ar+\ 5))))
13: foralla € GR\ S do
14:  if a is a core argument w.r.t. F'* and S then
15: Add to F' arguments/attacks of a c-expansion of a

16: GR = groundedExtension(F); C'S =0

17: while 3a € ((GR\ S) \ CORE(F, F,S) \ Cs do
18: if3be Ssit. (b,a) € D then

19: F = (Ap,DrU{(b,a)})

20:  GR = groundedExtension(F); CS = CS U {a}
21: if S # GR then

22: return false

23: return true

on traditional AAFs rather than iAAFs. In fact, any AAF
= (A, D) is an iAAF where everything is certain, thus: 1)
a is a core argument w.r.t. F and S iff a is core argument
wrt. (A,0,D,0), F and S; 2) a sequence ag,...,a, is a
c-expansion of ap w.r.t. F' and S iff it is a c-expansion of ag
wrt. (A 0, D,0), F and S. We also use the notion of ext-
argument (w.r.t. F'and 5), that is an argument of F’ that either
1) is attacked by S, or 2) is a core argument w.r.t. F and S.
As stated in Lemma 1, being an ext-argument somehow char-
acterizes the arguments outside the grounded extension.

Lemma 1 Let F = (A, D) be an AAF, S C A, and GR the
grounded extension of F. 1) If S = GR, then every a € A\ S
is an ext-argument w.r.t. F and S; 2) If S C GR and every
a € GR\ S is an ext-argument w.r.t. F and S, then S = GR.

As we will see, Lemma 1 is exploited to guide the strategy
implemented in Algorithm 2, that solves IPOSVER? (S) by
incrementally building a completion where new uncertain at-
tacks/arguments are inserted whenever their presence falsifies
conditions preventing .S from being the grounded extension.

Theorem 3 IPOSVER? (S) is in P under o = gr.

Proof. We prove that Algorithm 2 is correct and complete (its
polynomiality can be shown analogously to Algorithm 1). If
Algorithm 2 returns true (line 23), F' is a completion of I F
and S is the grounded extension for F', hence IPOSVER? (S)
is true. We now prove that, if Algorithm 2 returns false, there
is no completion wherein S is the grounded extension. False
is returned in four lines, and we consider them separately.

1) line 3 and line 6: straightforward.

i1) line 11: By contradiction, assume that there is a comple-
tion C different from F' such that S is the grounded extension
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of C. Let S" C S be the set of S’s arguments having no in-
coming attack in F', and S” the set of arguments having no
incoming attacks in C. It is easy to see that S” C S C S.
Reasoning inductively, it can be proved that S = T/ (S”) C
T3 (S"), where T% (Y') is the closure of Tx (Y) =Y U {a €
Ax|3(b,a) € Dx AVY(V,a) € Dx3s € Vst (s,b) €
Dx},where X = (Ax, Dx)isageneric AAFandY C Ax.
Basically, T'x (Y") differs from the standard operator com-
puting the arguments acceptable w.r.t. Y in that T'x (V) in-
cludes only new arguments with at least one incoming at-
tack. From S = T5(S”) C T5(S’), and from the fact that
T%(S") € GR (which holds since S has no incoming at-
tacks in F), we obtain S C GG R, which contradicts that false
is returned at line 11.

iii) line 22: By contradiction, assume that there is a com-
pletion F/ = (A’ D') wherein S is the grounded extension.
Let F'* = (A", D") be the status of the AAF F under con-
struction immediately before executing line x, and GR” be
its grounded extension. F’ must contain all the arguments
and attacks of F'13, otherwise .S would not be admissible in
F' for what said in cases i), i¢) and i7). Moreover, since S
is the grounded extension in ", Lemma 1 implies that every
a € A"\ S is an ext-argument (i.e., either 3(b,a) € D’ with
b€ S, oraisacore argument w.r.t. F’ and S).

This means that, for each ext-argument a (w.r.t. £’ and S)
occurring in GR'3\ S, it will be possible to augment F''3 with
an attack from S to a or with arguments/attacks composing
a c-expansion of a (in the algorithm, the arguments/attacks
composing a c-expansion of a are taken from the F™* built
at line 12, that, by construction, contains every c-expansion
that may be in F’). In particular, for every core argument a
of F” in GR'3 \ S, the algorithm will insert a c-expansion
of a. The other arguments of F’ in GR'? \ S are arguments
attacked by S in F”, and, for each a of them, a c-expansion
or an attack from S is inserted (in fact, F''3 may have been
augmented with a c-expansion of a, even if in F’ a was not
a core argument but was attacked by S). Observe that every
attack considered for the insertion into F'*? does not attack
core arguments, thus any c-expansion in F'3 or inserted into
F13 atline 15 is still a c-expansion in F2!. Therefore, every
node of F?! in GR?! \ S is an ext-argument w.r.t. F?' and
S. This, along with the fact S C GR?! (that can be proved
using the same inductive reasoning used to prove point #ii),
implies that S is the grounded extension in F'?! (Lemma 1),
thus contradicting that false is returned at line 22. O

As stated in what follows, the only case where the verification
problems for i*- and i- extensions have the same complexity
is ¢ = pr: the proof of the Zg—completeness in [Baumeister
et al., 2018b] for i-extensions also applies to i*-extensions.

Theorem 4 IPOSVER?(S) is X.2-complete under o = pr.

We now turn our attention to the necessary perspective. From
the point of view of the computational complexity, switching
from i-extensions to i*-extensions has no impact. In fact, it
is easy to see that the upper bounds on the complexity of the
verification of necessary i-extensions shown in [Baumeister
et al., 2018b] also hold for our INECVER”(S). Specifically,
INECVER?(S) can be solved by first checking whether all
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the arguments in S are certain (as Proposition 2 states that
necessary i*-extension are i-extensions whose arguments are
certain), and then invoking a solver verifying if S is an i-
extension. According to the results in [Baumeister er al.,
2018b], this immediately implies that INECVER?(.S) is in P
under o0 € {ad, st,co,gr} andin NP under o € {pr}. In
particular, as for 0 = pr, the lower bound can be proved
by using the reduction used in the NP-hardness proof of
[Baumeister et al., 2018b] when the incompleteness affects
only the attacks: obviously, in this case the arguments in S
are all certain, thus i- and i*- extensions coincide (Proposi-
tion 2). This proves the following theorem.

Theorem 5 INECVER?(S) is in P under o €
{ad, st, co, gr} and is NP-complete under o € {pr}.

Discussion of the results. The results on IPOSVER? (S)
are rather surprising. In fact, despite the change in the def-
inition seems to be minimal, switching from i-extensions to
i*-extensions has been shown to have a huge impact on the
complexity of the verification in the possible perspective: for
o € {ad, st,co,gr}, IPOSVER’(S) is in P, while the ver-
ification of “original” i-extensions is NP-complete. Techni-
cally, the most difficult results are those on the polynomial-
ity of IPOSVER?(S) under o € {co,gr}. They have re-
quired an elaborate strategy for proving that a set S is an i*-
extension based on the removal (for o = co) and the insertion
(for 0 = gr) of arguments and attacks from/into the iAAF.
Under o = co, our strategy strictly generalizes that used in
[Baumeister et al., 2018b] to show that verifying i-extensions
is in P when only attacks are uncertain. In this partially in-
complete setting, i-extensions and i*-extensions coincide (see
Proposition 1). However, the strategy in [Baumeister ef al.,
2018b] cannot be used for Theorem 2, since it does not take
into account the possibility of maintaining or discarding ar-
guments besides attacks.

5 Related Work

Besides the works in [Baumeister er al., 2018b; Coste-
Marquis et al., 2007], many efforts have been devoted to the
management of uncertainty in abstract argumentation. The
Partial Argumentation Framework (PAF) introduced in [Cay-
rol et al., 2007] is one of the first attempts to incorporate qual-
itative uncertainty in AAFs. The main difference with iAAFs
(besides the fact that the uncertainty in PAFs only affects the
attacks) is in the semantics of extensions, that is not based
on completions, but on re-defining the classical notion of ad-
missibility under different levels of cautiousness (where only
certain attacks or also uncertain attacks must be defended).
Solving the verification problem over iAAFs is also related
to the problems of revising AAFs to enforce the existence
of an extension [Baumann and Ulbricht, 2019], or to make a
set an extension [Coste-Marquis et al., 2015] (where, how-
ever, only minimal sets of changes are considered), and to
the credulous/skeptical conclusion problems in Control Ar-
gumentation Frameworks [Dimopoulos et al., 2018] (where,
however, there is no way no simulate the possible semantics
for i-extensions of iAAFs with uncertain attacks).
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Recently, the acceptance problem for iAAFs has been
shown in [Baumeister et al., 2018a] to be NP-complete for
every o € SEM in the possible credulous variant. Interest-
ingly, the semantics of accepted argument used in [Baumeis-
ter et al., 2018al] corresponds to our i*-accepted argument,
and not i-accepted argument. Thus, our results put some or-
der in the literature of computational complexity of reason-
ing over 1AAFs, since they show the expected exponential
blow up when moving from the verification to the acceptance
problem under o € {ad, st, co} (“expected” means that it is
suggested by what happens for classical AAFs). Interestingly,
this blow up also affects the grounded semantics, owing to the
fact that different completions may have different grounded
extensions. It is worth noting that this blow up would be
unobservable by considering the verification problem over i-
extensions (rather than i*-extensions), that is beyond P.

Among the approaches allowing a quantitative specifi-
cation of the uncertainty in AAFs (for instance, in terms
of preferences and/or weights [Bench-Capon, 2003; Am-
goud and Vesic, 2011; Modgil, 2009; Dunne et al., 2011;
Coste-Marquis ef al., 2012; Brewka et al., 2014], or of prob-
abilities [Hunter, 2014; Dung and Thang, 2010; Doder and
Woltran, 2014; Dondio, 2014; Hunter, 2012; Li et al., 2011;
Fazzinga et al., 2013; 2015; 2018; Thimm, 2012; Hunter and
Thimm, 2014], or of trust degrees [Fazzinga et al., 2020]),
the most related to our framework is the probabilistic AAF
(prAAF) of [Li et al., 2011], where arguments/attacks are in-
dependent events associated with marginal probabilities. In
fact, an iAAF can be viewed as a prAAF where the marginal
probabilities are replaced with boolean values encoding the
two alternatives certain/uncertain, so that any instance of
IPOSVER?(S) can be reduced to the problem P-EXT(S) of
computing the probability of an extension in a prAAF, i.e., the
sum of the probabilities of the possible worlds where S is an
extension. In the light of this, our results on IPOSVER?(S)
under o € {co, gr} are of particular interest: in fact, while
in [Fazzinga et al., 2015; 2019] p-EXT(S) was shown to be
intractable (namely, FP#P -complete) under these semantics,
in this work we have shown that IPOSVER?(S) is in P.

6 Conclusions

The notion of i-extension, adapting the notion of extension
to incomplete AAFs, has been revisited. Under the possible
perspective, i-extensions have been show to violate relevant
properties of “traditional” extensions, such as the conflict-
freeness. An alternative notion (i.e., i*-extension) has been
introduced and its beneficial effects on the semantics and the
complexity have been shown. Future work will focus on vari-
ants of the possible and necessary perspectives that are sup-
ported by a minimum number of completions.
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