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Abstract

In this paper, we first propose a novel Structured
Sparse Subspace Learning (S3L) module to ad-
dress the long-standing subspace sparsity issue.
Elicited by proposed module, we design a new
discriminative feature selection method, named
Subspace Sparsity Discriminant Feature Selection
(S2DFS) which enables the following new func-
tionalities: 1) Proposed S?DFS method directly
joints trace ratio objective and structured sparse
subspace constraint via {3 g-norm to learn a row-
sparsity subspace, which improves the discrim-
inability of model and overcomes the parameter-
tuning trouble with comparison to the methods
used /5 ;-norm regularization; 2) An alternative it-
erative optimization algorithm based on the pro-
posed S3L module is presented to explicitly solve
the proposed problem with a closed-form solu-
tion and strict convergence proof. To our best
knowledge, such objective function and solver are
first proposed in this paper, which provides a new
though for the development of feature selection
methods. Extensive experiments conducted on sev-
eral high-dimensional datasets demonstrate the dis-
criminability of selected features via S?DFS with
comparison to several related SOTA feature selec-
tion methods. Source matlab code: https://github.
com/StevenWangNPU/L20-FS.

1 Introduction

Data in many areas are represented by high-dimensional fea-
tures, and a natural question emerges out: what are the
most discriminative features in the high-dimensional data?
Feature selection plays a crucial role in machine learning
which endeavors to select a subset of features from the high-
dimensional data for improving data compactness and reduc-
ing noisy features so that the over-fitting, high computational
consumption and low performance issues can be alleviated in
many real-world applications.

Feature selection approaches can be roughly divided into
three categories, i.e., filter methods [Gu et al., 2012], wrap-

*Corresponding Author

3009

per methods [Maldonado and Weber, 2009] and embed-
ded methods [Xiang et al., 2012; Ming and Ding, 2019;
Tian et al., 2019]. Wherein, filter methods focus on eval-
uating the correlation of features with respect to class label
of data, which results in that the correlated features are re-
dundant. Wrapper methods measure the importance of fea-
tures according to classification performance, so as to the
computational cost of wapper model is very high and the rep-
resentability of learned features may be poor in other tasks.
In contrast, embedded methods gain more attentions since it
incorporates feature selection and classification model into
a unified optimization framework by learning sparse struc-
tural projections. Besides, some feature selection approaches
based on neural network [Zhang et al, 2020] and auto-
encoder model [Han et al., 2018; Abid et al., 2019] pay over-
much attentions on minimizing the reconstruct errors, which
possible not benefit for classification task and tuning param-
eters may affect its efficiency of practical applications.

Most of embedded methods commonly employ ¢ ;-norm
regularization to improve the row-sparsity in learned sub-
space. Concretely, Nie et al. propose robust feature selection
model (RFS) [Nie et al., 2010] which simultaneously incor-
porates ¢> ;-norm into loss function and regularization term
to overcome outliers issues and make feature selection come
true. Similar, [He er al., 2012] proposes to use Correntropy
Robust loss function in Feature Selection (CRFS) to enhance
model’s robustness. Additionally, [Xiang et al., 2012] devel-
ops a feature selection effort joints discriminative least square
regression (DLSRFS) model and sparse /> ;-norm regulariza-
tion into an unified framework. Recently, RIFWL [Yan et al.,
2016] aims to learn the ranking of all features by imposing
£3,1-norm constraint and non-negative constraint on learned
feature weights matrix. Regrettably, all aforementioned ap-
proaches are always unable to escape the dilemma of tuning
the trade-off parameter between loss term and sparse regu-
larization term. Moreover, the compactness of sparse row is
sensitive to the trade-off parameter, namely, the uniqueness
of optimum is difficult to guarantee.

An illustrative example is depicted in Figure 1, from which
we can figure out that 5 ;-norm calculates the score of fea-
tures integrally, then ranks them resorting to the learned
scores. By doing so, the feature ranking results may be
changed dramatically when the feature score vary subtly.
In contrast, {3 g-norm obtains the score matrix only depend
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(a). L2,1 sparse learning (b). L2,0 structured sparse learning

Figure 1: Visualization of learned sparse feature score matric, (a).
{21 sparse matrix and (b). {2 structured sparse matrix, respec-
tively. Navy blue background denotes the scores that close to zero.

upon the k features, and no further ranking operation is re-
quired. Based on these, Cai et al. [Cai et al., 2013] question-
ing that whether the method based on convex problem is al-
ways better than that based on non-convex problem. They ex-
ploit top-k features selection method (RPMFS) based on least
square regression model with ¢ o-norm equality constraint.
Pang et al. [Pang et al., 2018] develop an Efficient Sparse
Feature Selection (ESFS) via /5 g-norm constraint based on
least square regression model as well. In [Du er al., 2018],
Unsupervised Group Feature Selection (UGFS) algorithm se-
lects a group of features initially then update the selection
until a better group appears by using {3 g-norm constraint.
Nevertheless, both of above methods optimize the /5 o-norm
constraint problem by using Augmented Lagrangian Multi-
plier (ALM) and gradient descent optimization algorithms,
which may result in that the solution is sensitive to the initial-
ization and easy to stuck in local optimum. Ultimately, the
subsequent performance of classification is fluctuant.

Facing these obstacles that hinder the development of fea-
ture selection, we entail solving £5 o-norm constraint problem
along with rigorous theoretical guarantee firstly in this pa-
per. Then, we propose a new discriminative feature selection
model via orthogonal /3 o-norm constraint. Finally, we ana-
lyze the performance of proposed method from two aspects,
i.e., discriminability and efficiency. Our contributions can
be summarized as follows:

e We propose a Structured Sparse Subspace Learning
(S2L) module to solve the subspace sparsity issue with
theoretical guarantee, which is first presented in our pa-
per according to our best knowledge.

e We elaborately design a discriminative feature selection
model, named Subspace Sparsity Discriminant Feature
Selection (S2DFS) that integrates trace ratio formulated
objective and structured sparse subspace constraint for
acquiring more informative feature subset.

e Optimizing the proposed S?DFS model is a NP-hard
problem. We provide an alternative iterative optimiza-
tion algorithm to solve trace ratio problem, in which the
proposed S?L module is employed to acquire a closed-
formed solution rather than an approximate one, so as to
ensure the stability of selection results.

e Experimental results show the effectiveness of proposed
optimization algorithm in two perspectives, i.e., perfor-
mance: our method outperforms other related SOTA
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feature selection methods in terms of classification on
several real-world datasets; convergent speed: our algo-
rithm reaches convergence within few iterations.

2 Related Works

In this section, we briefly review constrained Linear Discrim-
inative Analysis (LDA) in trace ratio formulation, then the
subspace sparsity issue will be introduced.

2.1 Constrained Trace Ratio LDA

Given the training data X = {x1, X2, ..., X, } € R4*", where
x; € R and the label vector is y = {y1,%2, ..., Yn}»
where y; € {1,2,...,c}, and ¢ denotes the total class num-
ber. LDA aims to find a transformation matrix W € R4*™
to map original high-dimensional sample x € R%*! into low-
dimensional subspace with m dimensions where m << d.
For improving the discriminative power of model, the sam-
ples within the same class are pulled together as well as
those points between different classes are pushed far away in
learned subspace ideally. There are many kinds of objective
function of LDA [Bishop, 2006], one of the most discrimi-
native objectives is the following constrained trace ratio one

Tr(WTS,W)
max ————— .
wTw=1 Tr(WTS, W)

= Y —p) (pi—p)' and S, =
D it Doyem, (5 — i) (%5 — wi)" denote between-class
and within-class scatter matrix respectively. n; is the num-
ber of samples belong to i-th class, p; denotes the mean of
samples in ¢-th class, p is the mean of total samples and 7r;
denotes the set of i-th class points. Orthogonal constraint is
used to avoid trivial solution [Nie et al., 2019]. Note that, op-
timizing such model in Eq.(1) is a non-convex optimization
problem that does not have a closed-form solution, and sev-
eral attempts [Wang ef al., 2007; Nie et al., 2019] have tried
to solve it. In what follows, we will provide an alternative
iterative optimization algorithm to get the solution.

(D

where S,

2.2 Subspace Sparsity Problem

Subspace sparsity issue is originally derived from the sparse
principal subspace estimation [Vu et al., 2013] which can be
generally formulated as

max TT(WTAW)’ @
WITW =T xm; || W, o=k

where m < k < d and A € R¥? is a positive semi-
definite matrix. [W|,, = Y0, Hz;.’; L ‘O
number of non-zero rows in matrix W, and the constraint
W]/l = k forces the learned subspace is row sparse, in
which the index of non-zero rows equals to the index of se-
lected features. Since both the orthogonal and row sparsity
constraints are the non-convex constraint, optimizing prob-
lem (2) is challenging. In the following Section 3.1, we will
propose the S>L module to solve it with theoretical guarantee.

denotes the
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3 Proposed Method

3.1 Structured Sparse Subspace Learning Module

In this section, we propose a novel S3L module to solve prob-
lem (2) that has been tentatively solved in [Wang et al., 2014;
Yang and Xu, 2015], but none of them provides deterministic
guarantee on global convergence. We first develop a straight-
forward strategy for solving the case that rank (A) < m.
Then, an iterative optimization Algorithm 1 is derived to
solve the general case that rank (A) > m in which a low-
rank proxy covariance P is designed to approximate A. For
readability, we define two definitions that will be used in fol-
lowing deducing:

Definition 3.1 Given an indices T whose elements span from
1 to d. Then, the row extraction matrix Qg € RIxFk jg defined

as:
L, if i=1I(j)
qij = 0

otherwise.
Define Qqx(Z) = QF as an operator that inputs indices T
and outputs row extraction matrix Qfl € R4xF,
Case 1: rank (A) < m

We first consider the simplest problem, i.e., k = m, thus,
the problem (2) reduces to

max Tr (WTAW). (3)
WITW=ILnxm;||W|y g=m

Due to the constraint WIW = I, and [W|, 0 =m,
W can be rewritten as W = Q'V, where V. € R™*™ and
satisfies VIV = I,,,.,,,. Additionally, Q7" = Qg (Z) €
R¥*™ js the row extraction matrix that has been defined.
Then, problem (3) has been reduced to solve

max
VeRmxm 7VTVZI'm X m

Tr (VTAV) , 4)
where A = Q" AQ. So far, the row extraction matrix
Q7 is still unknown. As a consequence, considering V €
R™*™ js a square matrix and VIV = VVT =1, we can
infer the fact Tr(VTAV) = Tr(AVVT). Thus, problem
(4) can be reduced to

maxTr (A) , (®)]

which has a globally optimal solution that m largest diagonal
elements of A, and Q[ is generated by operator Qg ,,,(Z)
with input Z that equals to the indices of m largest diagonal
elements of A.

Next, we consider the case that k& # m, and problem in
Case 1 becomes to

max T'r (WTAW)
WeRdxm (6)

st. WI'W =Lmum, [W|ly, = k,rank(A) < m.
We use similar technique to solve problem (6) as
max Tr ( flTAQS) , @)

which can be easily solved globally by selecting & largest di-
agonal elements of A, and Qfl = Qa4.x(Z) where Z denotes
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the indices of k largest diagonal elements of A. Through-
out above analysis, our S®L module is able to efficiently
(non-iteratively) obtain globally optimal solution of NP-
hard problem (2) when rank(A) < m.

Nevertheless, the Case 1 is not usually occurred in prac-
tice, since PCA often used as a data-preprocessing technique
to remove null space of data, which cause a general Case 2,
i.e., rank(A) = d > m. Next, we develop an iterative S3L
module to solve the problem (2) in the following Case 2.

Case 2: rank (A) > m

We solve the problem (2) in case 2 based on the
Minimization-Majorization framework (MM) [Sun er al.,
2016] whose key insight is to maximize a lowerbound func-
tion of target problem. Therefore, how to design a suitable
lowerbound function is the key to the success of MM. For-
tunately, through a lot of attempts, we elaborately design an
ideal lowerbound function of problem (2) as follow:

g(W|W,) = Tr(WIT,W)

8
st. WeK, ®

where K = {W € R”™WTW = I, |W|,, = k} is
the structured sparse subspace constraint, the surrogate vari-
able T; = AW, (WtTAWt)T W7 A and ()" denotes the
Moore-Penrose pseudoinverse. As a lowerbound function, a
deserved property should be invariably held:

Tr(WIT,W) < Tr(WTAW) VW e K, (9

which will be proved in Section 3.2.
According to MM framework, solving problem (2) in Case
2 becomes to solve

max Tr (WT'T, W), (10)

which is still a difficult problem that can not be optimized
directly. Now, we discuss some properties of designed surro-
gate variable I'; through the following Theorem 1.

Theorem 1 In the t-th iteration (t > 1), the conditions
rank (T'y) < m and T'y = 0 will always hold.

Proof 1 According to the property of matrix rank
rank(AB) < min{rank(A),rank(B)}, we have
rank(Ty) < rank(W.;) = m, then the first condi-

tion has been proved.  Subsequently, we suppose that
Q =AW, (WtTAWt)T WtTA%, then according to the fact
that A = 0, A is a symmetric matrix and Bf = BIBBT, we
can obtain

Q7 = AW, (W AW,)' W7 Aw, (W7 AW,)  wT A
=T = 0,

(1)
which completes the proof of Theorem 1.

According to Theorem 1, we wondrously discover an in-
teresting phenomenon that the designed surrogate variable I';
satisfies all conditions of A in case 1, i.e, rank(A) < m and
T'; >~ 0. Those facts enlighten a thought that problem (10)
can be solved by using S3L module iteratively, which is sum-
marized in the following Algorithm 1.
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Algorithm 1 Solve problem (2), when rank(A) > m

Input: A, k, m, d and Wy;
Initialization: Wy = rand(d, m), t = 0;
Repeat:

1.T, «— AW, (WTAW,) W7 A;

2. T, < sort (diag(T'y), ’descend’, k );
3. Qih < Qur(Th);

. k T k
4.V, < eigs ((Qtd) AQ.E, ’descend’,m>;

5. Wt+1 < QtZVt,
6.t=t+1,

Until convergence
Output: W* € R¥x™,

3.2 Algorithm Analysis

We prove the convergence of the proposed Algorithm 1
through the following Theorem 2.

Theorem 2 Algorithm 1 increases the objective function
value of Eq.(2) in each iteration, when rank(A) > m.

Proof 2 Note the fact that B = BB'B, we can infer that
Tr (W] AW,) = Tr (W] AW, (W] AW,)' W] AW, )

=Tr (W{T\W,),
(12)
where rank (T';) < m. Then, we can use the S>L module to
maximize the above Eq.(12) as

Tr (W{T,W,)

. _ (13)
=T (WEL AW, (W7 AW,)' WIAW,, ),

where V/\\7tT+1 is generated according to Eq.(4) with input A =
T'y. Thanks to the commutative law in algebraic operation of
matrix trace and A is a symmetric matrix, Eq.(13) can be
decomposed as

Tr (30), (14)
where two symmetric matrices are respectively defined as
& = AW, (WIAW,) WTAF ¢ R @ =
A:W, WL A3 € R Considering Theorem 4.3.53
in [Horn and Johnson, 2012], we have

d m
Tr(20) <) N(®)X(©) <Y X(©), (3

which provides an evidence of correctness for Eq.(9). More-

over, note that rank(®) < rank(\/ﬂ\/'tﬂ) = m, then we have
YA (©) = Tr (). Combining Eq.(12), Eq.(13) and
Eq.(15), we can conclude that

Tr (WIAW,) < Tr (WtTHA\/?\\QH) . (6

According to the previous definitions, i.e., W11 = QtSVt
and Wy = QtSVt, we can finally obtain that

Tr (WIAW,) = Tr ((%)T (QtS)TAQt’;\?t)
a7
<Tr (ngA\/ﬂ\/’Hl) ,
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then the proof of Theorem 2 has been completed.

3.3 Subspace Sparsity Discriminant Feature
Selection

In this part, we propose to introduce a novel feature selection
method named S?DFS, and optimize it by using S*L. module.

Model Formulation. In order to improve model’s discrim-
inative power, S?DFS leverages trace ratio LDA model in
Eq.(1) for pulling samples within same class together and
pushing those samples between different classes far away in
learned subspace. Besides, we use the structured sparse sub-
space constraint to directly facilitate the exploration and in-
ference of important features of data. In light of these points,
the objective function of S2DFS model can be formulated as

Tr (WTSbW)
max P ————————
werdxm T'r (WTS,, W) (18)
st. WIW = Lyum, [Wll,o =k,
where m < k < d, m is the number of selected features
and k£ means the number of non-zero rows in W. Due to

the nonlinear constraints and trace ratio objective, optimizing
such a maximization ratio problem in Eq.(18) is challenging.

Optimization Algorithm Before solving problem (18), we
first consider to solve a general maximization ratio problem

as follow:
f(x)
max

xeC g(x)

; 19)

where x € C is arbitrary constraint on x and as the denomina-
tor, g(x) > 0. In Algorithm 2, we summarize an alternative
optimization algorithm to solve the general problem (19), and
a series of theorems and proofs are presented to guarantee its
convergence.

Algorithm 2 Algorithm to solve the general maximization
ratio problem (19).

1. Initialization: z € C, ¢t = 1.
While not converge do

2. Calculate \; = f(xt).
9(xt)
3. Calculate x;41 = arg max f(x) — Ag(x).
4.t=t+1.
end while

Theorem 3 The global solution of the general maximization
ratio problem (19) is equivalent to the root of following func-
tion:

h(X) = argmax f(x) — Ag(x). (20)

Proof 3 Supposing x* is the global solution of problem (19)
and its corresponding maximal objective function value is \*,

then the following equation holds: féx*i = \*. As a result,
g(x
f(x) . g
V x € C, we always have < X*. As the condition

g(x) ~
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g(x) > 0, we can infer that f(x)—A*g(x) < 0 which means:

max f(x)—Ag(x)=0 = h(A*)=0. (2I)

Consequently, the global maximal objective function value \*
of problem (19) is the root of function h(\). Thus, the proof
of Theorem 3 is completed.

0

Theorem 4 Algorithm 2 increases the objective function
value of problem (19) in each iteration until it reaches con-
vergence.

Proof 4 According to the step 2 in Algorithm 2, we have
f(x) — Mg(x¢) = 0, and from step 3, we can infer that
f(xeq1) — Aeg(xer1) > f(xe) — Aeg(xt). Combining above
two inequalities, we can obtain f(X¢+1) — Mg(Xe41) > 0
FOn) oy _ SO i Algorithm
9(X41) 9(xt)

2 increases the objective function value in Eq.(19) in each
iteration and the proof of Theorem 4 has been finished.

that equals to

O

Systematically, it is worth noting that Theorem 3—4 provide
a complete framework to optimize the general maximization
ratio problem in Eq.(19) with rigorously convergent proof.

According to the Algorithm 2, we can infer that the key of
solving proposed maximization ratio problem in Eq.(18) is to
solve the following problem:

max Ir (WTBW)
WERd Xm (22)

st. WI'W =L[W|,, =k,

where B = S, — AS,, + I is a positive semi-definite matrix
if n is large enough. In theory, the relaxation parameter 7 is
easily to be calculated as the largest eigenvalue of S, — AS,,.
The first way that can be thought to acquire 7 is eigenvalue
decomposition, which however is time-consuming in dealing
with high-dimensional data. Here, we employ a power iter-
ation method [Nie et al., 2017] to solve above issue, which
can obtain the relaxation parameter 1 faster than eigenvalue
decomposition and improves the applicability of our method.

Note that problem (22) is a special case of problem (2),
which can be directly addressed by using proposed S°L
module and obtain a closed-form solution.

4 Experiments

In this section, for verifying the effectiveness of proposed
method, we first present an visualization experiment on Mnist
dataset. Then, we evaluate its classification performance on
nine publicly available high-dimensional datasets. Finally,
we exhibit the convergent speed of our method.

4.1 Preliminary

Datasets. We evaluate the performance of proposed method
on several high-dimensional real-world datasets, and more
details about them are shown in Table ??. For the color image
datasets, i.e., Pubfig [Xu er al., 2018], we firstly downsample
each image into a suitable scale and extract 100 LOMO fea-
tures [Liao er al., 2015] for data representation.

"http:/qwone.com/~jason/20Newsgroups/
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Datasets Dim. Class Num. Type
20News! 8,014 4 3,970 Text
WebKB? 4,165 7 1,166 Web
Binalpha® 320 36 1,404 Letter
Pixraw10P®> 10,000 10 100  Face image
Text1? 7,511 2 1,946 Text
Pubfig 65,536 8 772  Face image

Table 1: Descriptions of datasets.

Experimental setting. We compare our method to several
SOTA feature selection methods including DLSRFS [Xiang
etal., 2012], RFS [Nie et al., 20101, CRFS [He et al., 2012],
RJFWL [Yan er al., 2016], infFS [Roffo er al., 2015] and
ESFS [Pang et al., 2018] in the classification task. We use
the k-nearest neighbor algorithm as the classifier, all exper-
iments are repeatedly conducted 10 times and the average
recognition rate and standard deviation are recorded as the
measurement of performance for all competitors.

4.2 Visualization Experiment

In order to intuitively show the performance of feature selec-
tion algorithm, we provide an visualization experiment con-
ducted on Mnist digits dataset. Figure 2b exhibits the two
types of selected features, i.e., digital pixels (white dots) and
background pixels (red dots) respectively. In the Figure 2c,
we show the selected features lied on the Mnist digits, from
which we can observe that the shape of digits can be dis-
tinctly reconstructed by selected features generated by pro-
posed method. Experimental results verify the discriminabil-
ity of selected features that learned from our method.

(a) (b)

Figure 2: The results of using proposed S?DFS to select 20 most
informative pixels of Mnist digits. (a) The selected 20 features on
each MNIST digit that are shown in white pixels. (b) The selected
features in training samples which are in red and white dots. (c) The
selected features (red points) lied on the Mnist digits.

4.3 Classification Experiment

Figure 3 shows the statistical estimation of classification
results on six high-dimensional real-world datasets, which
demonstrates the discriminability of feature subsets selected
by our method. Concretely, in general, comparing to all
competitors, our method always achieves comparable or even

Zhttp://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
*http://www.escience.cn/system/file ?fileld=82035
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Figure 3: The error bar figure of classification accuracy with different numbers of selected features on six real-world datasets.

highest mean accuracies on almost all datasets with differ-
ent number of selected features. Specifically, due to the non-
parameter property of our method, it achieves stable perfor-
mance on all datasets. Furthermore, our method outperforms
ESFS in different degrees on various datasets, which results
from that ESFS applies approximate gradient descent algo-
rithm to obtain a suboptimal solution, while our method ob-
tains a closed-form solution, which guarantees stability of our
method’s performance.

4.4 Convergence Analysis

Figure 4 plots the convergence curves of our iterative al-
gorithm with different number of selected features m and
model’s sparsity & on 20News and WebKB datasets. Over-
all, our algorithm reaches convergent within 15 iterations in
most cases or even less than 5 iterations on 20News dataset.
In detail, a subfigure embedded in each figure is used to facil-
itate observation of the curve convergence when k = m. We
discover the fact that the curve reaches convergent with one
iteration on all datasets, which verifies the high-efficiency of
proposed optimization algorithm.

5 Conclusion

In this paper, we have proposed explicit discriminative fea-
ture selection algorithm via employing structured sparse sub-
space constraint, which is a NP-hard optimization problem.
To our best knowledge, there are no techniques able to obtain
closed-form solution and proves convergence. As the major
contribution of this paper, we provide an ideal iterative opti-
mization algorithm that can directly solve proposed NP-hard
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Figure 4: Convergence curve of objective function value in Eq.(18)
with different number of selected features m and model sparsity k
on 20News (a) and WebKB (b) datasets respectively.

problem and reaches convergent very fast in both theory and
practice. Experimental results demonstrate the effectiveness
of proposed method. In future works, we intend to develop
nonlinear feature selection model via proposed S*L module
for future improving discriminability of selected features.
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