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Abstract

By virtue of their expressive power, neural net-
works (NNs) are well suited to fitting large, com-
plex datasets, yet they are also known to pro-
duce similar predictions for points outside the
training distribution. As such, they are, like hu-
mans, under the influence of the Black Swan the-
ory: models tend to be extremely “surprised” by
rare events, leading to potentially disastrous conse-
quences, while justifying these same events in hind-
sight. To avoid this pitfall, we introduce DENN,
an ensemble approach building a set of Diversely
Extrapolated Neural Networks that fits the train-
ing data and is able to generalize more diversely
when extrapolating to novel data points. This leads
DENN to output highly uncertain predictions for
unexpected inputs. We achieve this by adding a
diversity term in the loss function used to train
the model, computed at specific inputs. We first
illustrate the usefulness of the method on a low-
dimensional regression problem. Then, we show
how the loss can be adapted to tackle anomaly de-
tection during classification, as well as safe imita-
tion learning problems.

1 Introduction

“Black swans” are rare, surprising events that cannot be pre-
dicted by humans or statistical models. They can have huge
repercussions, and we typically update our models to justify
a posteriori the existence of such events [Taleb, 2007]. The
financial crisis of 2008 is an often cited example of a black
swan. While the statistical models were subsequently updated
to take into account new data from the crisis, being overcon-
fident, they would by definition still be surprised when a new
black swan appears in the future (Fig. 1).

In machine learning models, being aware of the uncertainty
in the predictions provided by an algorithm can help reduce
the surprise coming from black swans and adopt a safe strat-
egy. The chosen model should ideally be able to generalize,
i.e. have low uncertainty predictions for inputs that are simi-
lar to the ones the model was trained on. At the same time,
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it should also be highly uncertain for completely novel inputs
that do not display the same patterns as the training set.

NNs have grown to be the de facto model for large-scale
prediction problems in the last decade, thanks to their ability
to learn complex representations of high-dimensional data.
Yet, while NNs are able to circumvent scaling issues, they
do not come with a general and intrinsic estimation of un-
certainty. In classification tasks, they tend to be overconfi-
dent about their predictions on unrelated datasets [Lakshmi-
narayanan et al., 2017]. Ensembles of NN are a useful solu-
tion to this issue. They are a collection of several NNs, each
initialized differently. For a given input, the uncertainty of
the ensemble is then defined as the variance computed over
each NN’s predictions. It remains difficult to obtain mean-
ingful posterior distributions over outputs that fit the train-
ing data (in-distribution, (ID)) while simultaneously having
high variance in unseen regions of the input space (out-of-
distribution (OOD)), where low-density inputs — akin to black
swan events— are represented. In the Bayesian framework,
this essentially corresponds to carrying over the high uncer-
tainty from a prior to the posterior OOD. Specifically, ensem-
bles can lack diversity OOD [Pearce et al., 2018], resulting in
a low predictive uncertainty for unexpected inputs.
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Figure 1: Illustration of the objective: the posterior predictive dis-
tribution of a method should be uncertain enough to cover the true
signal, but a naive ensemble approach can fail to do so (left figure).
When adding a black swan event to the training set, the ensemble
rationalizes the new data point but still over-generalizes when ex-
trapolating, on the contrary to our approach (right figure).
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The main contributions of this work are:

e A novel way to enforce diversity in ensembles directly
in the function space, through a diversity term applied
specifically at repulsive locations (Sec. 3.),

o A theoretical analysis of this diversity term in the over-
parameterized linear case, proving that it leads to an ar-
bitrary diversity at repulsive locations while still fitting
the observed data (Sec. 3.2),

e An empirical study of the proposed approach applied to
NNs on regression, classification and anomaly detection
for safe imitation learning tasks (Sec. 4).

2 Related Works

Ensemble methods are a major family of models used to esti-
mate predictive uncertainty [Lakshminarayanan er al., 2017;
Pearce et al., 2018; Lee and Chung, 2020; Tran et al., 2020].
Training the same NN architecture with different initializa-
tion conditions, over the same training data, leads to differ-
ent solutions. The predictions of the ensemble are aggre-
gated to estimate its confidence, with higher uncertainty for
unseen data [Lakshminarayanan et al., 2017]. Additionally
constraining their weights to stay close to their initial value
increases the NNs diversity, forming an “anchored ensem-
ble” [Pearce er al., 2018]. This maintains the diversity in-
duced by the initial weights, which otherwise tends to disap-
pear during learning. Pearce et al. coin the term of quasi-
prior to denote the predictor corresponding to an untrained
NN. Both methods assume that the initial weights diversity is
sufficient to obtain diverse predictors. However, it is neither
clear how to increase or control this weights diversity, nor
how it translates to the function space.

Monte-Carlo dropout [Gal and Ghahramani, 2016] main-
tains dropout at inference time (instead of removing it as
usual). Stochastic outputs from a model trained with dropout
are obtained by running forward passes through the network.
Despite an easy implementation and theoretical backing [Gal,
2016], controlling the diversity of the method’s predictions is
not clear, as simply tuning the dropout rate is not sufficient.

The statistical bootstrap has long been studied and en-
joys statistical guarantees [Efron, 1982]. It can be leveraged
by training several NN on bootstrapped data [Osband et al.,
2016], potentially including a quasi-prior in the loss func-
tion [Osband ef al., 2018], to increase diversity where few
samples have been gathered. Yet, the statistical bootstrap is
of restricted use when the models that generated the data do
not span the space of plausible models. It is also limited by
the initial NN weights diversity.

Most of the previously discussed approaches rely on a nat-
ural diversity of NNs to generate different predictions. As
we show in our experiments (Sec. 4), this strategy can fall
short, especially when we need some control on the diversity
of the functions. This is particularly true for deep, anchored
or bootstrap prior ensembles that are limited by the natural
expressivity of the quasi-prior. In our understanding, training
diversely NN thus remains a challenge.

We also relate our work to the principle of maximum en-
tropy: the best representation of the current state of knowl-
edge is the probability distribution that is consistent with
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known constraints, while having the largest entropy [Jaynes,
1957]. In other words, we want to avoid assuming more
knowledge than we actually have by over-generalizing OOD.
Recent works have focused on the OOD detection task in the
classification setting [Lee et al., 2018; Malinin and Gales,
2018]; [Hendrycks et al., 2019] shows for instance that one
can use external datasets to access OOD samples and perform
OOD detection. The authors use them with a single NN and
apply their method, Outlier Exposure, to the outlier detec-
tion task in the classification and density estimation setting,
but not regression. The idea of training diverse predictors us-
ing repulsion has also been developed recently [Hong et al.,
2018] in reinforcement learning (RL), where recent policies
are constrained to be different from old ones. In path plan-
ning in robotics, agents can consider obstacles as repulsive
regions that they should avoid when trying to reach a goal,
by defining a potential field giving a high value to the obsta-
cles and a low value to the target [Vadakkepat et al., 2000].
When performing segmentation of medical images, a repul-
sive force can be used to separate micro-structures close to
each other [Cai et al., 2006].

3 Trading-off Error and Diversity

To address the shortcomings of the existing approaches, we
design a loss function that enforces sufficient diversity in an
ensemble, explicitly OOD and controllable through hyperpa-
rameters, while leading to accurate and confident predictions
ID. In this section, we define the proposed loss function and
formally introduce the central notion of repulsive locations.
Let X and ) respectively denote the input and output space
and let D = {(z,y) }scx,ycy denote the set of training sam-
ples. The space of functions mapping X to ) is denoted H.
We consider the class of over-parameterized models (OM),
i.e. models fy described by more parameters than the data
they are trained on. Let { fy, }:c1... x denote an ensemble of K
models. We say that an ensemble is diverse if the fy, disagree
OOD, a property that existing methods may fail to achieve
(see Sec. 2 and 4). As diversity in the weight space does not
necessarily translate into the function space 7, we act directly
in the latter. More specifically, we explicitly train towards the
behavior expected from the posterior distribution, i.e. to gen-
erate predictors that differ more in regions with lower density
of training samples. Formally, we denote Le p(fp) an error
loss for predictor fo € H on D, and Laiv x(fo,, {fo, }ij) a
diversity loss, or penalty, when fy, is similar to fg, for j # i
w.r.t. a similarity measure that we define later. We simultane-
ously minimize both L. p and Ly x to enforce diversity.

3.1 Training an OM with a Diversity Constraint

To obtain functions trained on the same dataset D but that
differ elsewhere, we define a reference function g : X +— .
A typical choice for g is an OM minimizing the 1088 Ler p.
To diversify the ensemble, we constrain each fy to be diverse
from g by minimizing L4y x (fs, ). This relaxes our previous
definition of diverse samples: instead of enforcing diversity in
the empirical posterior distribution by requiring each trained
function to differ from all the others, we require new func-
tions to differ only from the reference function (see Sec. 3.3
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for details about the relaxation). Achieving this will require a
notion of similarity between predictors. Letk : Y x )V — R
denote a similarity measure between two values in the output
space ). We only require k to be differentiable and bounded.
A straightforward example of such a similarity is a kernel, but
we do not restrict ourselves in general to this class of similar-
ities. Let X denote a set of inputs sampled (see Sec. 3.4) from
X, with |X]| = nx.

We approximate the similarity between fy and a reference
function g as:

Laelfog) = o= S K(falx)g().

xeX

fo minimizing Eq. 1 against g will lead to different predic-
tions at inputs X, thus making fy diverse w.r.z. g.

3.2 Provable Diversity for a Linear OM

We now present the guarantees derived using the diversity
loss Laivx(fo,g). We restrict our study in this section to
the linear setting. We represent the over-parameterized repre-
sentation’s feature maps (assumed linearly independent) for
a given point x by ®, € R'¥F, such that fp(z) = ®,0,
with # € RF. We first notice that there exist solutions to
Lerr,p = 0. We assume that L, p is the Mean Squared Error
(MSE) (A1), that fy is linear OM (A2) and that the points in
D are linearly independent (A3).

Lemma 1. Assuming (Al-3), we can find infinitely many w*
such that Ly p(fu+) = 0.

Proof. We consider the linear regression problem
Learp(fu) = 0, iie. Ppw = Y (Al). We associate to
D the design matrix ®p € R™ % with k& > n (A2),
assumed of rank n (A3), and the targets Y € R"*L
Then, according to Ordinary Least Square regression, the
pseudo inverse ®I, = & (Pp®d})~! gives a particular
solution wy = @%Y of the linear regression problem:
Opwy = PpPL(Pp®S)"Y = Y. Then, the nullspace
of &p, N(Pp), is of dimension at least 1 (A2-3). Take
any v in N(®p) (using e.g. the SVD of ®p). Then,
Ve € R, w* = wy + po verifies Lopp(fur) = 0:
Dp(wo + pv) = Ppwy + udpv = Ppwy =Y. O

We now focus on the problem of minimizing both L p
and Lgiy x, to prove the diversity of f w.rt. g. Since the
space of solutions of Le; p(fg) = 0 is of dimension at least
1 (Lemma 1), we express the minimization problem as:

Hgn Laivx(fo),
S.t. Eem'D (f.g) =0

We assume that |X| = 1 (A4), and k is a RBF kernel (A5).

Proposition 1. Given (Al-5), the infimum of (2) is 0: Ye > 0,
we can find 0* s.t. Lgiyx(fox) < € and Loy p(for) = 0.

2

Proof. Let € > 0. Following the above notation, let ®x the
design matrix associated with X. Using (A4-5) and applying
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— log (monotonically decreasing) to the objective, we maxi-
mize the equivalent problem:

find 0 s.t. || ®x0 — g(x)||3/(207) > log(1/€),®pf =Y (3)

wp + p is a solution to the constraint from Eq. 3 (Lemma 1).
We substitute it in the objective of (3) to yield (4):

find u s.t. || Pxwo + u®Pxv — g(x)||3 > 20%log(1/e) (4)

which is a problem of maximizing a convex function of p, for
which we know there exists solutions, and that can be solved
using a simple gradient ascent algorithm. O

Note that once the tolerance ¢ is set, increasing ¢ increases
the diversity of fg« w.rt. g.

3.3 Training NNs with a Diversity Constraint

Prop. 1 essentially conveys that we can build a linear OM
fo+ as diverse as desired from ¢ at repulsive location x,
while still fitting D. This property is especially interest-
ing as we shift our focus to the training of NNs. Due
to their high number of parameters and the intrinsic low-
dimensional nature of most natural datasets, we expect NNs
to behave like over-parameterized models [Han et al., 2015;
Frankle and Carbin, 2019; Li et al., 2018]. In other terms, we
propose to leverage the extra capacity of NNs to boost their
diversity, using the diversity term that we introduced.

To this end, we relax Eq. 2 by trading off the error term
from the constraint Ly p(fg) and the diversity term w.rt. g
Laiv.x(fo, g) into our proposed training loss (Eq. 5).

1
£lfi9.D5) = & % difola). ) ferrios e
(z,y)€D
A
+— Z k(fg (X), g(X)) }diversity loss Laiv,x, (9)
nx xeX

A > 0 denotes a trade-off hyperparameter. Crucially, Lo p
and Lgiy x serve opposite objectives if X N D # (), which
leads to regularization [Hafner et al., 2019]. Outside of D,
the diversity loss is the only one active: it induces an OOD
repulsion between fp and g. Observe that for A = 0 and
d(fo(r),y) = (fo(z) — y)?, Eq. 5 recovers the MSE loss.

Each NN of an ensemble is trained using Eq. 5. Given a
stochastic initialization of 6; and the aleas of optimization of
gradient-based methods, we expect fy, to differ from g after
training in diverse ways for different i. If needed, we can
use a different o; for each fy,, leading to diverse levels of
disagreement with g; we validate empirically this claim in
Sec. 4. One could also impose a constraint on the diversity of
{fo, }ic1...n directly. This could ensure variety for each fjy,,
but would require training them jointly.

3.4 Sampling Repulsive Locations

In this section, we explore the main ideas driving the selection
of the set of repulsive locations X, which represent the inputs
where we expect the models to disagree. Ideally, X should
be chosen in the manifold where all possible observations lie
(X™* in Fig. 2) and OOD, to ensure sufficient uncertainty at
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Figure 2: The different regions of the state space X': X' represents
the low-dimensional manifold where structured data are located. D
is the training distribution. We sample the repulsive locations from
a perturbed training distribution (D + €) or a similar dataset (D’).

the repulsive locations. However, X'* is not directly accessi-
ble, and sampling randomly in X can result in repulsive loca-
tions arbitrarily far from X™* (red diamond, Fig. 2), which can
hurt uncertainty propagation and performance. We consider
instead the procedure described in [Hafner et al., 2019] by
choosing repulsive locations at the boundary of the training
distribution D, where different models would usually agree.
The enforced uncertainty at the boundary is then propagated
OOD [Hafner et al., 2019], including to X*.

This is achievable by adding noise to the training data.
Some of the noisy samples will lie, by definition, at the
boundary of D and will be OOD, achieving the targeted goal
(blue star, Fig. 2). The repulsive locations sampled inside D
add a repulsive effect countered by the error loss attractive
effect, which results in label smoothing [Hafner et al., 2019].
We can also factor the structure of high-dimensional inputs
such as images in the noise. With X being, e.g. , video game
frames, we can switch different pixels or change their color
(Sec. 4.3). We also consider choosing X from a dataset D’
with similar features to D [Hendrycks et al., 2019], with the
intuition that D and D’ should be represented close to each
other (Sec. 4.2).

3.5 Algorithm

Algorithm 1 (DENN) describes the training of an ensemble
of diverse NNs fg].. Given a reference function, we sample
a batch of training data and a batch of repulsive locations.
We then compute and combine Lerp and Lgy x, and per-
form standard backpropagation. Two cases may arise; (1) g
can be trained beforehand using L. p: it is then possible to
train simultaneously a diverse ensemble { fp,}ic1.. k. 2) g
can be a previous diverse function fgj_li then, fgj can be
trained sequentially. The repulsive hyperparameters A and o
depend on the repulsive dataset we choose. They are tuned
with cross-validation on a separate dataset. Repulsive loca-
tions and the associated loss (Eq. 5) should be especially use-
ful to detect outliers, or for tasks where uncertainty should
affect decisions, either as a potential source of risk (in the
case of imitation learning) or gains (for exploration in RL).

In terms of computational overhead, adding the diversity
loss term to the usual error loss requires sampling X, com-
puting k(f(z), g(z)) for all z € X, and backpropagating the
gradients for the repulsive locations in X. Overall, the added
training time of f corresponds roughly to the time required to
perform an additional backpropagation step due to the pres-
ence of the repulsive locations.
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Algorithm 1 DENN

Require: Dataset D, parameters A and p, reference function
g trained on D, and repulsive locations X.
for K NN, possibly trained in parallel do
for each training step do
Sample training batch of size b: {(z4,y:)}icq.
Sample repulsive batch of size nx: {z;},c, ..
Compute loss (Eq. 5) and backprop. gradients.

Output: Ensemble { fy, };c1.. x diverse OOD w.rt. g.

4 Experiments

In this section, we apply the proposed loss function to differ-
ent tasks and compare the results' with existing approaches,
to assess if using DENN can lead to the desired high un-
certainty OOD. We first compare the performance of DENN
with other approaches on a simple regression task to study
visually the advantages brought by the diversity constraint to
the posterior predictive distribution. We then illustrate how
DENN can seamlessly be applied to classification, enabling
the training of an ensemble having diverse predictions for un-
expected datasets. Finally, we study high-dimensional, struc-
tured datasets, and show that DENN can be used to detect
black swan events.

4.1 First Case: Low-dimensional Regression

We generate a training set D of 10 points in [—0.5, 0] mapped
to a bimodal function (the ground truth), such that the second
mode lies outside of D. We expect the empirical posterior
predictive distribution to cover the ground truth.

We use the classical MSE loss, ie. Lerp with
d(f(z),y) = ||f(x) — y||3, and the Radial Basis Function
(RBF) k(f(x),9(x)) = exp (—||f(x) = g(x)[[3/(20?)) in
Liv,x, where o controls the diversity between two predictors
at location x. In the special case of a one-dimensional regres-
sion, training f1, fs, ..., fi with the same o can lead to func-
tions highly different from g but alike one to another. To avoid
this pitfall, we sample o from [10~3; 10~'/2] log-uniformly.
We generate the repulsive locations by adding Gaussian noise
(variance 0.3) to the training points (Sec. 3.4).

Experiment

We compare DENN (Alg. 1) with popular ensemble methods:
anchoring [Pearce et al., 2018], input bootstrap [Efron, 1982],
bootstrap prior [Osband er al., 2018] and MC dropout [Gal
and Ghahramani, 2016]. Here, all NNs are 2-layer multi-
layer perceptrons (MLP) with 64 hidden units per layer and
optimized with the default Adam. The reference g is trained
beforehand with a MSE loss on D until convergence.

Fig. 3 shows the posterior predictive distribution empiri-
cally estimated by taking, for each approach, the pointwise
average and 1, 2 and 3 standard deviations over ensembles of
50 NNs. While DENN successfully covers the second mode
of the ground truth (Fig. 3, bottom-right), we do not manage
to obtain diverse NNs with the anchoring, bootstrap prior and

'Code: https://github.com/maxwab/denn-ijcai
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Figure 3: Empirical posterior predictive distributions (over 50 sam-
pled functions) for 10 data points generated from a ground truth.

dropout methods for different values of their respective hy-
perparameters, as evidenced by their narrow posterior predic-
tive distributions for z > 0. Note that MC dropout’s uncer-
tainty rises around O despite the presence of several training
points. Input bootstrap produces NNs that span slightly bet-
ter the width of outputs, but also disregards by nature certain
points in D, where we expect low uncertainty given our cur-
rent knowledge (near the first peak of the ground truth, Fig. 3,
top-right). Thus, all studied ensembles lack diversity, causing
an inability to be highly uncertain for OOD data. While NNs
should be able to anticipate any point on the ground truth [Cy-
benko, 1989], current methods are over-confident for unex-
pected inputs and fail to do so.

4.2 Second Case: Classification

We now evaluate the uncertainty provided by DENN on a
classification task. In this context, a principled notion of un-
certainty exists in the form of the entropy of the prediction
probability vector. We expect a good approach to have confi-
dent predictions ID, which shows generalization, while hav-
ing high uncertainty OOD, effectively detecting outliers.

Eq. 5 extends naturally to classification tasks with
d the usual cross-entropy loss and k(f(x),g(x)) =
exp(—|H(g(x), £(x) — H(F(x), f(x))[?)/(209)) in Law.z,
where H(g(x), f(x)) denotes the cross-entropy between
probability vectors f(x) and g(x).Thus, k(f(x),g(x)) = 1
if f(x) = g(x), while k(f(x), g(x)) = 0if f(x) and g(x) sig-
nificantly differ. We randomly sample the repulsive locations
x from other structurally similar datasets (Sec. 3.4): here, the
FashionMNIST?, notMNIST and EMNIST datasets® [Cohen
etal., 2017].

Experiment

We replicate the benchmark proposed in [Lakshminarayanan
et al., 2017] using the same 2 hidden layers MLP setting for
all NNs. We train DENN, a deep ensemble®, Bootstrap prior

2http://github.com/zalandoresearch/fashion-mnist

3http://www.nist.gov/itl/products-and-services/emnist-dataset

“without optional adversarial training as it brings marginal gains
for predicting uncertainty [Lakshminarayanan et al., 2017]
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Figure 4: Histograms of predictive entropy on 3 different datasets.
Training is performed on MNIST. More mass on the right means
more uncertainty on the inputs from the corresponding dataset.

that we adapt to classification and Anchoring on the MNIST
dataset’>. We also compare ourselves to Outlier Exposure
(OE) [Hendrycks e al., 2019]: we use the authors’ code to
train a single MLP constrained to output uniform predictions
OOD (also accessed using an external dataset). We evalu-
ate the methods’ accuracy and predictive uncertainty on the
MNIST test set to ensure generalization, and their uncertainty
on OOD datasets: letters with notMNIST® and Japanese char-
acters with KMNIST’. DENN and OE are trained with repul-
sive locations drawn from FashionMNIST. The reference g is
a MLP trained only with the cross-entropy loss. All hyperpa-
rameters are chosen by cross-validation by computing the his-
togram of predictive entropies over the MNIST validation set
(generalization) and EMNIST (OOD uncertainty). We then
perform a Z-test between both histograms and choose the best
hyperparameters. The final probability is averaged over each
NN predictions.

The middle and right plots of Fig. 4 show that DENN pro-
duces highly uncertain predictions on the OOD datasets, as
desired. It performs favorably compared to the deep and boot-
strap prior ensembles. The average entropy on notMNIST of
each NN of DENN taken alone is 0.04 (each one is extremely
confident) while the entropy of the ensembled OOD predic-
tions is 1.56, implying that the NNs have on average diverse
predictions OOD. Anchoring has marginally higher entropy
predictions than DENN for OOD inputs, but also displays a
higher uncertainty ID (Fig. 4, left plot). We relate this to the
fact that the diversity mechanism from anchoring does not
include a notion of OOD, whereas DENN’s diversity loss is
specifically tailored for OOD inputs. Therefore, DENN pre-
dictions on the MNIST test set have very low entropy, barely
above the deep ensemble (Fig. 4, left plot) and are accurate
despite the repulsive constraint (98.7% accuracy, compared
to the deep ensemble’s 98.6% and anchoring’s 98.2%). OE
performs the best on KMNIST (despite having some confi-
dent predictions for certain inputs, on the contrary to DENN)
but is extremely confident for half the notMNIST dataset.

This experiment shows DENN’s ability to have high pre-
dictive entropy OOD while maintaining generalization ID.

Shttp://yann.lecun.com/exdb/mnist/

®http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
"http://github.com/rois-codh/kmnist
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Figure 5: The modified Reacher task. The agent should reach the
target, a red sphere (left image), while also adopting a safe strategy
if the target is unknown (right image).

4.3 Third Case: Safe Imitation Learning

Finally, we illustrate an application of DENN in an imita-
tion learning setting with high-dimensional inputs. In imita-
tion learning, it is well-known that the approximation error
of a model grows with the length of trajectories [Ross et al.,
2011]. Tt is thus interesting to know at which states to get
new demonstrations [Kim and Pineau, 2013]. We show how
the increased diversity of DENN, this time composed of con-
volutional NN, can help detect such states.

In imitation learning, the agent aims to solve a control
task while having access to optimal actions, called demon-
strations, from an oracle. Imitation learning can be framed as
successive supervised learning problems [Ross e al., 2011]
by regressing, for an input s, the action to take 7(s). How-
ever, demonstrations are expensive (they can require, e.g. , a
human intervention). One can use the agent’s confidence over
its actions to only request demonstrations for novel inputs,
using for instance the kernel-based Maximum Mean Discrep-
ancy [Borgwardt er al., 2006; Kim and Pineau, 2013]. To
scale easily to high-dimensional problems, we use DENN to
learn 7 and compute the uncertainty over the policy predic-
tions. If this value exceeds a certain threshold, we consider
the current state an outlier and ask for a new demonstration.
We focus on a pixel version of MuJoCo Reacher [Todorov ef
al., 2012], with RGB frames (Fig. 5) as inputs to the models
(x € [0;1]34%84%3) The agent uses a policy  to control an
articulated arm to reach a target, by default a red sphere.

We generate OOD datasets by changing the color of the
target and training a PPO [Schulman et al., 2017] agent to
reach them. We then generate trajectories that we store. Note
that we place ourselves in the worst-case scenario so that the
color we are evaluating the predictive uncertainty on (blue)
is not a linear combination of the training color (red) and the
target color of the repulsive frames (green) in the RGB space.
We train DENN with the MSE for d and a RBF for k. We first
evaluate the ability of the models to ask for demonstrations
when confronted with a target of a different color. We then
observe that the trained model behaves favorably even when
evaluated on frames with targets of different shape.

Results

We first generate the demonstrations with a red sphere tar-
get as D, as well as the repulsive frames, stored in X, with a
green sphere target. Then, we train in a supervised learning
fashion a policy 7 : X ~— R? using a deep ensemble and our
DENN approach (each composed of 10 convolutional NNs)
using the green repulsive dataset. We find the value of (), o)
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Figure 6: Histograms of the predictive standard deviations aver-
aged over action predictions. Higher values indicate higher uncer-
tainty over the action to take. DENN is clearly more uncertain than
the deep ensemble on OOD datasets (middle and right), as desired,
while maintaining confident predictions on ID data (left).

with cross-validation on a yellow sphere targets dataset. We
then evaluate both methods on red sphere targets for general-
ization and blue sphere targets for outlier detection.

While the deep ensemble is more confident than DENN on
the generalization dataset (Fig. 6, left plot), it is also more
confident on the OOD dataset (middle plot) and thus cannot
detect outliers as well. Critically, the deep ensemble is more
confident OOD than ID, conversely to DENN which displays
the desired behaviour. Interpreting the target color change as
a black swan event (e.g. with an extremely negative reward)
illustrates the failure of regular ensembles to anticipate un-
likely events.

Additionally, we evaluate how confident the previously
trained DENN and the deep ensemble are when the target
shape, now a rectangle, instead of the color has changed. We
observe that DENN again outperforms the deep ensemble.
Notice that changing A from 1 to 10 results in a higher uncer-
tainty on the unseen blue sphere and red rectangle datasets, as
desired, but also on the red sphere dataset. This is consistent
with the definition of )\ as a trade-off parameter: the diversity
of DENN increases with \ at the expense of generalization.

We believe that setting a repulsive constraint on one at-
tribute — the color — of the target led to modify the whole rep-
resentation of the target, including its shape. This opens up
several ways of choosing repulsive locations: having a frame
where a single characteristic is different may be sufficient to
increase uncertainty for OOD frames, to be applied in a con-
text of safe decision making.

5 Conclusion

In this work, we described a method for training convolu-
tional and regular NNs more diverse OOD by using a mod-
ified loss function enacting directly in the function space.
We explored various methods to sample the repulsive loca-
tions used in the proposed loss function, and discussed how
choosing judiciously the repulsive locations can modify the
learnt representation to be more uncertain when confronted
with “surprising” data points, thus offering a solution to han-
dle black swan events in deep learning. Moreover, our ap-
proach does not over-generalize after seeing such an event,
conversely to deep ensembles. We compared our technique
with existing methods providing NNs with uncertainty, and il-
lustrated the importance of training diverse predictors on both
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low and high-dimensional regression and classification prob-
lems. Applied to imitation learning, we studied how DENN
can detect outliers more efficiently than a usual ensemble, re-
quiring so fewer demonstrations.

This work could be extended in a few ways. The method
introduces hyperparameters that necessitate tuning, and three
distinct datasets: for model training, for producing the repul-
sive locations, and for hyperparameter selection. This can be
restrictive when the problem offers limited sources of data.
Finally, working in the latent space using a variational au-
toencoder [Kingma and Welling, 2014] could help sampling
repulsive locations independent of the input space nature, as
recent works have focused on the repulsive datasets them-
selves [Abbasi ef al., 2019; Sensoy et al., 2020].

We believe that having the ability to train diverse functions
to have uncertain predictions OOD is promising; future re-
search includes extending DENN to RL and developing more
principled ways of choosing repulsive locations.
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