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Abstract
The problem of multi-armed bandit (MAB) with
fairness constraint has emerged as an important
research topic recently. For such problems, one
common objective is to maximize the total rewards
within a fixed round of pulls, while satisfying the
fairness requirement of a minimum selection frac-
tion for each individual arm in the long run. Previ-
ous works have made substantial advancements in
designing efficient online selection solutions, how-
ever, they fail to achieve a sublinear regret bound
when incorporating such fairness constraints. In
this paper, we study a combinatorial MAB problem
with concave objective and fairness constraints. In
particular, we adopt a new approach that combines
online convex optimization with bandit methods to
design selection algorithms. Our algorithm is com-
putationally efficient, and more importantly, man-
ages to achieve a sublinear regret bound with prob-
ability guarantees. Finally, we evaluate the perfor-
mance of our algorithm via extensive simulations
and demonstrate that it outperforms the baselines
substantially.

1 Introduction
The Multi-armed bandit problem (henceforce, MAB) has
been a predominant model for handing sequential decision
issues. Over the decades, MAB algorithms have witnessed a
wide range of applications, e.g., resource allocation in wire-
less communications [Li et al., 2019], job scheduling [Xu et
al., 2019] and Internet advertising [Agrawal and Devanurr,
2014]. In a classical stochastic multi-armed bandit (MAB)
problem, a decision maker has N selection choices (hence-
forth referred to as arms) [Auer et al., 2002]. At each time-
slot (round) t, the decision maker decides which choice to
select, referred to as pulling an arm. Once the decision maker
pulls an arm, she gets a random reward drawn from a fixed
distribution which is unknown, e.g., in wireless communica-
tion, a successfully delivered packet of a client will generate a
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random reward, which could represent the value of the infor-
mation contained in the packet corresponding to that client.
Under the MAB model, the arms which are not selected do
not produce any reward. One common objective of the deci-
sion maker is to make selection decisions in each round as to
to maximize the total expected reward within T pulls. One
fundamental challenge faced by the decision maker is known
as the exploration vs. the exploitation trade-off, i.e. whether
she should explore the arms to find the best one in terms of
expected rewards or pull an arm that has given the best av-
erage reward so far. To evaluate the goodness of a selection
algorithm, the research community has defined the notion of
regret, which is computed as the difference between the cu-
mulative rewards of the designed algorithm and that of the
optimal solution. Usually, the algorithms that can yield a sub-
linear regret bound are preferred.

However, the traditional MAB model fails to characterize
several important factors of the system in many real-world
applications [Li et al., 2019]. In particular, ensuring fairness
among the arms in some scenarios in wireless communica-
tions is an important design concern [Ferdosian and et al.,
2018]. When multiple clients compete for a shared wire-
less channel to transmit packets via a common access point
(AP), ensuring fairness among the clients is important for
providing Quality of Service (QoS) guarantees. In the re-
source scheduling scenario of the LTE-A cellular network, all
bearers should get at least a certain fraction of the total sys-
tem throughput [Nasim Ferdosian and Ali, 2017]. Moreover,
in Internet advertising, each ad should also be guaranteed to
allocate a minimum percentage of impressions [Schwartz et
al., 2017]. In addition to fairness guarantee, more than one
clients can be selected since the channel could typically be
divided into multiple “sub-channels”. Therefore, one need to
extend the basic MAB model to the combinatorial setting to
allow more than one arm to be selected in each round [Chen
et al., 2013]. Last but not least, the objective function is typ-
ically nonlinear, so as to model the behaviors of arms [Chen
et al., 2016]. This nonlinear reward function makes the prob-
lem much more complicated. Interestingly, a concave func-
tion is often adopted to capture such nonlinear characteristics
[Agrawal and Devanurr, 2014], e.g., the overall performance
or level of “satisfaction” of each client in wireless schedul-
ing is modeled as a concave function with respect to the to-
tal amount of resource allocated to it [Zheng and Tan, 2014;
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Cavalcante and Stanczak, 2018].
Existing works have made certain advancements to address

the above issues, e.g., [Sankararaman and Slivkins, 2018;
Chen et al., 2013; Dickerson et al., 2019; Patil et al., 2019;
Combes et al., 2015; Chen et al., 2016]. Among these works,
[Patil et al., 2019] studies the fairness of MAB problem where
each arm is required to be pulled for at least a given fraction
of the total available rounds. By contrast, [Chen et al., 2016]
investigates a study on the combinatorial MAB problem with
a general reward function. Most recently, Li et al. propose
to model the fairness constraints in the combinatorial multi-
armed bandit setting [Li et al., 2019]. This work has designed
a simple heuristic based on the UCB Algorithm [Auer et al.,
2002] to determine the selection of arms in each round. The
key idea is to balance between the reward estimated from the
UCB solution and virtual queue lengths computed according
to the fairness quantity. One fundamental limitation of this
work is that it can not achieve a sublinear regret bound. As
such, the designed algorithm can be far from the optimal so-
lution if the trade-off between the reward and virtual queue
lengths is not well managed.

With the aforementioned observations in mind, in this pa-
per, we study a general combinatorial MAB problem with
concave rewards and fairness constraints. In this problem,
the decision maker can pull multiple arms in each round
with the number of selections not exceed m. The actual
reward of each arm in a round follows a certain unknown
distribution and it only reveals after the arm has been se-
lected. To ensure fairness, each individual arm is guar-
anteed to be pulled for a minimum fraction of T rounds.
The objective of the decision maker is now to maximize a
concave function with respect to the total rewards obtained
within T rounds. Due to this concave objective, conventional
methods such as LP relaxation does not work in this case
[Sankararaman and Slivkins, 2018]. Worse still, the combi-
natorial setting requires one to solve a difficult stochastic in-
teger programming problem. To tackle these challenges, we
first relax the problem to allow fractional solutions and ap-
ply Fenchel duality to solve the dual problem. We then adopt
a novel method which combines online convex optimization
with bandit methods to seek solutions automatically. Finally,
we apply the randomized rounding schemes (RRS) to round
the fractional solutions back to integers [P and B., 2011;
Sankararaman and Slivkins, 2018].

Furthermore, we also extend the above model to handle the
knapsack constraints [Badanidiyuru et al., 2018]. In this ex-
tended model, each individual arm is associated with a ran-
dom resource consumption once pulled, and there is a re-
source capacity that enforces a hard constraint on the total
resource consumption for all arms within T rounds. To sum-
marize, we have made the following technical contributions:

• We study a problem which is general enough to charac-
terize all the important factors for MAB within one uni-
fied framework. It is noteworthy that, our model man-
ages to deal with concave rewards and therefore is much
more challenging than those discussed in recent research
works, e.g., [Li et al., 2019; Badanidiyuru et al., 2018].

• We build a systematical way to combine bandit meth-

ods with OCO techniques. Our built framework em-
ploys online learning techniques to solve bandit prob-
lems and applies Lyapunov-drift analysis to analyze
the regret bound. Comparing to traditional LP based
approaches which need to solve a complicated lin-
ear programming problem, e.g., [Combes et al., 2015;
Sankararaman and Slivkins, 2018; Chen et al., 2013;
Agrawal and Devanurr, 2014], our solution is much
more computationally efficient since it only performs a
simple gradient descent operation followed by a random
rounding step. As such, our proposed method leads to a
very low complexity and therefore can be readily imple-
mented in practice.
• We are the first one to prove a sublinear regret bound

for the MAB model with fairness constraints. As a con-
sequence, we also solve an open problem proposed in
recent works, e.g., [Li et al., 2019]. We adopt a rigorous
analysis via combining convex optimization and bandit
techniques to conduct such proofs.

The rest of this paper is organized as follows. We review
works related to MAB problems and online convex optimiza-
tion in Section 2. We present the system model in Section
3. We then introduce the solution approach and algorithm de-
sign in Section 4. Section 5 evaluates the performance of our
designed algorithm. We discuss how to extend the combina-
torial MAB models to include knapsack constraints in Section
6 and finally conclude our work in Section 7.

2 Related Work
Over the past decades, the MAB problem has been exten-
sively investigated for sequential decision problems that em-
body the tension between exploration and exploitation, e.g.,
[Auer, 2002; Chen et al., 2013; 2016]. The seminal work of
[Auer, 2002] presents the upper confidence bound (UCB) al-
gorithm, so as to resolve the conflict between taking actions
which yield immediate reward and taking actions whose ben-
efit will come only later. The key step of UCB is to mea-
sure the expected reward of each arm by an upper confidence
bound of the observed empirical value, so that the true value
is within this bound with a high probability. Based on the
design principle of UCB, researchers have built more general
MAB models such that they can be applied to a wide range of
real applications. In particular, Chen et al. extend the UCB
algorithm to work for the combinatorial scenarios in where
multiple arms can be chosen in a round [Chen et al., 2013;
2016]. The key step of these algorithms is to construct an ap-
proximation oracle such that the selection process can be con-
ducted efficiently. MAB problems with concave rewards is
also a hot research topic, e.g., [Agrawal and Devanur, 2015].
These works apply Fenchel duality to approximate the con-
cave objective using linear functions and then handle the lin-
ear objective with traditional UCB results.

Recently, the research community begins to investigate
bandit problems with knapsacks, e.g., [Badanidiyuru et al.,
2018; Agrawal and Devanur, 2016; Badanidiyuru et al.,
2013]. For such problems, each arm incurs a random cost
once it is pulled, and the optimization goal is to maximize the
total rewards while guaranteeing the overall costs not exceed
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the budget. A widely adopted approach to tackle these prob-
lems is applying UCB bound to estimate both the rewards
and costs. Based on the estimated bounds, a linear program
is then invoked to select arms with the aim at maximizing the
rewards in each round. One drawback of this approach is that
the LP problem can be quite difficult to solve when the num-
ber of arms is too large. As a comparison, this paper makes
the selection decision based on a simple gradient descent ap-
proach, which is much more computationally efficient.

Fairness in online learning has been studied in [Joseph et
al., 2016; Gillen et al., 2018]. [Joseph et al., 2016] models
the fairness such that, two arms should be played with equal
probability until they can be distinguished with a high confi-
dence. By contrast, [Gillen et al., 2018] considers contextual
bandits under which each arm is associated with a context,
two arms with similar contexts are required to be selected
with similar probabilities. The most relevant study to our
work appears in [Li et al., 2019]. However, we still make
several advancements in this paper. Firstly, our problem is
more general as we include concave rewards in the objec-
tive function along with knapsack constraints. Secondly, our
proposed solutions make use of online convex optimization
(OCO) techniques, and can achieve a sublinear regret bound.

3 System Model
In this section, we present the basic models for combinato-
rial MAB problems with concave rewards and fairness con-
straints. We also introduce the definition of regret, which is
used to evaluate the performance of an online algorithm.

There is a fixed finite set of N arms denoted by N =
{1, 2, · · · , N}, available to the decision maker, henceforce
called the algorithm. And there are T rounds in total where
T is known to the algorithm in advance. Each arm i ∈ N is
associated with a random reward ri(t) in round t. For each i
and t, ri(t) is generated i.i.d. from some unknown fixed un-
derlying distribution. More precisely, there is some fixed but
unknown µi such that

E[ri(t)] = µi, ∀i, t. (1)

Without loss of generality, we assume all ri(t)’s are upper
bounded by one. In the beginning of each round t, the algo-
rithm is required to pull multiple, but not more than m arms
from N . Let xi(t) be an indicator variable to denote whether
arm i has been pulled or not by the algorithm. Thus, {xi(t)}
should satisfy the following constraint:

N∑
i=1

xi(t) ≤ m, ∀t. (2)

xi(t) ∈ {0, 1}, ∀i, t. (3)
In addition, total reward obtained within T rounds by the al-
gorithm is given by:

R =
T∑
t=1

N∑
i=1

xi(t)ri(t). (4)

The goal of the algorithm is to maximize f(R) where f(·) is
a strictly concave function. To ensure fairness, we introduce

the following constraints on a minimum selection fraction for
each individual arm:∑T

t=1 xi(t)

T
≥ ξi, ∀i, (5)

where ξi ∈ (0, 1) is the required minimum fraction of rounds
in which arm i is played. We assume the fraction vector ξ =
{ξ1, ξ2, · · · , ξN} is feasible, i.e., there exist a policy to pull
arms such that Eq. (2),(3),(5) are satisfied. As such, ξ should
satisfy the following equation:

N∑
i=1

ξi ≤ m. (6)

Though we make a hard constraint on the selection of each
arm, we shall show in the sequel that, the selection fraction
of arm i will be asymptotically close to ξi when T goes to in-
finity. As such, we can achieve the same fairness requirement
as that in existing works, e.g. [Li et al., 2019].

Let x(t) = {x1(t), x2(t), · · · , xN (t)}, towards this end,
the reward maximization problem can be formulated as:

max
{x(t)}

f
( T∑
t=1

x(t) · r(t)/T
)

(OPT)

such that Eq. (2), (3), (5) are satisfied,

where r(t) = {r1(t), r2(t), · · · , rN (t)} and (·) denotes the
inner product of two vectors. Note that f(·) is not necessarily
monotonic in the objective. We further make the following
assumption regarding Lipschitz continuity of f(·).
Assumption 1. Assume that function f is L-lipschitz, i.e.,
f(x)− f(y) ≤ L · |x− y|.

3.1 Characterizing the Optimal Solutions
Before going to the design of the arm selection algorithm,
we first analyze the optimal solutions to the following opti-
mization problem, which will be used as a benchmark to our
designed algorithm.

max
{x(t)}

f(

T∑
t=1

N∑
i=1

xi(t)µi/T ) (OPT1)

such that 0 ≤ xi(t) ≤ 1 and Eq. (2), (5) are satisfied.

Comparing to OPT, we relax the integer solution in OPT1
and moreover replace the sample value of the reward in the
objective by its mean.

Let {x∗(t)} be an optimal solution to OPT1, the follow-
ing theorem states that {x∗(t)} is static in the sense that the
selection fraction of all arms does not change over time.
Theorem 1. There exists one optimal solution {x∗(t)} such
that, x∗(1) = x∗(2) = · · · = x∗(T ).

3.2 Objective and Performance Metrics
Regarding the performance of online decisions {x(t)} made
by the algorithm, we adopt a widely used metric for evalua-
tion, i.e., static regret, which is defined as:

RegT := T ·
(
f(x∗ · µ)− f(

T∑
t=1

x(t) · r(t)/T )
)
, (7)
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where x∗ is the optimal solution to the optimization prob-
lem OPT1 and µ = {µ1, µ2, · · · , µN}. Here, we adopt the
same definition of regret as that in the existing works related
to MAB models with concave rewards, e.g., [Agrawal and
Devanurr, 2014]. Interestingly, when f reduces to a linear
function, the regret defined in Eq. (7) is also consistent with
that in recent related works, e.g., [Li et al., 2019].

4 Algorithm Design for Combinatorial MAB
Selection

In this section, we design an arm selection algorithm by care-
fully integrating ideas from online convex optimization and
bandit methods to deal with OPT.

4.1 Estimation on the Reward
We adopt ideas from [Badanidiyuru et al., 2018] to add a con-
fidence radius to the empirical value when estimating the re-
ward. In particular, the estimation µ̂ti, is given by:

µ̂ti = max
{

0, µti − 2rad(µti,
t−1∑
τ=1

xi(τ) + 1)
}
, (8)

where µti =
∑t−1
τ=1 ri(τ)∑t−1

τ=1 xi(τ)+1
characterizes the empirical average

of the reward of arm i by time t. Let γ ∈ (0, 1), rad(ν, P ) =√
γν
P + γ

P is the confidence radius.

4.2 Selection Algorithm Design
With the estimated reward in each round, we apply online
convex optimization (OCO) techniques to design the selec-
tion algorithm. To be more specific, we adopt the primal-dual
approach followed by randomized sampling schemes (RRS)
[Sankararaman and Slivkins, 2018].

Traditional OCO approaches can only deal with convex set,
e.g., [Mahdavi et al., 2012; Yu and Neely, 2016]. To handle
this issue, we relax the constraints defined in Eq. (2),(3) to
introduce the following decision set:

Ω = {x ∈ RN : 0 ≤ x ≤ 1 and e · x ≤ m, } (9)

where e = {1, 1, · · · , 1} is an all-one vector of length N . It
can be easily verified that Ω is a convex and compact set.

To fit into the OCO framework, we shall first transform the
fairness constraints characterized in Eq. (5) to the following
short term constraints:

g(xi(t)) = xi(t)− ξi ≥ 0. (10)

Let Q(t) = {Q1(t), Q2(t), · · · , QN (t)} be the dual vari-
able (also referred to as the Lagrangian multiplier) in round
t where Qi(t) ≥ 0 for all i and t, our designed Lagrangian
function is thus given by:

Lt(x,Q(t)) =V θt · µ̂t · x−Q(t) · g(x), (11)

where µ̂ti = {µ̂t1, µ̂t2, · · · , µ̂tN}, θt is a Fenchel dual variable,
and V is a parameter to be addressed later. With the defined
Lagrangian function, our selection algorithm first updates the
primal variables, i.e., x(t) as follows:

x(t) = ΠΩ

(
x(t− 1)− α · ∇xLt(x,Q(t))

)
, (12)

Algorithm 1: Combinational Multi-Arm Selection
Algorithm with Fairness Guarantees

1 Initialize θ1 = L,Q(0) = 0 and choose
xi(0) ∈ {0, 1} for all i randomly such that∑N
i=1 xi(0) = m;

2 Pull arm i when xi(0) = 1 ;
3 Estimate the reward for arm i based on Eq. (8);
4 for 1 ≤ t ≤ T do
5 Update primal variable x(t) based on Eq. (12);
6 Update dual variableQ(t) based on Eq. (13);
7 Choose θt+1 by doing an OCO update following

Eq. (14) and (15);
8 Applying RRS to round xi(t) to Yi(t) ;
9 Pull arm i if Yi(t) = 1 and receive reward µi(t);

10 Estimate the reward for arm i based on Eq. (8);

where α is the step size and ΠΩ(c) is the projection of c onto
the set Ω. The following remark shows the projection can be
computed efficiently by solving the KKT equations.

Remark 1. The projection operation in Eq. (12) can be com-
puted with a time complexity of O(N2).

Following the update of primal variables, the dual updates
in the algorithm take the form of:

Q(t+ 1) = max
{
0 , Q(t)− g(x(t))

}
. (13)

We proceed to update the Fenchel dual variable θt in
Eq. (11). Based on Fenchel duality, we define:

gt(θ) = f∗(θ)− θ · x(t) · µ̂t, (14)

where f∗(θ) = maxy≥0(y ·θ+f(y)) is the Fenchel conjugate
of f . Then, the update of θt is given by:

θt+1 = θt − η
∂gt(θt)

∂θt
. (15)

Finally, the algorithm rounds the factional solutions given
by Eq. (12) to integers. Since the constraint in Eq. (2) need
to be satisfied in each round, simple methods via uniformly
random sampling do not work in this case. As such, we in-
corporate prior work on randomized rounding schemes (RRS)
for linear programs, e.g., [Sankararaman and Slivkins, 2018].
Traditional RRS schemes include cardinality constraint and
bipartite matching [Gandhi et al., 2006].

We call this algorithm CMF (Combinational Multi-arm Se-
lection Algorithm with Fairness Guarantees) and its corre-
sponding pseudo-code is shown in Algorithm 1. Note that,
constraint (2) can be viewed as a special case of bipartite
matching. Following the procedures in [Gandhi et al., 2006],
Step 8 in Algorithm 1 runs in O(mN) time. Together with
Remark 1, we conclude that the time complexity of Algo-
rithm 1 in each round is O(N2).

4.3 Performance Guarantees
In this subsection, we proceed to analyze the theoretical per-
formance of the CMF Algorithm.
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Theorem 2. When f is a L-Lipschitz function, by choosing
V =

√
T and α = 1, with prob. (1 − δ), the fairness con-

straint under CMF is satisfied asymptotically, i.e.,∑T
t=1 Yi(t)

T
− ξi ≥ −

√
N

T
ln
NT

δ
, ∀i. (16)

and the regret defined in (7) is upper bounded by:

RegT ≤ O
(
L

√
mNT ln

NT

δ

)
. (17)

4.4 Connection with Previous Results
In this section, we connect our designed algorithm to pre-
vious results on combinatorial MAB problem with fairness
constraints. Note that, when taking α = 0 in Eq. (12), the
update of x(t) becomes:

x(t) = arg min
x∈Ω

V θt · µ̂t · x−Q(t) · x. (18)

Let Fi(t) = V θtµ̂ti − Qi(t) denote the compound value
of µ̂ti and Qi(t) in round t. Following Eq. (18), we have,
xi(t) = 0 when Fi(t) ≥ 0, namely, arm i should not be
selected when Fi(t) is nonnegative. Denote by A(t) = {i :
Fi(t) < 0, 1 ≤ i ≤ N} the set of arms with negative Fi(t).
In this case, the algorithm needs to choose in each round a set
of arms S(t) that minimizes the compound value, i.e.,

S(t) = arg min
S⊂A(t):|S|≤m

∑
i∈S

V θtµ̂ti −Qi(t). (19)

Due to the linear structure, Eq. (19) can be efficiently solved
via choosing the top m arms that have the minimum com-
pound value.

Interestingly, Eq. (19) is completely the same as Eq. (9)
in [Li et al., 2019] except that the former deals with a con-
cave function and adopts the UCB bound as an estimation for
the reward. As such, the arm selection process in Algorithm
1 is also the same as that in the LFG Algorithm. However,
by adopting on an online-learning based analysis, we can
achieve a sublinear regret bound when choosing V =

√
T .

By contrast, [Li et al., 2019] needs to manually tune the pa-
rameter η and fails to prove a sublinear regret bound.

5 Performance Evaluation
In this section, we conduct simulation studies to evaluate the
performance of CMF in terms of both the time-average regret
and the violation of fairness requirements. The regret is de-
fined in Eq. (7) and the violation of fairness characterizes the
distance between the selection fraction of each arm i achieved
within T rounds and its desired value ξi, i.e.,

Violation =
N∑
i=1

(
ξi−

∑T
t=1 Yi(t)

T

)
·1∑T

t=1 Yi(t)<ξiT
. (20)

We choose f to be a linear function and consider the fol-
lowing scenario for the simulation: N = 100 and m = 30.
The values of ξ are generated uniformly at random between
[0.01, 1] and

∑N
i=1 ξi = 15. The expected reward for all arms

0 500 1000 1500 2000
The number of rounds

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
eg

re
t

=1
=10
=10000
 = 

0 500 1000 1500 2000
The number of rounds

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

Vi
ol

at
io

n 
of

 fa
irn

es
s 

re
qu

ire
m

en
ts

=1
=10
=10000
=

Figure 1: The regret performance and the violation of fairness under
CMF with different α.

are uniformly chosen between [0,1]. For each arm, the actual
rewards in all rounds are generated following the Pareto dis-
tribution with the order of two. We first evaluate the impact of
α on the regret performance as well as the overall violation of
the fairness for each arm. To be specific, we simulate our pro-
posed CMF with α = {1, 100, 10000,∞} and illustrate the
results in Fig. 1. It shows that, the regret performance does
not very much under different values of α. By contrast, the
choice of α has a heavy impact on the violation of the fairness
and α = ∞ yields the best result. As such, we choose α to
be∞ in the following evaluations.

To demonstrate the efficiency of CMF, we also compare
CMF with two representative baselines. In particular, we
implement the LFG scheme proposed by [Li et al., 2019].
In addition, we also implement the LP method designed by
[Agrawal and Devanurr, 2014]. The LP method solves a re-
laxed linear programming problem which maximizes the total
reward and, guarantees the selection fraction of each arm i to
be no smaller than ξi in each round. Fig. 2 shows that CMF
performs similar to the LP method and are much better than
LFG in terms of the time-average regret. Moreover, one can
also note from Fig. 2 that, CMF achieves a much smaller vio-
lation of fairness when compared to both the LP method and
the LFG scheme. In particular, the violation within T rounds
under CMF is only half of that under the LP method. The key
reason behind this is that, CMF can optimize the long-term
performance via applying the OCO techniques, whereas the
LP method only focuses on the performance in each round.
As discussed in Section 2, CMF is also much more computa-
tionally efficient than the LP method since the latter needs to
solve a linear program in each round.

6 Extensions to MAB with Knapsacks
In wireless communications, the amount of resource that can
be allocated to all clients is usually limited, e.g., the link
bandwidth and power consumption. As such, the knapsack
constraint is usually included to model the behavior of wire-
less systems [Dai et al., 2016; Ferdosian et al., 2014]. In this
section, we shall show how to generalize our fairness model
to capture knapsack constraints in the MAB setting.

In addition to the fairness constraint, we consider each arm
incurs a certain amount of resource consumption once it is
pulled. Specifically, in time slot t, arm i consumes an amount
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Figure 2: The comparison between different algorithms in terms of
the regret and violation of fairness.

of ci(t) resources when it is pulled. Similar to the random
reward, ci(t) is also i.i.d. distributed from some underlying
distribution, i.e., E[ci(t)] = ci for all i, t, and ci(t) reveals
only after arm i is pulled in time t. Furthermore, there is a re-
source capacity B that specifies the total amount of resource
that can be consumed by all arms within T rounds, i.e.,

T∑
t=1

N∑
i=1

xi(t) · ci(t) ≤ B. (21)

Eq. (21) is treated as the knapsack constraint [Badanidiyuru
et al., 2018], and the MAB problem now becomes:

max
{x(t)}

f
( T∑
t=1

x(t) · r(t)/T
)

(OPT2)

such that Eq. (3), (5), (21) are satisfied.

By contrast, the benchmark tries to seek an optimal solution
to the following optimization problem:

max
{x(t)∈[0,1]}

f(
T∑
t=1

N∑
i=1

xi(t)µi/T ) (OPT3)

such that
T∑
t=1

N∑
i=1

xi(t) · ci ≤ B, and Eq. (5) is satisfied.

Comparing to the online solution in OPT2, the resource con-
sumption of each arm in the solution to OPT3 is a constant
across different rounds.

6.1 Algorithm Design for MAB with Knapsacks
In each round, we need to first make an estimation on the
resource consumption of each arm. Similarly, we apply UCB
bound to conduct the estimation of ci. Let ĉti denotes the
estimation of ci in round t, then ĉti is given by:

ĉti = max

{
0, cti − 2rad

(
cti,

t−1∑
τ=1

xi(τ) + 1
)}

, (22)

where cti =
∑t−1
τ=1 ci(τ)∑t−1

τ=1 xi(τ)+1
. Paralleling Eq. (9), we proceed to

construct a compact set to ensure the feasibility of the knap-

sack constraint with ĉti:

Ω(t) =

{
x ∈ RN : 0 ≤ x ≤ 1 and

N∑
i=1

xiĉti ≤ B/T.

}
(23)

It is worth noting that Ω(t) is time varying and it depends
on the estimation of ci in round t, i.e., ĉti. With Ω(t), the
selection algorithm updates x(t) as follows:

x(t) = ΠΩ(t)

(
x(t− 1)− α · ∇xLt(x,Q(t))

)
, (24)

where Lt and Q(t) are determined by Eq. (11) and (13) re-
spectively. Following the update ofx(t), we round xi(t) to an
integer solution Yi(t) by applying a simple random sampling
scheme instead of the RRS scheme:

Yi(t) =

{
1, with prob. xi(t),
0, with prob. (1− xi(t)). (25)

In each round t, arm i is pulled if and only if Yi(t) = 1.
Towards that end, we design a new algorithm called Combi-
national Multi-arm Selection Algorithm with Fairness Guar-
antees and Knapsack constraints (CMFK).

6.2 Performance Guarantee for CMFK
We show in the sequel that, CMFK can yield a sublinear re-
gret while guaranteeing a small violation for both the fairness
and knapsack constraints.
Theorem 3. When f is a L-Lipschitz function, by choosing
V =

√
T and α = ∞, with prob. (1 − δ), the fairness con-

straint under the CMFK Algorithm is satisfied asymptotically,
i.e., ∑T

t=1 Yi(t)

T
− ξi ≥ −

BL

cminφ
√
T 3
, ∀i, (26)

where cmin = mini∈{1,2,...,N} ci and φ =
B/T−

∑N
i=1 ξi·ci∑N

i=1 ci
.

The resource capacity is violated by at most:
T∑
t=1

N∑
i=1

Yi(t)ci(t)−B ≤ O
(√

NB ln
NT

δ

)
+O

(
N ln

NT

δ

)
.

(27)
Moreover, the regret defined in (7) is upper bounded by:

RegT ≤ O
(
LN

√
T ln

NT

δ

)
. (28)

7 Conclusions and Future Works
In this paper, we make the first attempt to study the combina-
torial MAB problem with concave objective and fairness con-
straints. To tackle the challenges introduced by the concave
objective and design computationally efficient algorithm, we
have presented a novel solution approach by combining on-
line convex optimization techniques with bandit method. Our
algorithms can achieve a sublinear regret bound and show
better performance than the baselines. Extensions of this
work to other MAB problems with multi-dimensional knap-
sack constraints, are the next steps toward designing more
general bandit algorithms with tight regret bounds. Moreover,
applying the online convex optimization approach to the con-
textual MAB problems [Agrawal and Devanur, 2016] may
also be an interesting future research direction.
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