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Abstract

Deep neural networks have gained great success
in a broad range of tasks due to its remarkable
capability to learn semantically rich features from
high-dimensional data. However, they often require
large-scale labelled data to successfully learn such
features, which significantly hinders their adaption
in unsupervised learning tasks, such as anomaly
detection and clustering, and limits their applica-
tions to critical domains where obtaining massive
labelled data is prohibitively expensive. To en-
able unsupervised learning on those domains, in
this work we propose to learn features without us-
ing any labelled data by training neural networks
to predict data distances in a randomly projected
space. Random mapping is a theoretically proven
approach to obtain approximately preserved dis-
tances. To well predict these distances, the repre-
sentation learner is optimised to learn genuine class
structures that are implicitly embedded in the ran-
domly projected space. Empirical results on 19
real-world datasets show that our learned represen-
tations substantially outperform a few state-of-the-
art methods for both anomaly detection and cluster-
ing tasks. Code is available at: https://git.io/
RDP

1 Introduction
Unsupervised representation learning aims to automatically
extract expressive feature representations from data without
any labelled data. Due to the remarkable capability to learn
semantically rich features, deep neural networks have been
becoming one widely-used technique to empower a broad
range of machine learning tasks. One main issue with these
deep learning techniques is that a massive amount of la-
belled data is typically required to successfully learn these
expressive features. As a result, their transformation power
is largely reduced for tasks that are unsupervised in nature,
such as anomaly detection and clustering. This is also true
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to critical domains, such as healthcare and fintech, where col-
lecting massive labelled data is prohibitively expensive and/or
is impossible to scale. To bridge this gap, in this work we ex-
plore fully unsupervised representation learning techniques to
enable downstream unsupervised learning methods on those
critical domains.

In recent years, many unsupervised representation learn-
ing methods [Mikolov et al., 2013; Le and Mikolov, 2014;
Misra et al., 2016; Lee et al., 2017; Gidaris et al., 2018]
have been introduced, of which most are self-supervised ap-
proaches that formulate the problem as an annotation free
pretext task. These methods explore easily accessible in-
formation, such as temporal or spatial neighbourhood, to
design a surrogate supervisory signal to empower the fea-
ture learning. These methods have achieved significantly
improved feature representations of text/image/video data.
But they are often inapplicable to tabular data since it does
not contain the required temporal or spatial supervisory
information. We therefore focus on unsupervised repre-
sentation learning of high-dimensional tabular data. Al-
though many approaches, such as random projection [Li et
al., 2006], manifold learning [Donoho and Grimes, 2003;
Hinton and Roweis, 2003] and autoencoder [Vincent et al.,
2010], are readily available for handling those data, many of
them [Donoho and Grimes, 2003; Hinton and Roweis, 2003;
Rahmani and Atia, 2017] are often too computationally costly
to scale up to large or high-dimensional data. Approaches
like random projection and autoencoder are very efficient but
they often fail to capture complex class structures due to its
underlying data assumption or weak supervisory signal.

In this paper, we introduce a Random Distance Prediction
(RDP) model which trains neural networks to predict data
distances in a randomly projected space. Particularly, as dis-
tances generally carry intrinsic class structure information in
the data, the representation learner is optimised to learn the
class structure to minimise the prediction error. We seek to
obtain distances preserved in a projected space to be the su-
pervisory signal because distances are concentrated and be-
come meaningless in high dimensional spaces [Beyer et al.,
1999]. Random mapping is a highly efficient yet theoretical
proven approach to obtain such approximately preserved dis-
tances. Therefore, we leverage the distances in the randomly
projected space to learn the desired features. Intuitively, ran-
dom mapping preserves rich local proximity information but
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may also keep misleading proximity when its underlying data
distribution assumption is inexact; by minimising the random
distance prediction error, RDP essentially leverages the pre-
served data proximity and the power of neural networks to
learn globally consistent proximity and rectify the inconsis-
tent proximity information, resulting in a substantially better
representation space than the original space. We show that
this simple random distance prediction enables us to achieve
expressive representations without using labelled data. In ad-
dition, some task-dependent auxiliary losses can be option-
ally added as a complementary supervisory source to the ran-
dom distance prediction, so as to learn the feature representa-
tions that are more tailored to a specific task. In summary, we
make the following three main contributions.

• We propose a random distance prediction formulation,
which is very simple yet offers a highly effective super-
visory signal for learning expressive feature represen-
tations that optimise the distance preserving in random
projection. The learned features are sufficiently generic
and work well for downstream prediction tasks.
• Our formulation is flexible to incorporate task-

dependent auxiliary losses that are complementary to
random distance prediction to further enhance the
learned features, i.e., features that are specifically op-
timised for a downstream task while at the same time
preserving the generic proximity as much as possible.
• As a result, we show that our instantiated model termed

RDP achieves substantially better performance than
state-of-the-art competing methods in two key unsuper-
vised tasks, anomaly detection and clustering.

2 Random Distance Prediction Model
The Proposed Formulation and The Instantiated Model
We propose to learn representations by training neural net-
works to predict distances in a randomly projected space
without manually labelled data. The key intuition is that,
given some distance information that faithfully encapsulates
the underlying class structure in the data, the representation
learner is forced to learn the class structure in order to yield
distances that are as close as the given distances. Our pro-
posed framework is illustrated in Figure 1. Specifically, given
data points xi,x j ∈ RD, we first feed them into a weight-
shared Siamese-style neural network φ(x;Θ). φ : RD 7→ RM

is a representation learner with the parameters Θ to map the
data onto a M-dimensional new space. Then we formulate the
subsequent step as a distance prediction task and define a loss
function as:

Lrdp(xi,x j) = l(
〈
φ(xi;Θ),φ(x j;Θ)

〉
,
〈
η(xi),η(x j)

〉
), (1)

where η is an existing projection method and l is a function
of the difference between its two inputs.

Here one key ingredient is how to obtain trustworthy dis-
tances via η . Also, to efficiently optimise the model, the
distance derivation needs to be computationally efficient. In
this work, we use the inner products in a randomly projected
space as the source of distance/similarity since it is very ef-
ficient and there is strong theoretical support of its capacity
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Figure 1: The proposed random distance prediction (RDP) frame-
work. A weight-shared two-branch neural network φ first projects
xi and x j into a new space, in which we aim to minimise the
random distance prediction loss Lrdp, i.e., the difference between
the learned distance

〈
φ(xi;Θ),φ(x j;Θ)

〉
and a predefined distance〈

η(xi),η(x j)
〉

(η denotes an existing random mapping). Laux is an
auxiliary loss that is optionally applied to one network branch to
learn complementary information w.r.t. Lrdp. The lower right figure
presents a 2-D t-SNE visualisation of the features learned by RDP
on a small dataset optdigits with 10 classes.

in preserving the genuine distance information. Thus, our in-
stantiated model RDP specifies Lrdp(xi,x j) as follows1:

Lrdp(xi,x j) = (φ(xi;Θ) ·φ(x j;Θ)−η(xi) ·η(x j))
2 , (2)

where φ is implemented by multilayer perceptron for dealing
with tabular data and η : RD 7→RK is an off-the-shelf random
data mapping function (see Sections 3.1 and 3.2 for detail).
Despite its simplicity, this loss offers a powerful supervisory
signal to learn semantically rich feature representations that
substantially optimise the underlying distance preserving in
η (see Section 3.3 for detail).

Flexibility to Incorporate Task-dependent Complemen-
tary Auxiliary Loss Minimising Lrdp learns to preserve
pairwise distances that are critical to different learning tasks.
Moreover, our formulation is flexible to incorporate a task-
dependent auxiliary loss Laux, such as reconstruction loss
[Hinton and Salakhutdinov, 2006] for clustering or novelty
loss [Burda et al., 2019] for anomaly detection, to com-
plement the proximity information and enhance the feature
learning.

For clustering, an auxiliary reconstruction loss is used:

Lclu
aux(x) =

(
x−φ

′(φ(x;Θ);Θ
′)
)2
, (3)

where φ is an encoder and φ ′ : RM 7→ RD is a decoder. This
loss may be optionally added into RDP to better capture
global feature representations.

Similarly, in anomaly detection a novelty loss may be op-
tionally added, which is defined as:

Lad
aux(x) = (φ(x;Θ)−η(x))2 . (4)

1Since we operate on real-valued vector space, the inner product
is implemented by the dot product. The dot product is used hereafter
to simplify the notation.
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By using a fixed η , minimising Lad
aux helps learn the fre-

quency of underlying patterns in the data [Burda et al., 2019],
which is an important complementary supervisory source
for the sake of anomaly detection. As a result, anoma-
lies or novel points are expected to have substantially larger
(φ(x;Θ?)−η(x))2 than normal points, so Eqn. (4) is used to
define anomaly score for the anomaly detection task.

Note since Lad
aux involves a mean squared error between two

vectors, the dimension of the projected space resulted by φ

and η is required to be equal in this case. Therefore, when
this loss is added into RDP, the M in φ and K in η need to be
the same. We do not have this constraint in other cases.

Overall, our loss function will then be:

L = Lrdp +Laux, (5)

where Laux is Lclu
aux for clustering and Lad

aux for anomaly detec-
tion.

3 Theoretical Analysis of RDP
This section shows the proximity information can be well ap-
proximated using inner products in two types of random pro-
jection spaces. This is a key theoretical foundation to RDP.
Also, to accurately predict these distances, RDP is forced to
learn the genuine class structure in the data.

3.1 When Linear Projection Is Used
Random projection is a simple yet very effective linear fea-
ture mapping technique which has proven the capability of
distance preservation. Let X ⊂ RN×D be a set of N data
points, random projection uses a random matrix A⊂RK×D to
project the data onto a lower K-dimensional space by X ′ =
AX ᵀ. The Johnson-Lindenstrauss lemma [Johnson and Lin-
denstrauss, 1984] guarantees the data points can be mapped to
a randomly selected space of suitably lower dimension with
the distances between the points are approximately preserved.
More specifically, let ε ∈ (0, 1

2 ) and K = 20logn
ε2 . There exists

a linear mapping f : RD 7→ RK such that for all xi,x j ∈X :

(1− ε)||xi−x j||2 ≤ || f (xi)− f (x j)||2 ≤ (1+ ε)||xi−x j||2.
(6)

Furthermore, assume the entries of the matrix A are sam-
pled independently from a Gaussian distribution N (0,1).
Then, the norm of x ∈ RD can be preserved as:

Pr
(
(1− ε)||x||2 ≤ || 1√

K
Ax||2 ≤ (1+ ε)||x||2

)
≥ 1−2e

−(ε2−ε3)K
4 .

(7)

Under such random projections, the norm preservation
helps well preserve the inner products:

Pr(|x̂i · x̂ j− f (x̂i) · f (x̂ j)| ≥ ε)≤ 4e
−(ε2−ε3)K

4 , (8)

where x̂ is a normalised x such that ||x̂|| ≤ 1.
The proofs of Eqns. (6-8) can be found in [Vempala, 1998].
Eqn. (8) states that the inner products in the randomly pro-

jected space can largely preserve the inner products in the
original space, particularly when the dimension K is large.

3.2 When Non-linear Projection Is Used

Here we show that some non-linear random mapping meth-
ods are approximate to kernel functions which are a well-
established approach to obtain reliable distance/similarity in-
formation. The key to this approach is the kernel function k :
X ×X 7→R, which is defined as k(xi,x j) = 〈ψ(xi),ψ(x j)〉,
where ψ is a feature mapping function but needs not to be
explicitly defined and 〈·, ·〉 denotes a suitable inner product.
A non-linear kernel function such as polynomial or radial ba-
sis function (RBF) kernel is typically used to project linear-
inseparable data onto a linear-separable space.

The relation between non-linear random mapping and ker-
nel methods is justified in [Rahimi and Recht, 2008], which
shows that an explicit randomised mapping function g :RD 7→
RK can be defined to project the data points onto a low-
dimensional Euclidean inner product space such that the inner
products in the projected space approximate the kernel eval-
uation:

k(xi,x j) = 〈ψ(xi),ψ(x j)〉 ≈ g(xi) ·g(x j). (9)

Let A be the mapping matrix. Then to achieve the above
approximation, A is required to be drawn from Fourier trans-
form and shift-invariant functions such as cosine function
are finally applied to Ax to yield a real-valued output. By
transforming xi and x j in this manner, their inner product
g(xi) ·g(x j) is an unbiased estimator of k(xi,x j).

3.3 Learning Class Structure By Random Distance
Prediction

Our model using only the random distances as the supervisory
signal can be formulated as:

argmin
Θ

∑
xi,x j∈X

(φ(xi;Θ) ·φ(x j;Θ)− yi j)
2 , (10)

where yi j = η(xi) · η(x j). Let Yη ∈ RN×N be the dis-
tance/similarity matrix of the N data points resulted by η .
Then to minimise the prediction error in Eqn. (10), φ is opti-
mised to learn the underlying class structure embedded in Y.
As shown in the properties in Eqns. (8) and (9), Yη can effec-
tively preserve local proximity information when η is set to
be either the random projection-based f function or the kernel
method-based g function. However, those proven η is often
built upon some underlying data distribution assumption, e.g.,
Gaussian distribution in random projection or Gaussian RBF
kernel. Thus, the η-projected features can preserve mislead-
ing proximity when the distribution assumption is inexact. In
this case, Yη is equivalent to the imperfect ground truth with
partial noise. Then optimisation with Eqn. (10) is to leverage
the power of neural networks to learn consistent local proxim-
ity information and rectify inconsistent proximity, resulting in
a significantly optimised distance preserving space. The re-
sulting space conveys substantially richer semantics than the
η projected space when Yη contains sufficient genuine su-
pervision information.
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4 Experiments
This section evaluates our method through two typical unsu-
pervised tasks: anomaly detection and clustering2. The non-
linear random projection is used in RDP by default through-
out all our experiments.

4.1 Performance Evaluation in Anomaly Detection
Experimental Settings
Our RDP model is compared with five state-of-the-art meth-
ods, including iForest [Liu et al., 2008], autoencoder (AE)
[Hinton and Salakhutdinov, 2006], REPEN [Pang et al.,
2018], DAGMM [Zong et al., 2018] and RND [Burda et al.,
2019]. iForest and AE are two of the most popular baselines.
The other three methods learn representations specifically for
anomaly detection. The RDP consists of one fully connected
layer with 50 hidden units, followed by a leaky-ReLU layer3.
It is trained using Stochastic Gradient Descent (SGD) as its
optimiser for 200 epochs, with 192 samples per batch. The
learning rate is fixed to 0.1.

Our RDP model uses the optional novelty loss for anomaly
detection task by default. Note that the representation di-
mension M in the φ function and the projection dimension
K in the η function are set to be the same to alleviate pa-
rameter tuning. This means that M = K = 50 is used here.
Similar to RND, given a data point x, its anomaly score in
RDP is defined as the mean squared error between the two
projections resulted by φ(x;Θ?) and η(x). Also, a boosting
process is used to filter out 5% likely anomalies per itera-
tion to iteratively improve the modelling of RDP. This is be-
cause the modelling is otherwise largely biased when anoma-
lies are presented. We repeated the boosting process 30 times
to obtain statistically stable results. In order to have fair com-
parisons, we also adapt the competing methods AE, REPEN,
DAGMM and RND into ensemble methods and perform the
experiments using an ensemble size of 30.

As shown in Table 1, 14 publicly available datasets taken
from the literature [Liu et al., 2008; Pang et al., 2018;
Zong et al., 2018], are used, which are from various domains,
including network intrusion, credit card fraud detection, and
disease detection. Many of the datasets contain real anoma-
lies, including DDoS, Donors, Backdoor, Creditcard, Lung,
Probe and U2R. Following [Liu et al., 2008; Pang et al., 2018;
Zong et al., 2018], the rare class(es) is treated as anomalies in
the other datasets to create semantically real anomalies. The
Area Under Receiver Operating Characteristic Curve (AUC-
ROC) and the Area Under Precision-Recall Curve (AUC-PR)
are used as our performance metrics. The reported perfor-
mance is averaged over 10 independent runs.

Comparison to the State-of-the-art Competing Methods
The AUC-ROC and AUC-PR results are respectively shown
in Tables 1 and 2. RDP outperforms all the five competing

2See an extended version at https://arxiv.org/abs/1912.12186 for
the data accessing and additional results on representation learning
of raw image data, computational efficiency and classification task.

3We have also tried deeper network structures, but they worked
less effectively than the shallow networks. This may be because the
supervisory signal is not strong enough to support deeper networks.

Data iForest AE REPEN DAGMM RND RDP
DDoS 0.880 ± 0.018 0.901 ± 0.000 0.933 ± 0.002 0.766 ± 0.019 0.852 ± 0.011 0.942 ± 0.008
Donors 0.774 ± 0.010 0.812 ± 0.011 0.777 ± 0.075 0.763 ± 0.110 0.847 ± 0.011 0.962 ± 0.011
Backdoor 0.723 ± 0.029 0.806 ± 0.007 0.857 ± 0.001 0.813 ± 0.035 0.935 ± 0.002 0.910 ± 0.021
Ad 0.687 ± 0.021 0.703 ± 0.000 0.853 ± 0.001 0.500 ± 0.000 0.812 ± 0.002 0.887 ± 0.003
Apascal 0.514 ± 0.051 0.623 ± 0.005 0.813 ± 0.004 0.710 ± 0.020 0.685 ± 0.019 0.823 ± 0.007
Bank 0.713 ± 0.021 0.666 ± 0.000 0.681 ± 0.001 0.616 ± 0.014 0.690 ± 0.006 0.758 ± 0.007
Celeba 0.693 ± 0.014 0.735 ± 0.002 0.802 ± 0.002 0.680 ± 0.067 0.682 ± 0.029 0.860 ± 0.006
Census 0.599 ± 0.019 0.602 ± 0.000 0.542 ± 0.003 0.502 ± 0.003 0.661 ± 0.003 0.653 ± 0.004
Creditcard 0.948 ± 0.005 0.948 ± 0.000 0.950 ± 0.001 0.877 ± 0.005 0.945 ± 0.001 0.957 ± 0.005
Lung 0.893 ± 0.057 0.953 ± 0.004 0.949 ± 0.002 0.830 ± 0.087 0.867 ± 0.031 0.982 ± 0.006
Probe 0.995 ± 0.001 0.997 ± 0.000 0.997 ± 0.000 0.953 ± 0.008 0.975 ± 0.000 0.997 ± 0.000
R8 0.841 ± 0.023 0.835 ± 0.000 0.910 ± 0.000 0.760 ± 0.066 0.883 ± 0.006 0.902 ± 0.002
Secom 0.548 ± 0.019 0.526 ± 0.000 0.510 ± 0.004 0.513 ± 0.010 0.541 ± 0.006 0.570 ± 0.004
U2R 0.988 ± 0.001 0.987 ± 0.000 0.978 ± 0.000 0.945 ± 0.028 0.981 ± 0.001 0.986 ± 0.001

Table 1: AUC-ROC (mean±std) results of anomaly detection.

methods in both of AUC-ROC and AUC-PR in at least 12 out
of 14 datasets. This improvement is statistically significant at
the 95% confidence level according to the two-tailed sign test
[Demšar, 2006]. Remarkably, RDP obtains more than 10%
AUC-ROC/AUC-PR improvement over the best competing
method on six datasets, including Donors, Ad, Bank, Celeba,
Lung and U2R. RDP can be thought as a high-level synthe-
sis of REPEN and RND, because REPEN leverages a pair-
wise distance-based ranking loss to learn representations for
anomaly detection while RND is built using Lad

aux. In nearly
all the datasets, RDP well leverages both Lrd p and Lad

aux to
achieve significant improvement over both REPEN and RND.
In very limited cases, such as on datasets Backdoor and Cen-
sus where RND performs very well while REPEN performs
less effectively, RDP is slightly downgraded due to the use of
Lrd p. In the opposite case, such as Probe, on which REPEN
performs much better than RND, the use of Lad

aux may drag
down the performance of RDP a bit.

Ablation Study
This section examines the contribution of Lrdp, Lad

aux and the
boosting process to the performance of RDP. The experimen-
tal results in AUC-ROC are given in Table 3, where RDP\X
means the RDP variant that removes the ‘X’ module from
RDP. Similar observations can also be derived from AUC-PR
results that are omitted due to page limits. In the last two
columns, Org SS indicates that we directly use the distance
information calculated in the original space as the supervi-
sory signal, while SRP SS indicates that we use SRP to ob-
tain the distances as the supervisory signal. It is clear that
the full RDP model is the best performer. Using the Lrd p loss
only, i.e., RDP\Lad

aux, can achieve performance substantially
better than, or comparably well to, the five competing meth-
ods in Table 1. This is mainly because the Lrd p loss alone can
effectively force our representation learner to learn the under-

Data iForest AE REPEN DAGMM RND RDP
DDoS 0.141 ± 0.020 0.248 ± 0.001 0.300 ± 0.012 0.038 ± 0.000 0.110 ± 0.015 0.301 ± 0.028
Donors 0.124 ± 0.006 0.138 ± 0.007 0.120 ± 0.032 0.070 ± 0.024 0.201 ± 0.033 0.432 ± 0.061
Backdoor 0.045 ± 0.007 0.065 ± 0.004 0.129 ± 0.001 0.034 ± 0.023 0.433 ± 0.015 0.305 ± 0.008
Ad 0.363 ± 0.061 0.479 ± 0.000 0.600 ± 0.002 0.140 ± 0.000 0.473 ± 0.009 0.726 ± 0.007
Apascal 0.015 ± 0.002 0.023 ± 0.001 0.041 ± 0.001 0.023 ± 0.009 0.021 ± 0.005 0.042 ± 0.003
Bank 0.293 ± 0.023 0.264 ± 0.001 0.276 ± 0.001 0.150 ± 0.020 0.258 ± 0.006 0.364 ± 0.013
Celeba 0.060 ± 0.006 0.082 ± 0.001 0.081 ± 0.001 0.037 ± 0.017 0.068 ± 0.010 0.104 ± 0.006
Census 0.071 ± 0.004 0.072 ± 0.000 0.064 ± 0.005 0.061 ± 0.001 0.081 ± 0.001 0.086 ± 0.001
Creditcard 0.145 ± 0.031 0.382 ± 0.004 0.359 ± 0.014 0.010 ± 0.012 0.290 ± 0.012 0.363 ± 0.011
Lung 0.379 ± 0.092 0.565 ± 0.022 0.429 ± 0.005 0.042 ± 0.003 0.381 ± 0.104 0.705 ± 0.028
Probe 0.923 ± 0.011 0.964 ± 0.002 0.964 ± 0.000 0.409 ± 0.153 0.609 ± 0.014 0.955 ± 0.002
R8 0.076 ± 0.018 0.097 ± 0.006 0.083 ± 0.000 0.019 ± 0.011 0.134 ± 0.031 0.146 ± 0.017
Secom 0.106 ± 0.007 0.093 ± 0.000 0.091 ± 0.001 0.066 ± 0.002 0.086 ± 0.002 0.096 ± 0.001
U2R 0.180 ± 0.018 0.230 ± 0.004 0.116 ± 0.007 0.025 ± 0.019 0.217 ± 0.011 0.261 ± 0.005

Table 2: AUC-PR (mean±std) results of anomaly detection.
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Decomposition Supervision Signal
Data RDP RDP\Lrd p RDP\Lad

aux RDP\Boosting Org SS SRP SS
DDoS 0.942 ± 0.008 0.852 ± 0.011 0.931 ± 0.003 0.866 ± 0.011 0.924 ± 0.006 0.927 ± 0.005
Donors 0.962 ± 0.011 0.847 ± 0.011 0.737 ± 0.006 0.910 ± 0.013 0.728 ± 0.005 0.762 ± 0.016
Backdoor 0.910 ± 0.021 0.935 ± 0.002 0.872 ± 0.012 0.943 ± 0.002 0.875 ± 0.002 0.882 ± 0.010
Ad 0.887 ± 0.003 0.812 ± 0.002 0.718 ± 0.005 0.818 ± 0.002 0.696 ± 0.003 0.740 ± 0.008
Apascal 0.823 ± 0.007 0.685 ± 0.019 0.732 ± 0.007 0.804 ± 0.021 0.604 ± 0.032 0.760 ± 0.030
Bank 0.758 ± 0.007 0.690 ± 0.006 0.684 ± 0.004 0.736 ± 0.009 0.684 ± 0.002 0.688 ± 0.015
Celeba 0.860 ± 0.006 0.682 ± 0.029 0.709 ± 0.005 0.794 ± 0.017 0.667 ± 0.033 0.734 ± 0.027
Census 0.653 ± 0.004 0.661 ± 0.003 0.626 ± 0.006 0.661 ± 0.001 0.636 ± 0.006 0.560 ± 0.006
Creditcard 0.957 ± 0.005 0.945 ± 0.001 0.950 ± 0.000 0.956 ± 0.003 0.947 ± 0.001 0.949 ± 0.003
Lung 0.982 ± 0.006 0.867 ± 0.031 0.911 ± 0.006 0.968 ± 0.018 0.884 ± 0.018 0.928 ± 0.008
Probe 0.997 ± 0.000 0.975 ± 0.000 0.998 ± 0.000 0.978 ± 0.001 0.995 ± 0.000 0.997 ± 0.001
R8 0.902 ± 0.002 0.883 ± 0.006 0.867 ± 0.003 0.895 ± 0.004 0.830 ± 0.005 0.904 ± 0.005
Secom 0.57 ± 0.004 0.541 ± 0.006 0.544 ± 0.011 0.563 ± 0.008 0.512 ± 0.007 0.530 ± 0.016
U2R 0.986 ± 0.001 0.981 ± 0.001 0.987 ± 0.000 0.988 ± 0.002 0.987 ± 0.000 0.981 ± 0.002
#wins/draws/losses (RDP vs.) 13/0/1 13/0/1 12/0/2 10/2/2 6/0/8

Table 3: AUC-ROC ablation study results of anomaly detection.

lying class structure on most datasets so as to minimise its
prediction error. The use of Lad

aux and boosting process well
complement the Lrd p loss on the other datasets.

In terms of supervisory source, RDP and SRP SS perform
substantially better than Org SS on most datasets. This is
because the distances in both the non-linear projection in
RDP and the linear projection in SRP SS is well preserved,
enabling RDP to effectively learn much more faithful class
structure than that working on the original space.

4.2 Performance Evaluation in Clustering
Experimental Settings
For clustering, RDP is compared with four state-of-the-art
unsupervised representation learning methods in four differ-
ent areas, including HLLE [Donoho and Grimes, 2003] in
manifold learning, Sparse Random Projection (SRP) [Li et
al., 2006] in random projection, autoencoder (AE) [Hinton
and Salakhutdinov, 2006] in data reconstruction-based neu-
ral network methods and Coherence Pursuit (COP) [Rahmani
and Atia, 2017] in robust PCA. These representation learn-
ing methods are first used to yield the new representations,
and K-means [Hartigan and Wong, 1979] is then applied to
the representations to perform clustering. In this section RDP
adds the reconstruction loss Lclu

aux by default.
RDP uses a similar network architecture and optimisation

settings as the one used in anomaly detection. Compared to
anomaly detection, more semantic information is required for
clustering algorithms to work well, so the network consists of
1,024 hidden units and is trained for 1,000 epochs. AE is
built and trained with the same settings as RDP. Similar to
anomaly detection, M = K is also used in clustering.

As shown in Table 4, five high-dimensional real-world
datasets are used. Some of the datasets are image/text data.
Since here we focus on the performance on tabular data, they
are converted into tabular data using simple methods, i.e., by
treating each pixel as a feature unit for image data or us-
ing bag-of-words representation for text data. Two widely-
used clustering performance metrics, Normalised Mutual
Info (NMI) score and F-score, are used. Larger NMI/F-score
indicates better performance. The performance in the origi-
nal feature space, denoted as Org, is used as a baseline. The
reported NMI score and F-score are averaged over 30 times
to address the randomisation issue in K-means clustering.

Comparison to the State-of-the-art Competing Methods
Table 4 shows the NMI and F-score performance of K-means
clustering. Our method RDP enables K-means to achieve

Data Characteristics NMI Performance
Data N D Org HLLE SRP AE COP RDP
R8 7,674 17,387 0.524 ± 0.047 0.004 ± 0.001 0.459 ± 0.031 0.471 ± 0.043 0.025 ± 0.003 0.539 ± 0.040
20news 18,846 130,107 0.080 ± 0.004 0.017 ± 0.000 0.075 ± 0.002 0.075 ± 0.006 0.027 ± 0.040 0.084 ± 0.005
Olivetti 400 4,096 0.778 ± 0.014 0.841 ± 0.011 0.774 ± 0.011 0.782 ± 0.010 0.333 ± 0.018 0.805 ± 0.012
Sector 9,619 55,197 0.336 ± 0.008 0.122 ± 0.004 0.273 ± 0.011 0.253 ± 0.010 0.129 ± 0.014 0.305 ± 0.007
RCV1 20,242 47,236 0.154 ± 0.000 0.006 ± 0.000 0.134 ± 0.024 0.146 ± 0.010 N/A 0.165 ± 0.000

Data Characteristics F-score Performance
Data N D Org HLLE SRP AE COP RDP
R8 7,674 17,387 0.185 ± 0.189 0.085 ± 0.000 0.317 ± 0.045 0.312 ± 0.068 0.088 ± 0.002 0.360 ± 0.055
20news 18,846 130,107 0.116 ± 0.006 0.007 ± 0.000 0.109 ± 0.006 0.083 ± 0.010 0.009 ± 0.004 0.119 ± 0.006
Olivetti 400 4,096 0.590 ± 0.029 0.684 ± 0.024 0.579 ± 0.022 0.602 ± 0.023 0.117 ± 0.011 0.638 ± 0.026
Sector 9,619 55,197 0.208 ± 0.008 0.062 ± 0.001 0.187 ± 0.009 0.184 ± 0.010 0.041 ± 0.004 0.191 ± 0.007
RCV1 20,242 47,236 0.519 ± 0.000 0.342 ± 0.000 0.508 ± 0.003 0.514 ± 0.057 N/A 0.572 ± 0.003

Table 4: NMI and F-score performance of K-means.

the best performance on three datasets and ranks second in
the other two datasets. RDP-enabled clustering performs
substantially and consistently better than that based on AE
in terms of both NMI and F-score. This demonstrates that
the random distance loss enables RDP to effectively capture
some class structure in the data which cannot be captured
by using the reconstruction loss. RDP also consistently out-
performs the random projection method, SRP, and the robust
PCA method, COP. It is interesting that K-means clustering
performs best in the original space on Sector. This may be
due to that this data contains many relevant features, resulting
in no obvious curse of dimensionality issue. Olivetti may con-
tain complex manifolds which require extensive neighbour-
hood information to find them, so only HLLE can achieve
this goal in such cases. Nevertheless, RDP performs much
more stably than HLLE across the five datasets.

Ablation Study

Similar to anomaly detection, this section examines the con-
tribution of the two loss functions Lrd p and Lclu

aux to the perfor-
mance of RDP, as well as the impact of different supervisory
sources on the performance. The F-score results of this ex-
periment are shown in Table 5, in which the notations have
exactly the same meaning as in Table 3. Similar NMI re-
sults can also be observed but omitted due to page limits. The
full RDP model that uses both Lrd p and Lclu

aux performs more
favourably than its two variants, RDP\Lrd p and RDP\Lclu

aux,
but it is clear that using Lrd p only performs very comparably
to the full RDP. However, using Lclu

aux only may result in large
performance drops in some datasets, such as R8, 20news and
Olivetti. This indicates Lrd p is a more important loss function
to the overall performance of the full RDP model. In terms of
supervisory source, distances obtained by the non-linear ran-
dom projection in RDP are much more effective than the two
other sources on some datasets such as Olivetti and RCV1.
Three different supervisory sources are very comparable on
the other three datasets.

Decomposition Supervision Signal
Data RDP RDP\Lrd p RDP\Lclu

aux Org SS SRP SS
R8 0.360 ± 0.055 0.312 ± 0.068 0.330 ± 0.052 0.359 ± 0.028 0.363 ± 0.046
20news 0.119 ± 0.006 0.083 ± 0.010 0.117 ± 0.005 0.111 ± 0.005 0.111 ± 0.007
Olivetti 0.638 ± 0.026 0.602 ± 0.023 0.597 ± 0.019 0.610 ± 0.022 0.601 ± 0.023
Sector 0.191 ± 0.007 0.184 ± 0.010 0.217 ± 0.007 0.181 ± 0.007 0.186 ± 0.009
RCV1 0.572 ± 0.003 0.514 ± 0.057 0.526 ± 0.011 0.523 ± 0.003 0.532 ± 0.001

Table 5: F-score ablation study performance of K-means clustering.
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Figure 2: AUC-ROC and F-score performance of RDP using differ-
ent representation dimensions in anomaly detection and clustering.

4.3 Sensitivity w.r.t. the Dimensionality of
Representation Space

Figure 2 shows the AUC-ROC and F-score performance of
RDP w.r.t. different representation dimensions in respective
anomaly detection and clustering tasks. The results show
RDP performs very stably w.r.t. the representation dimen-
sionality on different datasets and downstream learning tasks.
It is interesting to note that, the flat trends also indicate, as
an unsupervised learning source, the random distance cannot
provide sufficient supervision information to learn richer and
more complex representations in a higher-dimensional space.
This also explains the performance on a few datasets where
the performance of RDP decreases when increasing the repre-
sentation dimension. In general, the representation dimension
50 and 1024 are recommended for RDP to achieve effective
anomaly detection and clustering respectively on datasets.

5 Related Work
Self-supervised Learning. Self-supervised learning has
been recently emerging as one of the most popular and effec-
tive approaches for representation learning, especially in the
scenarios where only a very limited amount of manually la-
belled data is available. Many of the self-supervised methods
learn high-level representations by predicting some sort of
‘context’ information, such as spatial or temporal neighbour-
hood information. For example, the popular distributed rep-
resentation learning techniques in NLP, such as CBOW/skip-
gram [Mikolov et al., 2013] and phrase/sentence embeddings
in [Le and Mikolov, 2014] , learn the representations by pre-
dicting the text pieces (e.g., words/phrases/sentences) using
its surrounding pieces as the context. In image processing,
the pretext task can be the prediction of a patch of missing
pixels [Pathak et al., 2016] or the relative position of two
patches [Doersch et al., 2015]. Also, a number of studies
[Misra et al., 2016; Lee et al., 2017; Oord et al., 2018] ex-
plore temporal contexts to learn representations from video
data, e.g., by learning the temporal order of sequential frames.
Some other methods [Agrawal et al., 2015; Zhou et al., 2017;
Gidaris et al., 2018] are built upon a discriminative frame-
work which aims at discriminating the images before and
after some transformation, e.g., ego motion in video data
[Agrawal et al., 2015; Zhou et al., 2017] and rotation of im-
ages [Gidaris et al., 2018]. There have also been popular to
use generative adversarial networks (GANs) to learn features
[Radford et al., 2015; Chen et al., 2016]. The above methods

have demonstrated powerful capability to learn semantic rep-
resentations. However, most of them use the supervisory sig-
nals available in image/video data only, which limits their ap-
plication to other types of data, such as tabular data. Though
our method may also work on image/video data, we focus on
handling high-dimensional tabular data to bridge this gap.
Other Approaches. There have been several well-
established unsupervised representation learning approaches
for handling tabular data, such as random projection [Bing-
ham and Mannila, 2001; Li et al., 2006], PCA [Schölkopf
et al., 1997; Rahmani and Atia, 2017], manifold learning
[Donoho and Grimes, 2003; Hinton and Roweis, 2003] and
autoencoder [Hinton and Salakhutdinov, 2006; Vincent et al.,
2010]. One notorious issue of PCA or manifold learning
approaches is their prohibitive computational cost in deal-
ing with large-scale high-dimensional data due to the costly
neighbourhood search and/or eigen decomposition. Random
projection is a computationally efficient approach, supported
by proven distance preservation theories such as the Johnson-
Lindenstrauss lemma [Johnson and Lindenstrauss, 1984]. We
show that the preserved distances by random projection can
be harvested to effectively supervise the representation learn-
ing. Autoencoder networks are another widely-used effi-
cient feature learning approach which learns low-dimensional
representations by minimising reconstruction errors. One
main issue with autoencoders is that they focus on preserv-
ing global information only, which may result in loss of lo-
cal structure information. Some feature learning methods
are specifically designed for anomaly detection [Pang et al.,
2018; Zong et al., 2018; Burda et al., 2019]. By contrast,
we aim at generic representations learning while being flex-
ible to incorporate optionally task-dependent losses to learn
task-specific semantically rich representations.

6 Conclusion
We have introduced a novel Random Distance Prediction
(RDP) model which learns features in a fully unsupervised
fashion by predicting data distances in a randomly projected
space. The key insight is that random mapping is a theo-
retically proven approach to obtain approximately preserved
distances, and to well predict these random distances, the
representation learner is optimised to learn preserved prox-
imity information while at the same time rectifying incon-
sistent proximity, resulting in representations with optimised
distance preserving. Our idea is justified by thorough ex-
periments in two unsupervised tasks, anomaly detection and
clustering, demonstrating that RDP-based anomaly detectors
and clustering substantially outperform their counterparts on
real-world datasets. Our empirical results also demonstrate
that RDP is flexible and very effective to incorporate task-
dependent complementary auxiliary losses and learns more
expressive representations. We are extending RDP to other
types of data, such as image/text data.
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[Demšar, 2006] Janez Demšar. Statistical comparisons of
classifiers over multiple data sets. J. Mach. Learn. Res.,
2006.

[Doersch et al., 2015] Carl Doersch, Abhinav Gupta, and
Alexei A Efros. Unsupervised visual representation learn-
ing by context prediction. In Proc. IEEE Int. Conf. Comp.
Vis., pages 1422–1430, 2015.

[Donoho and Grimes, 2003] David L Donoho and Carrie
Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the
National Academy of Sciences, 100(10):5591–5596, 2003.

[Gidaris et al., 2018] Spyros Gidaris, Praveer Singh, and
Nikos Komodakis. Unsupervised representation learning
by predicting image rotations. In Proc. Int. Conf. Learn.
Repre., 2018.

[Hartigan and Wong, 1979] John A Hartigan and
Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. J. Royal Stat. Society, 1979.

[Hinton and Roweis, 2003] Geoffrey E Hinton and Sam T
Roweis. Stochastic neighbor embedding. In Proc. Adv.
Neural Inf. Process. Syst., pages 857–864, 2003.

[Hinton and Salakhutdinov, 2006] Geoffrey E Hinton and
Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507,
2006.

[Johnson and Lindenstrauss, 1984] William B Johnson and
Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. Contemporary Math., 1984.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In
Proc. Int. Conf. Mach. Learn., pages 1188–1196, 2014.

[Lee et al., 2017] Hsin-Ying Lee, Jia-Bin Huang, Maneesh
Singh, and Ming-Hsuan Yang. Unsupervised represen-
tation learning by sorting sequences. In Proc. IEEE Int.
Conf. Comp. Vis., pages 667–676, 2017.

[Li et al., 2006] Ping Li, Trevor J Hastie, and Kenneth W
Church. Very sparse random projections. In Proc. ACM
SIGKDD Int. Conf. Know. Disco. & Data Mining, 2006.

[Liu et al., 2008] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua
Zhou. Isolation forest. In Proc. IEEE Int. Conf. Data Min-
ing, pages 413–422. IEEE, 2008.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. arXiv:1301.3781, 2013.

[Misra et al., 2016] Ishan Misra, C Lawrence Zitnick, and
Martial Hebert. Shuffle and learn: unsupervised learn-
ing using temporal order verification. In Proc. Eur. Conf.
Comp. Vis., pages 527–544. Springer, 2016.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv:1807.03748, 2018.

[Pang et al., 2018] Guansong Pang, Longbing Cao, Ling
Chen, and Huan Liu. Learning representations of
ultrahigh-dimensional data for random distance-based out-
lier detection. In Proc. ACM SIGKDD Int. Conf. Know.
Disco. & Data Mining, pages 2041–2050. ACM, 2018.

[Pathak et al., 2016] Deepak Pathak, Philipp Krahenbuhl,
Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., pages 2536–2544, 2016.

[Radford et al., 2015] Alec Radford, Luke Metz, and
Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks.
In Proc. Int. Conf. Learn. Repre., 2015.

[Rahimi and Recht, 2008] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines. In Proc.
Adv. Neural Inf. Process. Syst., 2008.

[Rahmani and Atia, 2017] Mostafa Rahmani and George
Atia. Coherence pursuit: Fast, simple, and robust sub-
space recovery. In Proc. Int. Conf. Mach. Learn., pages
2864–2873. JMLR. org, 2017.

[Schölkopf et al., 1997] Bernhard Schölkopf, Alexander
Smola, and Klaus-Robert Müller. Kernel principal com-
ponent analysis. In Proc. Int. Conf. Arti. Neur. Net., pages
583–588. Springer, 1997.

[Vempala, 1998] Santosh Vempala. Random projection: A
new approach to VLSI layout. In Proc. Ann. Symp. Found.
Comp Sci., pages 389–395. IEEE, 1998.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Is-
abelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 2010.

[Zhou et al., 2017] Tinghui Zhou, Matthew Brown, Noah
Snavely, and David G Lowe. Unsupervised learning of
depth and ego-motion from video. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 1851–1858, 2017.

[Zong et al., 2018] Bo Zong, Qi Song, Martin Renqiang
Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture
model for unsupervised anomaly detection. In Proc. Int.
Conf. Learn. Repre., 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2956


	Introduction
	Random Distance Prediction Model
	Theoretical Analysis of RDP
	When Linear Projection Is Used
	When Non-linear Projection Is Used
	Learning Class Structure By Random Distance Prediction

	Experiments
	Performance Evaluation in Anomaly Detection
	Experimental Settings
	Comparison to the State-of-the-art Competing Methods
	Ablation Study

	Performance Evaluation in Clustering
	Experimental Settings
	Comparison to the State-of-the-art Competing Methods
	Ablation Study

	Sensitivity w.r.t. the Dimensionality of Representation Space

	Related Work
	Conclusion

