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Abstract
Deep Infomax (DIM) is an unsupervised represen-
tation learning framework by maximizing the mu-
tual information between the inputs and the out-
puts of an encoder, while probabilistic constraints
are imposed on the outputs. In this paper, we pro-
pose Supervised Deep InfoMax (SDIM), which in-
troduces supervised probabilistic constraints to the
encoder outputs. The supervised probabilistic con-
straints are equivalent to a generative classifier on
high-level data representations, where class condi-
tional log-likelihoods of samples can be evaluated.
Unlike other works building generative classifiers
with conditional generative models, SDIMs scale
on complex datasets, and can achieve compara-
ble performance with discriminative counterparts.
With SDIM, we could perform classification with
rejection. Instead of always reporting a class label,
SDIM only makes predictions when test samples’
largest class conditional surpass some pre-chosen
thresholds, otherwise they will be deemed as out of
the data distributions, and be rejected. Our exper-
iments show that SDIM with rejection policy can
effectively reject illegal inputs, including adversar-
ial examples and out-of-distribution samples.

1 Introduction
Non-robustness of neural network models emerges as a press-
ing concern since they are observed to be vulnerable to ad-
versarial examples [Szegedy et al., 2013]. Many attack
methods have been developed to find imperceptible perturba-
tions to fool the target classifiers [Carlini and Wagner, 2017;
Brendel et al., 2017]. Meanwhile, many defense schemes
have also been proposed to improve the robustnesses of the
target models [Goodfellow et al., 2014; Madry et al., 2017].

An important fact about these works is that they focus on
discriminative classifiers, which directly model the condi-
tional probabilities of labels given samples. Another promis-
ing direction, which is almost neglected so far, is to explore
robustness of generative classifiers [Ng and Jordan, 2002]. A
generative classifier explicitly model conditional distributions
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of inputs given the class labels. During inference, it evaluates
all the class conditional likelihoods of the test input, and out-
puts the class label corresponding to the maximum. Condi-
tional generative models are powerful and natural choices to
model the class conditional distributions, but they suffer from
two big problems: (1) it is hard to scale generative classifiers
on high-dimensional tasks, like natural images classification,
with comparable performance to the discriminative counter-
parts. Though generative classifiers have shown promising
results of adversarial robustness, they hardly achieve accept-
able classification performance even on CIFAR10 [Li et al.,
2018; Schott and Rauber, 2018; Fetaya et al., 2019]. (2)
The behaviors of likelihood-based generative models can be
counter-intuitive. They surprisingly assign higher likelihoods
to out-of-distribution (OOD) samples [Nalisnick et al., 2018;
Choi and Jang, 2018]. [Fetaya et al., 2019] discuss the issues
of likelihood as a metric for density modeling, which may
be the reason of non-robust classification, e.g. OOD samples
detection.

In this paper, we propose supervised deep infomax (SDIM)
by introducing supervised statistical constraints into deep in-
fomax (DIM, [Hjelm et al., 2018]), an unsupervised learning
framework by maximizing the mutual information between
representations and data. SDIM is trained by optimizing two
objectives: (1) maximizing the mutual information (MI) be-
tween the inputs and the high-level data representations from
encoder; (2) ensuring that the representations satisfy the su-
pervised statistical constraints. The supervised statistical con-
straints can be interpreted as a generative classifier on high-
level data representations giving up the full generative pro-
cess. Unlike full generative models making implicit manifold
assumptions, the supervised statistical constraints of SDIM
serve as explicit enforcement of manifold assumption: data
representations (low-dimensional) are trained to form clusters
corresponding to their class labels. With SDIM, we could per-
form classification with rejection. SDIMs reject illegal inputs
based on off-manifold conjecture [Samangouei et al., 2018;
Gu and Rigazio, 2014], where illegal inputs, e.g. adversar-
ial examples, lie far away from the data manifold. Sam-
ples whose class conditionals are smaller than the pre-chosen
thresholds will be deemed as off-manifold, and prediction re-
quests on them will be rejected. The contributions of this
paper are :

• We propose Supervised Deep Infomax (SDIM), an end-
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to-end framework whose probabilistic constraints are
equivalent to a generative classifier. SDIMs can achieve
comparable classification performance with similar dis-
crinimative counterparts at the cost of small over-
parameterization.

• We propose a simple but novel rejection policy based on
off-manifold conjecture: SDIM outputs a class label only
if the test sample’s largest class conditional surpasses the
pre-chosen class threshold, otherwise outputs rejection.
The choice of thresholds relies only on training set, and
takes no additional computations.

• Experiments show that SDIM with rejection policy can
effectively reject illegal inputs, including OOD samples
and adversarial examples generated by a comprehensive
group of adversarial attacks.

2 Background: Deep InfoMax
Deep InfoMax (DIM, [Hjelm et al., 2018]) is an unsuper-
vised representation learning framework by maximizing the
mutual information (MI) of the inputs and outputs of an en-
coder. The computation of MI takes only input-output pairs
with the deep neural networks based estimator MINE [Belg-
hazi et al., 2018].

Let Eφ be an encoder parameterized by φ, working on
the training set X = {xi}Ni=1, and generating output set
Y = {E(xi)}Ni=1. DIM is trained to find the set of parame-
ters φ such that: (1) the mutual information I(X,Y ) is max-
imized over sample sets X and Y . (2) the representations,
depending on the potential downstream tasks, match some
prior distribution. Denote J and M the joint and product of
marginals of random variablesX , Y respectively. MINE esti-
mates a lower-bound of MI with Donsker-Varadhan [Donsker
and Varadhan, 1983] representation of KL-divergence:

I(X,Y ) = DKL(J||M)

≥ EJ[Tω(x, y)]− logEM[e
Tω(x,y)]

(1)

where Tω(x, y) ∈ R is a family of functions with parame-
ters ω represented by a neural network. Since in representa-
tion learning we are more interested in maximizing MI, than
its exact value, non-KL divergences are also favorable candi-
dates. We can get a family of variational lower-bounds using
f -divergence representations [Nguyen et al., 2010]:

If (X,Y ) ≥ EJ[Tω(x, y)]− EM[f
∗(Tω(x, y))] (2)

where f∗ is the Fenchel conjugate of a specific divergence f .
For KL-divergence, f∗(t) = e(t−1). A full f∗ list is provided
in Tab. 6 of [Nowozin et al., 2016].

3 Supervised Deep InfoMax
All the components of SDIM framework are summurized in
Fig. 1. The focus of Supervised Deep InfoMax (SDIM) is on
introducing supervision to probabilistic constraints of DIM
for (generative) classification. We choose to maximize the
local MI, which has shown to be more effective in classifi-
cation tasks than maximizing global MI [Hjelm et al., 2018].

Equivalently, we minimize JMI:

JMI = −
1

M2

M2∑
i=1

Ĩ(L(i)
φ (x), Eφ(x)) (3)

where Lφ(x) is a local M ×M feature map of x extracted
from some intermediate layer of encoder E, and Ĩ can be any
possible MI lower-bounds.

3.1 Explicit Enforcement of Manifold Assumption
By adopting a generative approach p(x, y) = p(y)p(x|y),
we assume that the data follows the manifold assumption: the
(high-dimensional) data lies on low-dimensional manifolds
corresponding to their class labels. Denote x̃ the compact
representation generated with encoder Eφ(x). In order to ex-
plicitly enforce the manifold assumption , we admit the exis-
tence of data manifold in the representation space. Assume
that y is a discrete random variable representing class labels,
and p(x̃|y) is the real class conditional distribution of the data
manifold given y. Let pθ(x̃|y) be the class conditionals we
model parameterized with θ. We approximate p(x̃|y) by min-
imizing the KL-divergence between p(x̃|y) and our model
pθ(x̃|y), which is given by:

DKL

(
p(x̃|y)||pθ(x̃|y)

)
= Ex̃,y∼p(x̃,y)[log p(x̃|y)]
− Ex̃,y∼p(x̃,y)[log pθ(x̃|y)]

(4)

where the first item on RHS is a constant independent of the
model parameters θ. Eq. 4 equals to maximize the expecta-
tion Ex̃,y∼p(x̃,y)[log pθ(x̃|y)].

In practice, we minimize the following loss JNLL, equiv-
alent to empirically maximize the above expectation over
{x̃i = Eφ(xi), yi}Ni=1:

JNLL = −Ex̃,y∼p(x̃,y)[log pθ(x̃|y)]

≈ − 1

N

N∑
i=1

log pθ(x̃i|yi)
(5)

Besides the introduction of supervision, SDIM differs from
DIM in its way of enforcing the statistical constraints: DIM
use adversarial learningto push the representations to the de-
sired priors, while SDIM directly maximizes the parameter-
ized class conditional probability.
Maximize Likelihood Margins Since a generative classi-
fier, at inference, decides which class a test input x belongs
to according to its class conditional probability. On one
hand, we maximize samples’ true class conditional probabil-
ities (classes they belong to) using JNLL; On the other hand,
we also hope that samples’ false class conditional probabili-
ties (classes they do not belong to) can be minimized. This is
assured by the following likelihood margin loss JLM:

JLM =
1

N
· 1

C − 1

N∑
i=1

C∑
c=1,c 6=yi

max(log p(x̃i|y = c)

+K − log p(x̃i|y = yi), 0)
2

(6)

where K is a positive constant to control the margin. For
each encoder output x̃i, the C−1 true-false class conditional
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Figure 1: Components of SDIM framework. (1) The encoder Eφ takes input x, and produces pairs of local feature maps Lφ(x) and global
representations Eφ(x). (2) The MI evaluation network Tω maps every possible positive pairs and negative pairs to MI scores specified by
corresponding MI lower-bound. Negative pairs are simply obtained by combine all unpaired local feature maps and global representations
within the same mini-batch. (3) Supervised constraints are imposed on the global representations x̃ = Eφ(x) for generative classification.
The true class conditionals are maximized, while false class conditionals are minimized. See following parts of this section for details.

gaps are squared1, which quadratically increases the penalties
when the gap becomes large, then are averaged.

Putting all these together, the complete loss function we
minimize is:

JSDIM = α · JMI + β · JNLL + γ · JLM (7)

where α, β, γ are scaling factors.

Parameterization of Class Conditional Probability Each
of the class conditional distribution is represented as an
isotropic Gaussian. So the generative classifier is simply a
embedding layer with C entries, and each entry contains the
trainable mean and variance of a Gaussian. This minimized
parameterization encourages the encoder to learn simple and
stable low-dimensional representations that can be easily ex-
plained by even unimodal distributions. Considering that we
maximize the true class conditional probability, and minimize
the false class conditional probability at the same time, we do
not choose conditional normalizing flows, since the parame-
ters are shared across class labels, and the training can be very
difficult. In [Schott and Rauber, 2018], each class conditional
probability is represented with a VAE, thus scaling to com-
plex datasets with huge number of classes, e.g. ImageNet, is
almost impossible.

3.2 Decision Function with Rejection
A generative approach models the class-conditional distribu-
tions p(x|y), as well as the class priors p(y). For classifica-
tion, we compute the posterior probabilities p(y|x) through

1Using squared margin, we achieve slightly better results in our
experiments than simple margin.

Bayes’ rule:

p(y|x) = p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

The prior p(y) can be computed from the training set, or we
simply use uniform class prior for all class labels by default.
Then the prediction of test sample x∗ from posteriors is:

y∗ = argmax
c=[1...C]

log p(x∗|y = c). (8)

The drawback of the above decision function is that it al-
ways gives a prediction even for illegal inputs. Instead of
simply outputting the class label that maximizes class con-
ditional probability of x∗, we set a threshold for each class
conditional probability, and define our decision function with
rejection to be:{

y∗, if log p(x∗|y∗) ≥ δy∗
Rejection, otherwise

(9)

The model gives a rejection when log p(x∗|y∗) is smaller
than the threshold δy∗ . Note that here we can use p(x∗|y∗)
and p(x̃∗|y∗) interchangeably.

Classification with rejection is not novel [Geifman and El-
Yaniv, 2017], and previous works closely related to ours are
the generative models based ones. The most recent one [Nal-
isnick et al., 2019], which propose a hybrid model model-
ing distribution of features p(features) and predictive distri-
bution p(targets|features) at the same time. Normalizing flow
is used to learn invertible features as inputs of discrimina-
tive model, i.e. predictive distribution, and provides evalua-
tion of features x∗. Inputs out of the training data distribu-
tion are rejected by setting a threshold for p(x∗). For SDIM,
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illegal inputs are rejected by setting thresholds for each of
the class conditional. The class conditionals are modeled on
the data representations, rather than raw inputs. In terms of
robustness, the hybrid model in [Nalisnick et al., 2019] can
successfully detect OOD samples, and applicability as well
as performance on adversarial examples is not clear. While
SDIM reject illegal inputs including OOD dataset samples
and adversarial examples with more fine-grained class con-
ditionals.

4 Experiments
Datasets We evaluate the effectiveness of the rejection pol-
icy of SDIM on four image datasets: MNIST, FashionM-
NIST (both resized to 32× 32 from 28× 28); and CIFAR10,
SVHN. For out-of-distribution samples detection, we use the
dataset pairs on which likelihood-based generative models
fail [Nalisnick et al., 2018; Choi and Jang, 2018]: FashionM-
NIST (in)-MNIST (out) and CIFAR10 (in)-SVHN (out). Ad-
versarial examples detection are evaluated on MNIST and CI-
FAR10. Throughout our experiments, we useα = β = γ = 1
in the loss function.
Choice of thresholds It is natural that choosing thresholds
based on what the model knows, i.e. training set, and can re-
ject what the model does not know, i.e. possible illegal inputs.
We set one threshold for each class conditional. For each
class conditional probability, we choose to evaluate on two
different thresholds: 1st and 2nd percentiles of class condi-
tional log-likelihoods of the correctly classified training sam-
ples. Compared to the detection methods proposed in [Li et
al., 2018], our choice of thresholds is much simpler, and takes
no additional computations.
Models A typical SDIM instance consists of three net-
works: an encoder, parameterized by φ, which outputs a
d-dimensional representation; mutual information evaluation
networks, i.e. Tω in Eqn. (1) and Eqn. (2); and C-way class
conditional embedding layer, parameterized by θ, with each
entry a 2d-dimensional vector. We set d = 64 in all our ex-
periments.

For encoder of SDIM, we use ResNet [He et al., 2016] on
32 × 32 with a stack of 8n + 2 layers, and 4 filter sizes {32,
64, 128, 256}. The architecture is summarized as:

output map size 32× 32 16× 16 8× 8 4× 4

# layers 1 + 2n 2n 2n 2n
# filters 32 64 128 256

Table 1: Architecture summarization of the SDIM encoder.

The last layer of encoder is a d-way fully-connected layer.
To construct a discriminative counterpart, we simply set the
output size of the encoder’s last layer to C for classification.
We use ResNet10 (n = 1) on MNIST, FashionMNIST, and
ResNet26 (n = 3) on CIFAR10, SVHN.

4.1 Evaluation on Clean Data
We report the classification accuracy (see Tab. 2 and Tab. 3)
of SDIMs and the discriminative counterparts on clean test

Model # Parameters MNIST Fashion

Disc. (ResNet10) 0.31M 99.42% 94.25%
SDIM (ResNet10) 0.36M ( 14% ↑) 99.55% 94.58%

Table 2: Performance of SDIMs and the discriminative counterparts
on clean test sets of MNIST and FashionMNIST.

Model # Parameters CIFAR10 SVHN

Disc. (ResNet26) 4.39M 92.35% 95.96%
SDIM (ResNet26) 4.60M ( 5% ↑) 92.53% 95.74%

Table 3: Performance of SDIMs and the discriminative counterparts
on clean test sets of CIFAR10 and SVHN.

sets . Results show that SDIMs achieve the same level of
accuracy as the discriminative counterparts with slightly in-
creased number of parameters (17% increase for ResNet10,
and 5% increase for ResNet26). We are aware of the exis-
tence of better results reported on these datasets , but pushing
the state-of-the-art is not the focus of this paper.

Scalability
The most important fact about SDIM is it provides a end-
to-end framework to train generative classifiers that achieve
same-level performance as the corresponding discriminative
counterparts. In contrast, despite the great success of fully
conditional generative models in data synthesis, they perform
poorly on classification tasks. In particular, they perform
quite well on MNIST, but are still far away from achieving ac-
ceptable performance even on CIFAR10. For example, meth-
ods (GFZ & GFY) in DeepBayes [Li et al., 2018] achieve
< 50% accuracy, and they also mention that a conditional
PixelCNN++ [Salimans et al., 2017] (with much deeper net-
works) achieves 72.4% clean test accuracy. The test ac-
curacy of ABS in [Schott and Rauber, 2018] is only 54%.
Glow with class conditional mixture of Gaussian [Fetaya et
al., 2019] achieves 56.8%, could be improved to 80 − 85%
with reweighting or split prior. Many works have demon-
strated that for classification tasks, discovering discrimina-
tive features (patches) is much more important than recon-
structing the all the image pixels [Brendel and Bethge, 2019;
Hjelm et al., 2018]. The fact that methods in [Li et al., 2018]
improve the accuracy from< 50% to 92% by feeding the fea-
tures learned by powerful discriminative classifier-VGG16 to
their generative classifiers, also support this argument.

One direct effect of the poor classification performance of
fully conditional generative models is that adversarial robust-
ness evaluation on them is limited to MNIST, and becomes
much less convincing on CIFAR10. A model with high test
error implies that even for correctly classified samples, their
distances to the decision boundaries are much small, thus are
easy to craft small adversarial perturbations leading to mis-
classification [Gilmer et al., 2018].

Furthermore, due to giving up the full generative process,
SDIM is considerably smaller than fully conditional gener-
ative models. The GBZ of [Li et al., 2018] on MNIST has
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Dataset Original Acc. 1st Percentile 2nd Percentile
Acc. Left Rej. Rate Acc. Left Rej. Rate

MNIST 99.55% 99.95% 3.02% 99.97% 4.00%
FashionMNIST 94.58% 96.45% 4.63% 96.94% 6.60%
CIFAR10 92.53% 96.18% 8.90% 96.60% 10.86%
SVHN 95.74% 97.43% 3.99% 98.00% 6.36%

Table 4: Classification performances of SDIMs using the proposed decision function with rejection. We report the rejection rates of the test
sets and the accuracy on the left test sets (after rejection) for each threshold.

1.5M parameters2. The ABS model in [Schott and Rauber,
2018] is 0.85M3. While SDIM on MNIST is only 0.36M.
Note that their models don’t scale on CIFAR10. So if we only
care about the generative classification performance with no
need to generate samples, it is unnecessary to model the full
generative process, and giving up saves us a lot of computa-
tional resources.

Decision with Rejection
Given pre-chosen thresholds, there are chances that legal in-
puts are wrongly rejected. Thus we also investigate the impli-
cations of the proposed rejection decision function with dif-
ferent thresholds on clean test sets. The results in Tab. 4 show
that choosing a higher percentile as threshold will reject more
prediction requests. At the same time, the classification accu-
racy of SDIMs on the left test sets become increasingly bet-
ter. This demonstrate that our rejection method help SDIMs
reliably reject the low-confidence requests, and avoid wrong
predictions.

4.2 Adversarial Examples Detection
We compare SDIM to GBZ [Li et al., 2018], which consis-
tently performs the best in Deep Bayes. Note that here we
investigate the inherent robustness of generative classifier, so
we do not incorporate the specially designed methods outside
of the classifiers for adversarial examples detection.

FGSM and PGD We evaluate SDIM on L∞ versions of
them. We find that SDIMs are much more robust against
FGSM and PGD than baseline (see Fig. 2), since the gra-
dients numerically vanish as a side effect of the likelihood
margin loss JLM of SDIM. Recall that the class condition-
als are optimized to keep a considerable margin. Before
evaluating the cross entropy loss, softmax is applied on the
class conditionals log p(x|c) to generate a even sharper dis-
tribution. So for the samples that are correctly classified,
their losses are numerically zeros, and the gradient on in-
puts ∇Jx(x, y) are also numerically zeros. This phenom-
ena is similar to what some defenses using gradient obfus-
cation want to achieve. Defensive distillation [Carlini and
Wagner, 2016] masks the gradients of cross-entropy by in-
creasing the temperature of softmax. However, obfuscated

2The number of parameters is estimated based on the details in
Appendix D of [Li et al., 2018]. The encoder network (3 convs and
2-layer MLP) is ∼ 0.5M. p(y|z) is 37k, and p(x|z) (2-layer MLP
and 3 convs) is ∼1M.

3The number of parameters is calculated from the open sourced
code: https://github.com/bethgelab/AnalysisBySynthesis.

gradients [Athalye et al., 2018] give a false sense of security.
For CW attacks, which do not use cross-entropy, and operate
on logits directly, this could be ineffective.

Figure 2: The adversarial classification accuracy of SDIM and GBZ
on MNIST and CIFAR10 under FGSM-L∞ and PGD-L∞ attacks
with different perturbation norm-bound εs. Note that GBZs don’t
scale on raw CIFAR10, results are models trained on features ex-
tracted VGG16.

CW Attack We evaluate SDIM and baselines on CW-L2

with loss factors c = {1, 10, 100, 1000}. On adversarial ex-
amples of MNIST, SDIM performs on par with the baseline,
while on CIFAR10, the rejection/detection rate of SDIM is
slightly better than the GBZ on simpler CIFAR10-binary (see
Fig. 3). GBZ does not scale on CIFAR10, so the rejection rate
is not available.

Figure 3: The rejection/detection rates of SDIM and GBZ on
MNIST and CIFAR10. The rejection rate of GBZ (right) is on
CIFAR10-binary (containing “airplane” and “frog” images from
CIFAR-10) since it does not scale on full CIFAR10.
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Attacks MNIST CIFAR10
1st Per. 2nd Per. 1st Per. 2nd Per.

Boundary 100% 100% 100% 100%
LocalSearch 99.90% 100% 88.80% 93.10%

Table 5: Detection rates of SDIM models. We perform untargeted
adversarial evaluation on the first 1000 images of test sets due to
expensive computation.

Black-Box Attacks We also evaluate SDIM on black-
box attacks: local search (score-based) attack [Narodytska
and Kasiviswanathan, 2016], boundary(decision-based) at-
tack [Brendel et al., 2017]. Generally, we find that black-
box adversarial examples are more easily to detect even on
CIFAR10 (see Tab. 5).

Discussions on off-manifold conjecture [Gilmer et al.,
2018] challenges whether the off-manifold conjecture holds
in general. They experiment on synthetic dataset-two high-
dimensional concentric spheres with theoretical analyses,
showing that even for a trained classifier with close to zero
test error, there may be a constant fraction of the data man-
ifold misclassified, which indicates the existence of adver-
sarial examples within the manifold. But there are still sev-
eral concerns to be addressed: First, as also pointed out by
the authors, the manifolds in natural datasets can be quite
complex than that of simple synthesized dataset. [Fetaya et
al., 2019] draws similar conclusion from analyses on syn-
thesized data with particular geometry. So the big con-
cern is whether the conclusions in [Gilmer et al., 2018;
Fetaya et al., 2019] still hold for the manifolds in nat-
ural datasets. A practical obstacle to verify this conclu-
sion is that works modeling the full generative processes
are based on manifold assumption, but provide no explicit
manifolds for analytical analyses like [Gilmer et al., 2018;
Fetaya et al., 2019]. While SDIM enables explicit and
customized manifolds on high-level data representations via
probabilistic constraints, thus enables analytical analyses. In
this paper, samples of different classes are trained to form
isotropic Gaussians corresponding to their classes in repre-
sentation space (other choices are also possible). The rela-
tion between the adversarial robustness and the forms and
dimensionalities of data manifolds is to be explored in the
future. Second, in their experiments, all models evaluated are
discriminative classifiers. Considering the recent promising
results of generative classifiers against adversarial examples,
would using generative classifiers lead to different results?
One thing making us feel optimistic is that even though the
existence of adversarial examples is inevitable, [Gilmer et al.,
2018] suggest that adversarial robustness can be improved by
minimizing the test errors, which is also supported by our ex-
perimental differences on MNIST and CIFAR10.

4.3 Out-Of-Distribution Samples Detection
Class-wise OOD detections are performed, and mean de-
tection rates over all in-distribution classes are reported in
Tab. 6. For each in-distribution class c, we evaluate the log-
likelihoods of the whole OOD dataset. Samples whose log-

Model Fashion-MNIST CIFAR10-SVHN

SDIM(1st Per.) 99.36% 94.24 %
SDIM(2nd Per.) 99.64% 95.81%
Glow(10th Per.) 3.53% 0.02%

Table 6: Mean detection rates of SDIMs and Glows with different
thresholds on OOD detection.

likelihoods are lower the class threshold δc will be detected
as OOD samples. Same evaluations are applied on condi-
tional Glows with 10th percentile thresholds, but the results
are not good. The results are clear and confirm that SDIMs,
generative classifiers on high-level representations, are more
effective on classification tasks than fully conditional gen-
erative models on raw pixels. Note that fully generative
models including VAE used in [Li et al., 2018; Schott and
Rauber, 2018] fail on OOD detection [Nalisnick et al., 2018;
Choi and Jang, 2018]. The stark difference of SDIM from
full generative models (flows or VAEs) is that SDIM models
samples’ likelihood in the high-level representation spaces,
rather than directly on the raw pixels.

Summary SDIM models perform on par with or better than
strongest variant GBZ in [Li et al., 2018] on detection of vari-
ous types of adversarial examples. However, the performance
of SDIM could extend to complex datasets, while GBZ is
limited to MNIST. Modeling likelihood on image representa-
tions, SDIM models easily detect OOD samples. While fully
generative models, e.g. GBZ, who model likelihood on raw
image pixels, are known to fail on this task.

5 Conclusions and Future Directions
Though some promising results of the robustness of genera-
tive classifiers have been observed, it is challenging to scale
them on complex datasets. In this paper, we introduce su-
pervised probabilistic constraints to DIM. Giving up the full
generative process, SDIMs are equivalent to generative clas-
sifiers on high-level data representations. Unlike full con-
ditional generative models which achieve poor classification
performance even on CIFAR10, SDIMs attain same-level per-
formance as the comparable discriminative counterparts on
complex datasets. The training of SDIM is also computation-
ally similar to discriminative classifiers, and does not require
prohibitive computational resources. Our proposed rejection
policy based on off-manifold conjecture, a built-in defense
mechanism of SDIM, can effectively reject illegal inputs, in-
cluding adversarial examples, and OOD samples. We demon-
strate that likelihoods modeled on high-level data representa-
tions, rather than raw pixel intensities, are more robust on
downstream tasks without the requirement of generating real
samples.

The rejection mechanism in this paper is different but com-
plementary to other defense mechanisms, e.g. adversarial
training. Performing classification with rejection, classifiers
can refuse to make low-confidence predictions, while adver-
sarial training aims to inherently improve models’ recogni-
tion robustness. It is to be explored how to combine them to
build more trustworthy models.
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