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Abstract
A standard Variational Autoencoder, with a Eu-
clidean latent space, is structurally incapable of
capturing topological properties of certain datasets.
To remove topological obstructions, we introduce
Diffusion Variational Autoencoders (∆VAE) with
arbitrary (closed) manifolds as a latent space. A
Diffusion Variational Autoencoder uses transition
kernels of Brownian motion on the manifold. In
particular, it uses properties of the Brownian mo-
tion to implement the reparametrization trick and
fast approximations to the KL divergence. We
show that the ∆VAE is indeed capable of captur-
ing topological properties for datasets with a known
underlying latent structure derived from generative
processes such as rotations and translations.

1 Introduction
A large part of unsupervised learning is devoted to the ex-
traction of meaningful latent factors that explain a certain
dataset. The terminology around Variational Autoencoders
(VAEs) [Kingma and Welling, 2014; Rezende et al., 2014]
suggests that they are a good tool for this task: they encode
datapoints in a space that is called latent space. Purely based
on this terminology, one could be tempted to think of ele-
ments in this space as latent variables, but is this interpreta-
tion warranted?

Part of the interpretation as latent space is warranted by
the loss function of the Variational Autoencoder, which stim-
ulates a continuous dependence between the latent variables
and the corresponding data points. Close-by points in data
space should also be close-by in latent space. This suggests
that a Variational Autoencoder could capture topological and
geometrical properties of a dataset.

However, a standard Variational Autoencoder (with a Eu-
clidean latent space) is at times structurally incapable of accu-
rately capturing topological properties of a dataset. Take for
example the case of a spinning object placed on a turntable
and being recorded by a camera from a fixed position. The
dataset for this example is the collection of all frames. The
true latent factor is the angle of the turntable. However, the
space of angles is topologically and geometrically different
from Euclidean space. In an extreme example, if we train a

Variational Autoencoder with a one-dimensional latent space
on the pictures from the object on the turntable, there will be
pictures taken from almost the same angle ending up very far
away from each other in latent space.

This phenomenon has been called manifold mismatch
[Davidson et al., 2018; Falorsi et al., 2018]. To match the
latent space with the data structure, Davidson et al. [2018]
implemented spheres as latent spaces, whereas Falorsi et al.
[2018] implemented the special orthogonal group SO(3) .

As further examples of datasets with topologically nontriv-
ial latent factors, we can think of many translations of the
same periodic picture, where the translation is the latent vari-
able, or many pictures of the same object which has been
rotated arbitrarily. In these cases, there are still clear latent
variables, but their topological and geometrical structure is
neither that of Euclidean space nor that of a sphere, but rather
that of a torus and that of the SO(3) respectively.

To address the problem of manifold mismatch, we devel-
oped the Diffusion Variational Autoencoder (∆VAE) which
in principle allows for an arbitrary closed manifold as a la-
tent space. Our implementation includes a version of the
reparametrization trick, and a fast approximation of the KL
divergence in the loss.

We provide empirical results that show that the ∆VAE is

Figure 1: Latent space and reconstruction images for a ∆VAE with
S1 as latent space trained on the rendered images of a 3d model of
a rotating airplane. The ∆VAE manages to capture the underlying
geometrical structure.
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capable of retrieving the underlying geometrical structure of a
dataset consisting of rendered images of a spinning 3d model
(Fig. 1) and translations of a picture (Fig. 4).

2 Related Work
Our work originated out of the search for algorithms that
find semantically meaningful latent factors of data. Certainly,
there is a heuristic argument for the use of VAEs for this
purpose. The starting point and guiding principle is that of
Occam’s razor, that such latent factors might arise from the
construction of simple, low-complexity models that explain
the data [Portegies, 2018]. Strict formalizations of Occam’s
razor exist, through Kolmogorov complexity and inductive
inference [Solomonoff, 1964; Schmidhuber, 1997], but are
often computationally intractable. A more practical approach
leads to the principle of minimum description length [Rissa-
nen, 1978; Hinton and Zemel, 1994] and variational inference
[Honkela and Valpola, 2004].

The use of VAEs and their extensions to this end has
mostly taken place in the context of disentanglement of la-
tent factors [Higgins et al., 2017; Higgins et al., 2018;
Burgess et al., 2018]. Examples of extensions that aim at dis-
entangling latent factors are the β-VAE [Higgins et al., 2017],
the factor-VAE [Kim and Mnih, 2018], the β-TCVAE [Chen
et al., 2018] and the DIP-VAE [Kumar et al., 2018].

However, the examples in the introduction already show
that in some situations, the topological structure of the la-
tent space makes it practically impossible to disentangle la-
tent factors. The latent factors are inherently, topologically
entangled: in the case of a 3d rotation of an object, one can-
not assign globally linearly independent angles of rotation.

Still, it is exactly global topological properties that we
feel a VAE has a chance of capturing. What do we mean
by this? One instance of ‘capturing’ topological structure
is when the encoder and decoder of the VAE provide bijec-
tive, continuous maps between data and latent space, also
called homeomorphic auto-encoding [Falorsi et al., 2018;
de Haan and Falorsi, 2018]. This can only be done when the
latent space has a particular topological structure, for instance
that of a particular manifold.

We can also ask for more, that besides topological struc-
ture also geometric structure is captured. In that case, we
require that distances in latent space carry some important
meaning, for instance that distances in latent space are close
to distances in data space, or to distances between ground-
truth latent variables in case they are known. Tosi et al. [2014]
and Arvanitidis et al. [2018] take a related, but different point
of view. They do not consider a standard metric or prede-
termined metric on latent space, but rather determine a Rie-
mannian (pullback) metric that by construction reflects the
distances in data space.

One of the main challenges when implementing a mani-
fold as a latent space is the design of the reparametrization
trick. In [Mathieu et al., 2019; Nagano et al., 2019] a VAE
with a hyperbolic and in [Davidson et al., 2018] a VAE with
a hyperspherical latent space were implemented. To our un-
derstanding, in the hyperspherical VAE they implemented a
reparametrization function which was discontinuous.

If a manifold has the additional structure of a Lie group,
this structure allows for a more straightforward implementa-
tion of the reparametrization trick [Falorsi et al., 2018]. In
our work, we do not assume the additional structure of a
Lie group, but develop a reparametrization trick that works
for general submanifolds of Euclidean space, and therefore
by the Whitney (respectively Nash) embedding theorem, for
general closed (Riemannian) manifolds.

The method that we use has similarities with the approach
of Hamiltonian Variational Inference [Salimans et al., 2015].
Moreover, the implementation of a manifold as a latent space
can be seen as enabling a particular, informative, prior dis-
tribution. In that sense, our work relates to [Dilokthanakul
et al., 2016; Tomczak and Welling, 2017]. The prior distri-
bution we implement is degenerate, in that it does not assign
mass to points outside of the manifold.

There are also other ways to implement approximate
Bayesian inference on Riemannian manifolds. For instance,
Liu and Zhu adapted the Stein variational gradient method
to enable training on a Riemannian manifold [Liu and Zhu,
2017]. However, this method is computationally expensive.

Finally, while manifold-learning methods such as LLE
[Roweis, 2000], isomap [Tenenbaum et al., 2000] and dif-
fusion maps [Coifman and Lafon, 2006] all successfully em-
bed datasets in low-dimensional space while approximately
preserving distances, they typically do not allow for direct
extraction of latent variables, because one would still need to
identify the position of the embedding in ambient space and
the manifold structure of the embedding. In addition, many of
these methods do not have an explicit inverse map, a decoder,
making them unsuitable for data generation.

3 Methods
A VAE has generally the following ingredients:
• a prior probability distribution PZ on a latent space Z,
• a family of encoder distributions QαZ on Z, parametrized

by α in a parameter space A,
• an encoder neural network α which maps from data

space X to the parameter space A,

• a family of decoder distributions PβX on data space X ,
parametrized by β in a parameter space B,
• a decoder neural network β which maps from latent

space Z to parameter space B.
The neural network weights are optimized to minimize the

negated evidence lower bound (ELBO)

L(x) = −E
z∼Qα(x)

Z

[
log p

β(z)
X (x)

]
+DKL

(
Qα(x)
Z ||PZ

)
.

The first term is called reconstruction error (RE), the second
term is called the KL-loss.

In a very common implementation, both latent space Z and
data space X are Euclidean, and the families of decoder and
encoder distributions are multivariate Gaussian. The encoder
and decoder networks then assign to a datapoint or a latent
variable a mean and a variance respectively.

When we implementZ as a Riemannian manifold, we need
to find (i) an appropriate prior distribution, for which we will
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Figure 2: Random walk on a (one-dimensional) submanifold Z of
R2, with time step τ = 1.

choose the normalized Riemannian volume measure, (ii) a
family of encoder distributions QαZ , for which we will take
transition kernels of Brownian motion, and (iii) an encoder
network mapping to the correct parameters.

3.1 Brownian motion on a Riemannian manifold
We will briefly discuss Brownian motion on a Riemannian
manifold, recommending lecture notes by Hsu [2008] as a
more extensive introduction. In the paper, we always assume
that Z is a smooth Riemannian submanifold of Euclidean
space, which is closed, i.e. it is compact and has no boundary.
There are many different, equivalent definitions of Brownian
motion. We present here the definition that is closest to our
eventual approximation and implementation.

We will construct Brownian motion out of random walks
on a manifold. We first fix a small time step τ > 0. We
will imagine a particle, jumping from point to point on the
manifold after each time step, see also Fig. 2. It will start
off at a point z ∈ Z. We describe the first jump, after
which the process just repeats. After time τ , the particle
makes a random jump

√
τε1 from its current position, into

the surrounding space, where ε1 is distributed according to
a radially symmetric distribution in Rn with identity covari-
ance matrix. The position of the particle after the jump,
z +
√
τε1, will therefore in general not be on the manifold,

so we project the particle back: The particle’s new position
will be z1 = P (z+

√
τε1) where the closest-point-projection

P : Rn → Z assigns to every point x ∈ Rn the point in
Z that is closest to x. After another time τ > 0 the parti-
cle makes a new, independent, jump ε2 according to the same
radially symmetric distribution, and its new position will be
z2 = P (P (z +

√
τε1) +

√
τε2). This process just repeats.

Key to this construction, and also to our implementation,
is the projection map P . It has nice properties, that follow
from general theory of smooth manifolds. In particular, P (x)
smoothly depends on x, as long as x is not too far away from
Z. The description of the manifolds and projections P used
in this work is given in Table 1.

An implementation of a ∆VAE for an arbitrary closed man-
ifold is easily achieved if the manifold is represented in gen-
eralized submanifold-coordinates of Euclidean space: If Z
is a d-dimensional smooth closed Riemannian submanifold
of Euclidean space Rn, one can always find a finite num-
ber of open sets Ui ⊂ Rn and a finite set of generalized
submanifold-coordinates φi : Rn ⊃ Ui → Rn such that

φi(Ui ∩ Z) ⊂ {x ∈ Rn| xd+1 = · · · = xn = 0} and

φi(P (φ−1
i (x1, . . . , xn)) = (x1, . . . , xd, 0 . . . , 0)

for all (x1, . . . , xn) ∈ φi(Ui).
This gives an easy expression for the projection P which

can be implemented with a partition of unity. Moreover, the
scalar curvature can be computed from the functions φi in a
standard way.

For τ > 0 fixed, we have constructed a random walk, a
random path on the manifold. We can think of this path as
a discretized version of Brownian motion. Let now τS be a
sequence converging to 0 as S → ∞. For fixed S ∈ N,
we can construct a random walk with time step τS , and get a
random path WS : [0,∞)→ Z.

The random paths WS converge as S → ∞ to a ran-
dom path W (in distribution). This random path W is called
Brownian motion. The convergence statement can be made
precise by for instance combining powerful, general results
by [Jørgensen, 1975] with standard facts from Riemannian
geometry. But, because Riemannian manifolds are locally,
i.e. when you zoom in far enough, very similar to Euclidean
space, the convergence result essentially comes down to the
central limit theorem and its upgraded version, Donsker’s in-
variance theorem.

In fact, W can be interpreted as a Markov process, and
even as a diffusion process. If A is a subset of Z, the prob-
ability that the Brownian motion W (t) started at z is in the
set A at time t is measured by a probability measure Qt,zZ ap-
plied to the set A. We denote the density of this measure with
respect to the standard Riemannian volume measure Vol by
qZ(t; z, ·). The function qZ is sometimes referred to as the
heat kernel.

3.2 Riemannian manifold as latent space
A ∆VAE is a VAE with a Riemannian submanifold of Eu-
clidean space as a latent space, and the transition probability
measures of Brownian motion Qt,zZ as a parametric family of
encoder distributions. We propose the uniform distribution
for PZ , which is the normalized standard measure on a Rie-
mannian manifold (although the choice of prior distribution
could easily be generalized).

As in the standard VAE, we then implement functions z :
X → Z and t : X → (0,∞) as neural networks.

We optimize the weights in the network, aiming to mini-
mize the average loss for the loss function

−E
z∼Qt(x),z(x)

Z

[
log p

β(z)
X (x)

]
+DKL

(
Qt(x),z(x)
Z ‖PZ

)
.

The first integral can often only be approached by sampling,
and in that case it is often advantageous to perform a change
of variables, commonly known as the reparametrization trick
[Kingma and Welling, 2014].

Approximate Reparametrization by Random Walk
We construct an approximate reparametrization map by ap-
proximating Brownian motion by a random walk. For a given
datapoint x, starting from the estimated location parameter
z(x) on the manifold Z, we set a random step in ambient
space Rn with properly scaled length. We then project back
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(a) SO(3) ∼= RP3 (b) Torus (c) S2 (d) RP2 (e) Flat torus

Figure 3: Latent space representation of MNIST for several manifolds, each color represents the digit value. The projective spaces are
represented by a 3- and 2-dimensional ball respectively, for which every point on the boundary is identified with its antipode. The effect of
this identification can be seen, since the same digits that map close to a point on the boundary also map close to the reflected point.

MANIFOLD PROJECTION (P ) P (x) SCALAR CURVATURE (SC)

FLAT TORUS P : R4 7→ S1 × S1 Q4x
‖Q4x‖

+ (I−Q4)x
‖(I−Q4)x‖

0
EMBEDDED TORUS P : R3 7→ S1 × S1 a x−xc

‖x−xc‖ + xc
2(‖Q3x‖−c)

a2‖Q3x‖
Sd P : Rd+1 7→ Sd x

‖x‖ d(d− 1)

SO(3) P : R3×3 7→ SO(3) det(U(x)V T (x))(U(x)V T (x))) 3

Table 1: Manifold and the corresponding projection map P , its domain, codomain, and its scalar curvature (Sc). The map Qd : Rd → R2

denotes the orthogonal projection to the first two coordinates. For the embedded torus, the parameter a and c correspond to the tube radius
and the loop radius respectively. Additionally, xc = c Q3x

‖Q3x‖
. The functions U : R3×3 7→ R3×3 and V T : R3×3 7→ R3×3 correspond to the

orthogonal matrices obtained from the singular value decomposition of a 3× 3 matrix x = UΣV T .

to the manifold using the projection function P and repeat. In
total, we take S steps, see Fig. 2.

We define the function g : ES × (0,∞)× Z → Z by

g(ε1, . . . , εS , t(x), z(x)) =

P

(
..P

(
P

(
z(x) +

√
t(x)
S ε1

)
+

√
t(x)
S ε2

)
..+

√
t(x)
S εS

)
.

If we take ε1, . . . , εS as i.i.d. random variables, dis-
tributed according to a radially symmetric distribution, then
g(ε1, . . . , εS , t(x), z(x)) is approximately distributed as a
random variable with distribution Qt(x),z(x)Z . The computa-
tional complexity of the sampling is linear in S. Yet the ap-
proximation is very accurate for small value of t(x), even for
small values of S, if we take ε1, . . . , εS approximately Gaus-
sian. We have set S = 10 throughout the presented results.

Approximation of the KL-divergence
Unlike the standard VAE, or the hyperspherical VAE with the
Von-Mises distribution, the KL-term cannot be computed ex-
actly for the ∆VAE. By a parametrix expansion cf. [Berger et
al., 1971], we can nonetheless achieve a good approximation.

Proposition 1. The KL divergence follows the following for-
mal asymptotic expansion, where d is the dimensionality of
Z, and Sc is the scalar curvature of the manifold Z in z.

DKL(Qt,z‖PZ) =∫
Z

qZ(t; z, y) log qZ(t; z, y)dy + log Vol(Z) =

− d

2
log(2πt)− d

2
+ log Vol(Z) +

1

4
Sc t+ o(t).

Besides the asymptotic approximation, one may also
choose to approximate the heat kernel numerically or use
Monte Carlo approximation.

4 Experiments
We have implemented 1 ∆VAEs with latent spaces of d-
dimensional spheres, a flat two-dimensional torus, a torus em-
bedded in R3, the SO(3) and real projective spaces RPd .

For all our experiments we used multi-layer perceptrons
for the encoder and decoder with three and two hidden layers
respectively. Recall that the encoder needs to produce both
a point z on the manifold and a time t for the transition ker-
nel. These functions share all layers, except for the final step
where we project, with the projection map P , from the last
hidden layer to the manifold to get z, and use an output layer
with a tanh activation function to obtain 10−7 ≤ t ≤ 10−5.

The encoder and decoder are connected by a sampling
layer, in which we approximate sampling from the transition
kernel of Brownian motion according to the reparametriza-
tion trick described in Section 3.2.

4.1 ∆VAEs for MNIST
Mainly as a first test of our algorithm, we trained ∆VAEs on
binarized MNIST [Salakhutdinov and Murray, 2008]. Fig. 3
shows the encoded digits for different manifolds.

For training the projective spaces, we embedded Sd in
Rd+1, and make the decoder neural network even by con-
struction (i.e. the decoder applied to a point s on the sphere

1https://github.com/luis-armando-perez-rey/diffusion vae
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(a) Color scheme true fac-
tors

(b) Training data examples

(c) Embeddings in flat
torus (d) Embeddings in S2

Figure 4: a) Colors used to represent the horizontal and vertical
translations of the training dataset. The boundary conditions of the
scheme are periodic. b) Examples of airplane images translated ver-
tically and horizontally used during training. c) Image embeddings
encoded in a flat torus by a ∆VAE, the boundary is periodic. d)
Image embeddings encoded in a sphere S2 by a ∆VAE.

equals the decoder applied to −s). Then, an encoder and de-
coder to and from the RP3 are defined implicitly. However, it
must be noted that this setup does not allow for a homeomor-
phic encoding (because RPd does not embed in Sd).

The numerically computed ELBO, reconstruction error,
KL-divergence and the estimated log-likelihood are shown in
Table 2 for a test dataset of the binarized MNIST. We pro-
vide a comparison with the values in [Davidson et al., 2018]
trained on a spherical latent space S2 with a uniform prior.
Additionally we present the results in [Figurnov et al., 2018]
trained on a latent space consisting of two circular indepen-
dent latent variables with a uniform prior, which can be di-
rectly compared to the ∆VAE with a flat torus latent space.

The ∆VAE achieves similar log-likelihood estimates with
respect to the results on S2 from [Davidson et al., 2018].
On the other hand, the results for the ∆VAE trained on a
flat torus have a lower log-likelihood compared to the results
from [Figurnov et al., 2018] (higher values are better).

Estimation of log-likelihood.
For the evaluation of the proposed methods we have esti-
mated the log-likelihood of the test dataset according to the
importance sampling presented in [Burda et al., 2016]. The
approximate log-likelihood of a datapoint x is calculated by
sampling M latent variables z(1), . . . , z(M) according to the
approximate posterior Qt(x),z(x)

Z and is given by the formula

log pβX(x) ≈ log

(
1

M

M∑
m=1

p
β(z(m))
X (x)pZ(z(m))

qZ(t(x); z(x), z(m))

)
.

The estimates in Table 2 are obtained with M = 1000 sam-
ples for each datapoint, averaged over all datapoints.

Distance Distortion Measure
In order to measure how the ∆VAE manages to capture the
geometry of the dataset, we will measure the distance distor-
tion of the encodings with respect to the true latent factors
that generated the data.

Let z∗i represent the i-th true latent factor that generated the
i-th datapoint xi from a dataset of N images, for instance the
rotation angle. The distortion of distance will be measured by

min
A

2

N(N − 1)

∑
i<j

(
d(z∗i , z

∗
j )−A d(z(xi), z(xj))

)2
.

The optimization overA takes into account any possible scal-
ing of the embeddings. The distance function d corresponds
to the geodesic distance in the corresponding space for both,
the embeddings and the true latent factors. Lower is better.

4.2 Periodic Translation of Pictures
To test whether a ∆VAE can capture topological properties,
we trained it on a synthetic dataset consisting of horizontal
and vertical translations of a picture of an airplane subject to
periodic boundaries. This example illustrates the capabilities
of the ∆VAE to extract the underlying toroidal structure in
more natural images as shown in Fig. 4.

We show the numerical comparison of the trained ∆VAE
for different manifolds in Table 3. Notice that even though
the LL, ELBO, KL and RE values are very similar among
manifolds, the distance distortion measure between the true
factors and the embeddings is an order of magnitude smaller
for the ∆VAE trained with a flat torus as latent space com-
pared to Euclidean or a spherical latent space.

The fact that Fig. 4c is practically a reflection and trans-
lation of the legend in Fig. 4a, shows that there is an almost
isometric correspondence between the translation of the orig-
inal picture and the encoded latent variable.

We contrast this to when we train the same dataset on a
∆VAE with a sphere as a latent space. Fig. 4d displays typical
results, showing that large parts of the sphere are not covered
with a discontinuity in the embeddings.

4.3 Object Rotation
We have investigated the capabilities of the ∆VAE in captur-
ing the underlying topological structure for a synthetic dataset
consisting of rendered images from a 3d model of an airplane
within the ModelNet dataset [Wu et al., 2014] . The images
consists of gray-scale renders of 64× 64 pixels, showing the
3d model centered in a frame of reference and rotated around
the z-axis. The angle of rotation for each image is chosen
from a regular partition of the interval [−π, π).

Fig. 1 shows the latent variables of a ∆VAE trained with S1

as latent space and 100 rendered images. The color encoding
represents the true angles at which each image was generated.
It is important to note that the ∆VAE is capable of identifying
in an unsupervised manner the topological and geometrical
structure associated to the object’s orientation.

We present in Table 3 the numerical results for the trained
∆VAE with S1 as latent space compared to the standard VAE
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MANIFOLD LL ELBO KL RE

S2 -132.20±0.39 -134.67±0.47 7.23±0.05 -127.44±0.47
EMBEDDED TORUS -132.79±0.53 -137.37±0.59 9.14±0.18 -128.23±0.67

FLAT TORUS -131.73±0.69 -139.97±0.78 12.91±0.08 -127.07±0.81
RP3 -125.27±0.37 -128.17±0.58 9.38±0.12 -118.79±0.60
RP2 -135.87±0.66 -138.13±0.72 7.02±0.12 -131.11±0.73
R3 -124.71±0.93 -128.01±1.05 9.12±0.09 -118.89±1.01
R2 -134.17±0.53 -136.61±0.64 7.05±0.06 -129.56±0.63

S2 [DAVIDSON et al., 2018] -132.50±0.83 -133.72±0.85 7.28±0.14 -126.43±0.91
FLAT TORUS[FIGURNOV et al., 2018] -127.60±0.40 - - -

Table 2: Numerical results for ∆VAEs trained on binarized MNIST. The values indicate mean and standard deviation over 10 runs. The
columns represent the (data-averaged) log-likelihood estimate (LL), Evidence Lower Bound (ELBO), KL-divergence (KL) and reconstruction
error (RE) evaluated on the test data. For comparison we present results for S2 and flat torus as reported in previous work.

MANIFOLD LL ELBO KL RE DISTORTION

PERIODIC TRANSLATION OF PICTURES

FLAT TORUS −14765.19± 6.72 −15120.95± 6.9 8.81± 0.2 15112.14± 7.04 0.073± 0.0022
R2 −14769.32± 7.07 −15129.63± 6.96 6.35± 0.31 15123.28± 7.24 1.0172± 0.0811
R4 −14765.45± 5.24 −15126.68± 5.14 7.77± 0.12 15118.91± 5.14 0.3076± 0.1117
S2 −14767.94± 2.37 −15120.97± 2.46 5.70± 0.23 15115.27± 2.40 0.5109± 0.0151

OBJECT ROTATION

S1 −11295.57± 0.87 −11297.16± 1.81 2.03± 0.39 11295.13± 2.21 0.0057± 0.0041
R2 −11294.77± 0.19 −11299.57± 0.25 5.41± 0.15 11294.16± 0.32 0.8485± 0.0511
R3 −11294.83± 0.05 −11299.60± 0.07 5.86± 0.13 11293.74± 0.11 0.7394± 0.0498

Table 3: Numerical results for the ∆VAE trained on the periodic translation of picture and on the object rotation datasets. The values indicate
the mean and standard deviation over 10 runs. The columns represent the (data-averaged) log-likelihood estimate (LL), Evidence Lower
Bound (ELBO), KL-divergence (KL), reconstruction error (RE) and the distance distortion metric.

with Euclidean latent space. Once again the results for the
LL, KL and RE do not differ significantly across different
manifolds. In contrast, the results for the distance distortion
differ by two orders of magnitude for the S1 with respect to
the Euclidean latent space VAEs showing that the latent struc-
ture is better preserved by using the appropriate manifold.

We compared to results obtained after projecting embed-
dings by standard manifold-learning algorithms onto the de-
sired manifold in Table 4. The isomap method achieves low-
est distortion, but its success is dependent on the right choice
of orientation of the torus in latent space: projecting on a ro-
tated torus gives a much worse result. This illustrates why
out-of-the-box manifold-learning algorithms do not directly
capture latent variables: the relevant manifold structure in the
embedded space still needs to be identified.

TECHNIQUE TRANSLATION ROTATION

LLE 0.5670 0.0528
ISOMAP 0.0075 0.0014

DIFFUSION MAP 0.8348 0.0115

Table 4: The distortion metric obtained after projecting the results
of Locally Linear Embedding (LLE), isomap and the diffusion maps
to the flat torus (for translation) and the circle (for rotation).

5 Conclusion
We developed and implemented Diffusion Variational Au-
toencoders, which allow for arbitrary manifolds as a latent
space. Our original motivation was to investigate to which ex-
tent VAEs find semantically meaningful latent variables, and
more specifically, whether they can capture topological and
geometrical structure in datasets. By allowing for an arbitrary
manifold as a latent space, ∆VAEs can remove obstructions
to capturing such structure.

Indeed, our experiments with translations of periodic im-
ages and rotations of objects show that a simple implementa-
tion of a ∆VAE with the appropriate manifold as latent space
is capable of capturing topological properties. We see this as
important steps towards algorithms that capture semantically
meaningful latent variables.
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