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Abstract

Multi-instance learning (MIL) is a celebrated learn-
ing framework where each example is represented
as a bag of instances. An example is negative if it
has no positive instances, and vice versa if at least
one positive instance is contained. During the past
decades, various MIL algorithms have been pro-
posed, among which the large margin based meth-
ods is a very popular class. Recently, the studies
on margin theory disclose that the margin distribu-
tion is of more importance to generalization ability
than the minimal margin. Inspired by this observa-
tion, we propose the multi-instance optimal margin
distribution machine, which can identify the key in-
stances via explicitly optimizing the margin distri-
bution. We also extend a stochastic accelerated mir-
ror prox method to solve the formulated minimax
problem. Extensive experiments show the superi-
ority of the proposed method.

1 Introduction
Multi-instance learning (MIL) is a celebrated learning frame-
work [Foulds and Frank, 2010; Amores, 2013; Herrera et al.,
2016] where each example is represented as a collection (bag)
of feature vectors (instances). A bag is negative if it has no
positive instances, and vice versa if at least one positive in-
stance is contained. The learner can only access the bag la-
bels, while the instance labels are not available. Compared to
the classical supervised learning where each bag just consists
of one instance, MIL provides a much more natural repre-
sentation and is well suited for many complicated problems.
For example in drug discovery and development [Dietterich et
al., 1997], one molecule (bag) could have many low-energy
shapes (instances), and the model should predict whether a
new molecule is qualified to make a special drug or not by
learning from a set of known molecules. In content-based
image retrieval (CBIR) [Zhou et al., 2005], the image (bag)
is decompose into several regions (instances), and the system
should retrieve all the images that are relevant to the concept
queried by users. Besides the prediction of bag labels, detect-
ing the key instance which triggers the positive bag label is a
more difficult task. For the former, it is to determine which

low-energy shapes are responsible for the observed biologi-
cal activity. For the latter, it is to identify which regions in
the image make users have interest in it.

In the past decades, various MIL algorithms have been
proposed, e.g., the diverse density (DD) algorithm [Maron
and Ratan, 1998] and EM-DD [Zhang and Goldman, 2001],
citation-kNN and its variant [Zhou et al., 2005], MI-
SVM [Andrews et al., 2003] and its variants [Bi et al., 2005;
Li et al., 2009], among which, the large margin based meth-
ods have always been popular. More specifically, MI-SVM
starts with a SVM using some multi-instance kernel [Gärtner
et al., 2002] and identifies the key instances according to the
decision values, after that retrains the SVM model based on
the new key instance assignments (bag labels). The conver-
gence of this procedure can be easily guaranteed once it is
viewed as a specialization of the constrained concave-convex
programming (CCCP) method. Although in each iteration,
MI-SVM only solves a SVM-like convex optimization, the
whole problem is still non-convex and thus it may get stuck in
the local minima. On the other hand, the KI-SVM overcomes
this difficulty by relaxing the mixed-integer programming as
a convex optimization by minimax saddle point theory. It ap-
plies the cutting-plane method for optimization by generating
a violated key instance assignment (kernel) to the constraint
set in each iteration.

Aforementioned methods are based on the large margin
principle, i.e., maximizing the minimal distance from the
instances to the decision hyperplane. Recently, the studies
on margin theory [Gao and Zhou, 2013] show that margin
distribution is of more importance to generalization ability
than minimal margin, which gives rise to the optimal mar-
gin distribution learning ([Zhang and Zhou, 2019]). Due to
the superiority to the traditional large margin based meth-
ods, this new learning paradigm has quickly attracted a
lot of attentions and been extended to many learning set-
tings ([Zhang and Zhou, 2018a; Zhang and Zhou, 2018b;
Tan et al., 2020]). These great successes suggest that the ex-
isting large margin based MIL algorithms still have enough
room for enhancement.

Based on this recognition, we propose the multi-instance
optimal margin distribution machine (MI-ODM). It can iden-
tify the key instance via explicitly optimizing the margin dis-
tribution. Specifically, we characterize the margin distribu-
tion by its first- and second-order statistics, i.e., the mar-
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gin mean and margin variance. As suggested in [Gao and
Zhou, 2013], we maximize the former and minimize the lat-
ter simultaneously. To solve the resultant minimax saddle
point problem, we extend a stochastic accelerated mirror prox
method which enjoys the optimal convergence rate. Extensive
experiments verify the superiority of the proposed method.

The rest of the paper is organized as follows. We first in-
troduce some preliminaries, and then present the proposed
MI-ODM. After that we detail the optimization techniques,
followed by the experimental results and empirical observa-
tions. Finally we conclude the paper with future work.

2 Preliminaries
For convenience, we first make some notation conventions.
Throughout the paper, we denote scalars with lower case let-
ters (e.g., y), and vectors with bold face letters (e.g., x). Sets
are designated by upper case letters with mathcal font (e.g.,
S). Let X ⊆ Rn and Y = {1,−1} denote the input and
output spaces, respectively. For any m ≥ 1, the set of in-
tegers {1, . . . ,m} is denoted by [m]. The feature mapping
associated to some positive definite kernel κ is denoted by
φ : X 7→ H.

2.1 ODM
The margin γ(x, y) of a labeled instance (x, y) is defined as
the signed decision value, i.e., γ(x, y) = yw>φ(x).1 This
value can be viewed as the confidence (or safety) of the pre-
diction. The larger the margin, the more confidence we have
on the predicted label, and (x, y) is misclassified if and only
if it produces a negative margin.

It is well known that SVMs employ the large margin prin-
ciple to pick the decision boundary [Cristianini and Shawe-
Taylor, 2000]. As a result, the obtained separating hyperplane
just consists of a small amount of instances, a.k.a. the sup-
port vectors (SVs), and the rest instances are totally ignored.
When noisy instances exist, the learner may be misled and
produce a suboptimal decision boundary [Zhou, 2014].

As a counterpart, optimizing the margin distribution is a
more robust strategy by exploiting the whole data set and pre-
venting from being cheated by the noisy instances. As for
how to characterize the margin distribution, a straightforward
way is through the first- and second- statistics, i.e., the mar-
gin mean and variance. Moreover, as suggested in [Gao and
Zhou, 2013], maximizing the former and minimizing the lat-
ter simultaneously can yield a tighter generalization bound,
the optimal margin distribution machine (ODM) is initially
formulated as:

min
w,γ̄,ξi,εi

1

2
‖w‖2 − ηγ̄ +

λ

m

∑
i∈[m]

(ξ2
i + ε2i ),

s.t. γ(xi, yi) ≥ γ̄ − ξi,
γ(xi, yi) ≤ γ̄ + εi, ∀i ∈ [m],

(1)

where η and λ are the parameters for trading-off the regular-
ization, and γ̄ is the margin mean. Note that ξi and εi are

1Often an offset term b is included, but as this can be imple-
mented by augmenting each x with an additional element whose
value is always one, we do not explicitly include it here.

deviations of γ(xi, yi) from the margin mean, thus the last
term

∑
i∈[m](ξ

2
i + ε2i )/m is exactly the margin variance.

To make the model more clean and powerful, ODM fur-
ther introduces three modifications to Eqn. (1). First is sim-
plifying the formulation by fixing the margin mean as one.2
Second is assigning different weights to different deviations
respectively. Third is tolerating the deviation smaller than the
given threshold θ to achieve a sparse solution. Therefore, the
final formulation of ODM is:

min
w,ξi,εi

F (w) =
1

2
‖w‖2 +

λ

m

∑
i∈[m]

ξ2
i + νε2i

(1− θ)2
,

s.t. yiw
>φ(xi) ≥ 1− θ − ξi,

yiw
>φ(xi) ≤ 1 + θ + εi, ∀i ∈ [m].

(2)

where ν is the weight for trading-off different deviations, and
(1− θ)2 is to scale the second term as a surrogate loss.

3 The Proposed Method
Given a training set ofm bags S = {Bi, yi}i∈[m] where Bi =
{xi,1, . . . ,xi,mi

} is the i-th bag, yi ∈ {±1} is the label and
mi is the number of instances in bag Bi, we assume the first
p bags are positive and the rest q = m − p bags are negative
without loss of generality, i.e., all bags are ordered such that

yi =

{
1 i ∈ [p],

−1 i ∈ [m] \ [p].

The prediction of a bag is determined by the largest decision
value of its instances, i.e., f(Bi) = maxj∈[mi] w

>φ(xi,j).
Substituting into Eqn. (2), we get

min
w,ξi,εi

1

2
‖w‖2 +

λ1

p

p∑
i=1

ξ2
i + νε2i

(1− θ)2
+
λ2

q

m∑
i=p+1

ξ2
i + νε2i

(1− θ)2
,

s.t. yi max
j∈[mi]

w>φ(xi,j) ≥ 1− θ − ξi, (3)

yi max
j∈[mi]

w>φ(xi,j) ≤ 1 + θ + εi, ∀i ∈ [m],

where λ1, λ2 are the parameters for trading-off empirical
losses on positive and negative bags, respectively.

For each positive bag Bi, we introduce a binary vector

ai = [ai,1; . . . ; ai,mi ] ∈ {0, 1}mi

to indicate the key instance with the largest decision value.
Following the traditional MIL setting, we assume that each
positive bag has only one key instance,3 and hence we have
e>ai = 1, where e is an all-one column vector. In the fol-
lowing, let c = [a1; . . . ;ap] and C be its domain, then the
constraints yi maxj∈[mi] w

>φ(xi,j) ≥ 1−θ−ξi correspond-
ing to positive bags in Eqn. (3) can be equivalently rewritten
as maxai

∑
j∈[mi]

ai,jw
>φ(xi,j) ≥ 1− θ − ξi.

2Note that scaling w does not affect the prediction.
3Sometimes one may want the positive bag has more than one

key instances. The proposed method can be simply extended to this
case by setting e>ai = k.
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For each negative bag Bi whose instances are all negative,
the corresponding constraints Eqn. (3) can be replaced by{

−w>φ(xi,j) ≥ 1− θ − ξi,
−w>φ(xi,j) ≤ 1 + θ + εi, ∀j ∈ [mi].

Moreover, to make the model more relaxable, we allow the
bags have different slack variables, i.e.,

{ξs(i,j)}i∈[m]\[p], j∈[mi], {εs(i,j)}i∈[m]\[p], j∈[mi],

where index s(i, j) = Ji−1−Jp+ j+p ranges from p+ 1 to
Jm − Jp + p and Ji =

∑i
t=1mt (J0 is set to 0). Combining

all these together, Eqn. (3) turns into

min
c∈C

min
w,ξi,εi

1

2
‖w‖2 +

λ1

p

p∑
i=1

ξ2
i + νε2i

(1− θ)2

+
λ2

q

m∑
i=p+1

∑
j∈[mi]

ξ2
s(i,j) + νε2s(i,j)

(1− θ)2
,

s.t.
∑
j∈[mi]

ai,jw
>φ(xi,j) ≥ 1− θ − ξi,

∑
j∈[mi]

ai,jw
>φ(xi,j) ≤ 1 + θ + εi, ∀i ∈ [p],

−w>φ(xi,j) ≥ 1− θ − ξs(i,j),
−w>φ(xi,j) ≤ 1 + θ + εs(i,j),

∀i ∈ [m] \ [p], ∀j ∈ [mi].

(4)

As kernel methods, the inner minimization of Eqn. (4) is
usually processed via the dual form due to the underlying in-
finite dimensional feature mapping. Introduce the dual vari-
ables u = [u1; . . . ;u2(Jm−Jp+p)] � 0, the Lagrangian of
Eqn. (4) leads to

min
c∈C

max
u∈U

− 1

2
u>
[

K −K
−K K

]
u (5)

− (1− θ)2

4
u>
[ 1
λ1

I 0

0 1
λ2ν

I

]
u−

[
(θ − 1)e
(θ + 1)e

]>
u,

where U is the non-negative quadrant and Ki,j = Ψ>i Ψj ∈
Rq×q is the kernel matrix with

Ψi =

{∑
j∈[mi]

ai,jφ(xi,j) i ∈ [p], j ∈ [mi],

−φ(xi,j) i ∈ [m] \ [p], j ∈ [mi].

To overcome the difficulty caused by the mixed-integer
programming, some convex relaxation methods should be ap-
plied, e.g., the semi-definite programming relaxation [Xu et
al., 2004], and the minimax relaxation [Li et al., 2009]. Since
the latter is proven to be tighter than the former, we also em-
ploy minimax relaxation in this paper. Interchanging the or-
der of maxu∈U and minc∈C , we have

max
u∈U

min
c∈C

D(u, c),

where D(u, c) denotes the objective function of Eqn. (5).
Moreover, with an equivalent rewriting for the inner opti-
mization, the above formulation turns to

max
u∈U

max
d

d s.t. D(u, ck) ≥ d, ∀ck ∈ C. (6)

Again introduce the dual variables v = [v1; . . . ; v|C|] � 0 for
the inner optimization, the Lagrangian of Eqn. (6) leads to

min
v�0

max
d
{d+

∑
k:ck∈C

vk(D(u, ck)− d)}.

Setting the derivative of d to zero, we have
∑
k:ck∈C vk = 1

and the dual problem turns to

min
v∈V

∑
k:ck∈C

vkD(u, ck), (7)

where V = {v ∈ R|C|+ | e>v = 1} is the simplex in R|C|.
For simplicity, denote

∑
k:ck∈C vkD(u, ck) as G(u,v), and

substitute Eqn. (7) into Eqn. (6), we have

max
u∈U

min
v∈V

G(u,v).

Note that G(u,v) is a convex combination of negative defi-
nite quadratic functions, thus it is convex in v and concave in
u, and according to Siont’s minimax theorem [Sion, 1958],
there exists a saddle point (u?,v?) ∈ U × V such that

min
v∈V

max
u∈U

G(u,v) ≤ max
u∈U

G(u,v?) = G(u?,v?)

= min
v∈V

G(u,v?) ≤ max
u∈U

min
v∈V

G(u,v).
(8)

Combining with the minimax inequality

max
u∈U

min
v∈V

G(u,v) ≤ min
v∈V

max
u∈U

G(u,v),

all the inequalities in Eqn. (8) hold as equations, thus the MI-
ODM finally can be formulated as

min
v∈V

max
u∈U

G(u,v). (9)

and the optimal solution is the saddle point (u?,v?).

4 Optimization
In this section, we first give a simple introduction to the min-
imax problem. After that, we detail the stochastic accelerated
mirror prox method which can quickly find the optimal solu-
tion.

4.1 Minimax Problem
Note that G(u, ·) and −G(·,v) are both convex functions,
according to the first order inequality of convexity, for any
pair (û, v̂) ∈ U × V , we have

G(u, v̂)−G(û, v̂) ≤ −∂uG(û, v̂)>(û− u), ∀u ∈ U ,
G(û, v̂)−G(û,v) ≤ ∂vG(û, v̂)>(v̂ − v), ∀v ∈ V .

Adding the above two inequalities together and augmenting
u and v, we have

G(u, v̂)−G(û,v) ≤ g(ŵ)>(ŵ −w), ∀u,v, (10)

where w = [u;v] and g(ŵ) = [−∂uG(ŵ); ∂vG(ŵ)]. Com-
pared to the general convex optimization, it can be found that
g(ŵ) plays a similar role as “gradient”. Since Eqn. (10) holds
for any u and v, particularly we have

max
u∈U

G(u, v̂)−min
v∈V

G(û,v) ≤ g(ŵ)>(ŵ −w). (11)
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The LHS of Eqn. (11) can be further decomposed as two gaps
between current point (û, v̂) and saddle point (u?,v?):

max
u∈U

G(u, v̂)−G(u?,v?) +G(u?,v?)−min
v∈V

G(û,v)

= max
u∈U

G(u, v̂)−min
v∈V

max
u∈U

G(u,v)︸ ︷︷ ︸
≥0

+ max
u∈U

min
v∈V

G(u,v)−min
v∈V

G(û,v)︸ ︷︷ ︸
≥0

.

Since the two gaps are both non-negative, and the smaller the
two gaps, the closer to the saddle point, the LHS of Eqn. (11)
can be viewed as the “duality gap” in the general convex op-
timization and serves as a stopping criteria for the algorithm
design.

4.2 Stochastic Accelerated Mirror Prox
The feasible field of u and v are box and simplex respec-
tively. To exploit this structural information, we resort to the
mirror descent method [Beck and Teboulle, 2003]. Specif-
ically, for variable u, the common Euclidean distance mir-
ror map ψU (u) = ‖u‖22/2 can work well, while for variable
v, the negative entropy mirror map ψV(v) =

∑
k vk log vk

is most suitable, since it can make the time complexity only
have a logarithmic dependence on the dimension.

The mirror descent style methods perform gradient descent
in the dual space induced by the mirror maps. To make the
minimax structure more easily handled like the general opti-
mization problem, we introduce the joint mirror map ψ(w) =

aψU (u)+bψV(v) , where a =
√

2/τ
√
Jm − Jp + p and b =

1/
√

log |C|, respectively. It can be shown that ∇ψU (u) = u
and ∇ψV(v) = log v + e. Combining the two components
together we have∇ψ(w) = [au; b log v + be].

As shown in Figure 1, at the t-th iteration, we first map the
current point wt = [ut;vt] into the dual space ∇ψ(wt) =
[aut; b log vt + be] and perform one step of gradient descent

∇ψ(ŵt) = ∇ψ(wt)− ηg(wt)

= [aut + η∂uG(ut,vt); b log vt + be− η∂vG(ut,vt)],

where η is the step size, then map the∇ψ(ŵt) back to primal
space, i.e., to find ŵt = [ût; v̂t] such that[

aût
b log v̂t + be

]
=

[
aut + η∂uG(ut,vt)

b log vt + be− η∂vG(ut,vt)

]
,

which implies that ût = ut + η∂uG(ut,vt)/a and v̂t =
vt exp(−η∂vG(ut,vt)/b). Finally, we project [ût; v̂t] back
to U × V based on the Bregman distance induced by the mir-
ror maps. To be specific, the Euclidean distance mirror map
induces the common Euclidean distance, while the negative
entropy mirror map induces the Kullback-Leibler divergence.
This can be formulated as the following two optimization
sub-problems:

ut+1 = arg min
u∈U

‖u− ût‖22,

vt+1 = arg min
v∈V

v> log
v

v̂t
.

primal spacedual space

U × V

wt = [ut;vt]

∇ψ∇ψ(wt)

∇ψ(ŵt)

−ηg(wt)

ŵt = [ût; v̂t](∇ψ)−1

[ut+1;vt+1]

projection

Figure 1: One iteration of mirror descent.

Fortunately, both two problems have a closed-form solution.
The former is to project ût onto the non-negative quadrant,
thus ut+1 = max{ût,0}. For the latter, we introduce the
dual variable z, and the Lagrangian leads to

max
z

min
v

v> log(v/v̂t) + z(e>v − 1).

Setting the derivative of v to zero, we have log(v/v̂t) + e +
ze = 0, which implies that vt+1 = v̂t exp(−1 − z). Note
that vt+1 belongs to a simplex, hence

1 = e>vt+1 = e>v̂t exp(−1− z) = ‖v̂t‖1 exp(−1− z).

Substituting with exp(−1−z) = 1/‖v̂t‖1, we get the closed-
form solution vt+1 = v̂t/‖v̂t‖1.

Once we have yt+1 , [ut+1;vt+1], repeat the above pro-
cedure from wt one more time, except that when performing
gradient descent in the dual space, we use the gradient at yt+1

rather than wt. In other words, a two-step mirror descent is
carried out in each iteration, which starts from the same point
but the gradient used in the second time is evaluated at the
ending point of the first time. This is exactly the mirror prox
method [Nemirovski, 2005], which has been proved enjoying
better convergence rate. Figure 2 illustrates one iteration of
this method.

The mirror prox method can be further accelerated via the
Nesterov accelerated technique [Nesterov, 2003]. The intu-
ition is that besides {wt} and {yt}, we also maintain another
two sequences {wt} and {wt}, which are the convex com-
bination of {wt} and {yt}. Specifically, at the t-th iteration,
first update wt = (1−γt)wt+γtyt, where γt is the Nesterov
accelerated coefficient, usually set as 2/(t + 1). After that,
perform two-step mirror descent based on wt to get yt+1 and
wt+1. Finally, update update wt+1 = (1− γt)wt + γtwt+1.

Moreover, to make the method scale well for big data,
we also extend a stochastic version of our method, and
the key problem turns to finding the unbiased noisy gradi-
ent ∂uG̃(ut,vt) and ∂vG̃(ut,vt). Note that G(u,v) =∑
k:ck∈C vkD(u, ck), we have

∂uG(ut,vt) = [∂uD(ut, c1), . . . , ∂uD(ut, c|C|)]vt,

∂vG(ut,vt) = [D(ut, c1), . . . , D(ut, c|C|)].
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primal spacedual space

U × V

wt
∇ψ∇ψ(wt)

∇ψ(ŵt)

−ηg(wt)

ŵt(∇ψ)−1

yt+1

∇ψ(ŵt+1)

−ηg(yt+1)

ŵt+1

(∇ψ)−1

wt+1

Figure 2: One iteration of mirror prox. The two-step mirror descent
both starts from the same point but with gradients evaluated at dif-
ferent points.

Randomly sampling an index it according to the distribu-
tion vt on {1, 2, . . . , |C|}, we can obtain ∂uG̃(ut,vt, it) =
∂uD(ut, cit). On the other hand, uniformly sampling an in-
dex jt from {1, 2, . . . , |C|}, we can obtain ∂vG̃(ut,vt, jt) =
[0, . . . , |C|D(ut, cjt) . . . , 0]. Thus it can be shown that

E[∂uG̃(ut,vt, it) | ut,vt] = ∂uG(ut,vt),

E[∂vG̃(ut,vt, jt) | ut,vt] = ∂vG(ut,vt),

and g̃(wt) = [−∂uG̃(ut,vt, it); ∂vG̃(ut,vt, jt)] is the tar-
geted unbiased estimation of g(wt).

Putting the above all together, we come up with the
stochastic accelerated mirror prox method for MI-ODM. Al-
gorithm 1 summarizes the pseudo-code.

4.3 Discussion
Resorting to the monotone stochastic variational inequality
technique [Juditsky et al., 2011; Chen et al., 2017], we can
prove the time complexity is O(1/

√
ε + 1/ε + 1/ε2), where

the dominated term 1/ε2 comes from the noise introduced
by the stochastic optimization. On the other hand, the state-
of-the-art cutting-plane based algorithms have the same time
complexity O(1/ε2) [Zhao et al., 2008]. Further note that
in each iteration, cutting-plane based algorithms need to find
the most violated key instance assignment and retrain a SVM
model, while our method just preforms some random sam-
plings and two steps of gradient descent followed by a pro-
jection with closed-form solutions, therefore our method is
much more efficient.

5 Empirical Studies
We empirically study our method on CBIR image data sets in
Sec. 5.1 and benchmark data sets in Sec. 5.2, respectively.

5.1 Experiments on Image Data
The data set contains 500 images (bags) with resolution
160× 160 from five categories: castle, firework, mountain,

Algorithm 1 MI-ODM

1: Input: ODM parameters λ1, λ2, ν, θ, maximum iteration
number T , stopping criteria ζ.

2: Initialize u0 ← 0, v0 ← [1/|C|, . . . , 1/|C|], t ← 0,
[u0;v0]← [u0;v0], [û0; v̂0]← [u0;v0].

3: while t < T do
4: γt ← 2/(t+ 1).
5: [ut;vt]← (1− γt)[ut;vt] + γt[ut;vt].
6: Select it from {1, 2, . . . , |C|} according to vt.
7: ∂uG̃← ∂uD(ut, cit).
8: Uniformly select jt from {1, 2, . . . , |C|}.
9: ∂vG̃← [0, . . . , |C|D(ut, cjt) . . . , 0].

10: [ût; v̂t]← [ut + η∂uG̃/a;vt exp(−η∂vG̃/b)].
11: [ũt+1; ṽt+1]← [max{ût,0}; v̂t/‖v̂t‖1].
12: Select i′t from {1, 2, . . . , |C|} according to ṽt+1.
13: ∂uG̃← ∂uD(ũt+1, ci′t).
14: Uniformly select j′t from {1, 2, . . . , |C|}.
15: ∂vG̃← [0, . . . , |C|D(ũt+1, cj′t) . . . , 0].
16: [ût+1; v̂t+1]← [ut + η∂uG̃/a;vt exp(−η∂vG̃/b)].
17: [ut+1;vt+1]← [max{ût+1,0}; v̂t+1/‖v̂t+1‖1].
18: [ut+1;vt+1]← (1− γt)[ut;vt] + γt[ut+1;vt+1].
19: t← t+ 1.
20: if duality gap smaller than the stopping criteria ζ then
21: Break.
22: end if
23: end while
24: Output: u, v.

sunset and waterfall. Each instance is a region in the image
with resolution 20 × 20. Some of the regions are manually
labeled as key instances. Table 1 summarizes the statistics of
these data sets.

We randomly sample 50 images from each category as
training data and the rest are used as test data. The train-
ing/test split are repeated for 10 times. The average accura-
cies as well as the standard deviations are recorded.

The proposed method is compared to the following five
large margin based methods: 1) Ins-KI-SVM [Li et al., 2009];
2) Bag-KI-SVM [Li et al., 2009]; 3) MI-SVM [Andrews
et al., 2003]; 4) mi-SVM [Andrews et al., 2003]; 5) MI-
Kernel [Gärtner et al., 2002]. The parameters C1, C2, λ1,
λ2 are selected from {1, 10, 100, 1000}, and ν, θ are se-
lected from {0.2, 0.4, 0.6, 0.8}. The RBF kernel is applied
for all the methods and the width is selected from the set of
{2−4δ, 2−2δ, 20δ, 22δ, 24δ}, where δ is the reciprocal of di-

categories #images #key-instance per image

castle 100 19.39
firework 100 27.23
mountain 100 24.93
sunset 100 2.32
waterfall 100 13.89

Table 1: Characteristics of experimental data sets.
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methods castle firework mountain sunset waterfall

margin based Ins-KI-SVM 64.74±6.64 83.70±15.43 76.78±5.46 66.85±6.03 63.41±10.56
Bag-KI-SVM 60.63±7.53 54.00±22.13 72.70±7.66 47.78±13.25 45.04±21.53

MI-SVM 56.63±5.06 58.04±20.31 67.63±8.43 33.30±2.67 33.30±8.98
mi-SVM 51.44±4.93 40.74±4.24 67.37±4.48 32.19±1.66 22.04±4.97

MI-Kernel 50.52±4.46 36.37±7.92 65.67±5.18 32.15±1.67 19.93±4.65
MI-ODM 76.80±4.99 84.12±7.42 77.05±7.94 67.15±2.48 65.91±7.15

non-margin based DD 35.89±15.23 38.67±30.67 68.11±7.54 57.00±18.40 37.78±29.61
EM-DD 76.00±4.63 79.89±19.25 77.22±13.29 53.56±16.81 44.33±15.13

CkNN-ROI 51.48±4.59 43.63±12.40 60.59±4.38 34.59±2.57 30.48±6.34

Table 2: Success rate (%) on identifying the key instances. The best performance on each data set is bolded.

methods Musk1 Musk2 Elephant Fox Tiger

margin based Ins-KI-SVM 84.0 84.4 83.5 63.4 82.9
Bag-KI-SVM 88.0 82.0 84.5 60.5 85.0

MI-SVM 77.9 84.3 81.4 59.4 84.0
mi-SVM 87.4 83.6 82.0 58.2 78.9

MI-Kernel 88.0 89.3 11 84.3 60.3 84.2
MI-ODM 88.2 89.8 84.5 63.9 85.2

non-margin based DD 88.0 84.0 N/A N/A N/A
EM-DD 84.8 84.9 78.3 56.1 72.1

Table 3: Accuracy (%) on the benchmark data sets. The best performance on each data set is bolded. DD could not return results on some
data sets in 48 hours.

mension. Three classical non-large margin based methods,
i.e., DD [Maron and Ratan, 1998], EM-DD [Zhang and Gold-
man, 2001] and CkNN-ROI [Zhou et al., 2005], which can
locate key instances, are also included as baselines. All the
parameters are selected by 5-fold cross validation.

Following the setting in [Li et al., 2009], we evaluate the
success rate, i.e., the ratio of the number of successes divided
by the total number of relevant images. Table 2 shows the
results of al the compared methods. As can be seen, MI-
ODM beats all the large margin based methods. As for the
non-margin based methods, MI-ODM is also better than DD,
CkNN-ROI, and highly comparable to EM-DD. Specifically,
MI-ODM achieves the best performance on four categories,
while EM-DD achieves the best performance on the remain-
ing one (mountain).

5.2 Experiments on Benchmark Data
We have also evaluated our method on five benchmark data
sets commonly used in the literature of MIL, i.e., Musk1,
Musk2, Elephant, Fox and Tiger. Musk1 has 47 positive
bags and 45 negative bags. Musk2 consists of 39 positive
bags and 63 negative bags. The remaining three data sets all
contains 100 positive bags and 100 negative bags. The detail
of these data sets can be found in [Dietterich et al., 1997;
Andrews et al., 2003].

The setting is the same with the previous experiment. We
adopt the 5-fold cross validation to measure the performance.
DD could not return results on some data sets in 48 hours

because it lacks high efficient packages. As shown in Ta-
ble 3, our method is always better or comparable, almost
never worse than other baselines.

6 Conclusions
Recent studies on margin theory discloses the importance
of margin distribution to generalization ability, which gives
rise to a promising research direction, i.e., the optimal mar-
gin distribution learning. Based on this observation, we pro-
pose the MI-ODM, which can identify the key instance via
explicitly optimizing the margin distribution. Extensive ex-
perimental results verify the superiority of the new learning
paradigm. In the future, we will apply the variance reduc-
tion technique [Johnson and Zhang, 2013] to further acceler-
ate our method and extend it to other learning settings, e.g.,
multi-instance multi-label learning [Zhou et al., 2012].
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instance problem with axis-parallel rectangles. Artificial
Intelligence, 89(1–2):31–71, 1997.

[Foulds and Frank, 2010] James Richard Foulds and Eibe
Frank. A review of multi-instance learning assumptions.
Knowledge Engineering Review, 25(1):1–25, 2010.

[Gao and Zhou, 2013] Wei Gao and Zhi-Hua Zhou. On the
doubt about margin explanation of boosting. Artificial In-
telligence, 203:1–18, 2013.
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