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Abstract

Privacy-preserving deep neural network (DNN) in-
ference remains an intriguing problem even af-
ter the rapid developments of different communi-
ties. One challenge is that cryptographic techniques
such as homomorphic encryption (HE) do not na-
tively support non-linear computations (e.g., sig-
moid). A recent work, BAYHENN (Xie et al.,
IJCAT’19), considers HE over the Bayesian neu-
ral network (BNN). The novelty lies in “meta-
prediction” over a few noisy DNNs. The claim
was that the clients can get intermediate outputs (to
apply non-linear function) but are still prevented
from learning the exact model parameters, which
was justified via the widely-used learning-with-
error (LWE) assumption (with Gaussian noises as
the error). This paper refutes the security claim of
BAYHENN via both theoretical and empirical anal-
yses. We formally define a security game with dif-
ferent oracle queries capturing two realistic threat
models. Our attack assuming a semi-honest adver-
sary reveals all the parameters of single-layer BAY-
HENN, which generalizes to recovering the whole
model that is “as good as” the BNN approximation
of the original DNN, either under the malicious ad-
versary model or with an increased number of or-
acle queries. This shows the need for rigorous se-
curity analysis (“the noise introduced by BNN can
obfuscate the model” fails — it is beyond what LWE
guarantees) and calls for the collaboration between
cryptographers and machine-learning experts to de-
vise practical yet provably-secure solutions.

1 Introduction

Some machine-learning as-a-service (MLaaS) platforms al-
low clients to obtain inference results given by a deep neural
network (DNN) on their queries. The query often involves
sensitive data that the MLaaS provider should not know, espe-
cially in healthcare/financial applications. Likewise, leaking
the valuable well-trained model, which could further allow
the recovery of the sensitive training data, can be catastrophic.
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An ideal (and seemingly counterintuitive) privacy goal is
that the MLaaS provider can carry out inference without
knowing the query and without leaking the model to the
querying client. This is also known as secure two-party com-
putation. Using garbled circuits (GC), everything computable
(by a Boolean circuit) can be done “securely.” Nevertheless,
applying GC over the whole inference computation is nat-
urally less efficient than tailor-made designs optimized for
some specific computations. Moreover, cryptographic com-
putations mostly work on a finite field of integers, while
floating-point computations are extensively used in machine-
learning computations. Constructing a secure (i.e., privacy-
preserving) solution for computation of machine-learning
tasks is thus highly non-trivial, which requires the expertise
of multiple communities, including scientific computing, ma-
chine learning, and cryptography in particular. It becomes
even more complicated if the design relies on the trusted com-
putation enabled by trusted processors (e.g., limited mem-
ory space), the speedy computation enabled by graphic pro-
cessing units (e.g., incompatibility with cryptographic oper-
ations), or the involvement of external servers (which are
not fully-trusted) to perform the computation collaboratively.
One may consult [Chow, 2019] for a brief overview.

Homomorphic encryption (HE) is a fundamental building
block that is helpful for secure computation of arithmetic cir-
cuits, which allows performing linear operations over the en-
crypted data, e.g., a feature vector. Fully homomorphic en-
cryption (FHE) allows an arbitrary number of additions and
multiplication, while somewhat homomorphic encryption al-
lows a limited number of them. The simplest HE is additive
HE (AHE) that only allows addition but cannot support the
multiplication of two ciphertexts. Naturally, the efficiency of
the less versatile HE schemes is higher than the more pow-
erful ones in general. FHE has been applied in private in-
ference for simpler models such as support vector machines,
naive Bayes classifiers, and decision trees [Bost et al., 2015].
Subsequently, a tailored design for decision trees by using
just AHE is proposed [Tai et al., 2017]. For neural networks
(NN), CryptoNet [Gilad-Bachrach et al., 2016] utilized FHE.

As HE cannot natively support non-linear operations, one
of the major obstacles is to also support non-linear operations
efficiently, e.g., argmax, comparison, or many popular acti-
vation functions used in NN. Apart from linear approxima-
tion [Gilad-Bachrach et al., 2016; Wagh er al., 2019], many
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different flavors of techniques have been proposed, such as re-
ducing the model size [Bourse ef al., 2018] or operating over
transformed ciphertext [Juvekar er al., 2018]. However, the
involved cryptographic techniques still slow down the infer-
ence in the plaintext domain by several orders of magnitude.

Realizing that data scientists might not be that familiar
with HE, nGraph-HE2 [Boemer et al., 2019] is proposed as a
compiler that produces HE-based programs for popular DNN
frameworks, e.g. TensorFlow and PyTorch, for oblivious in-
ference. With various (encoding and arithmetic) optimiza-
tion for HE, their experiment results show an impressive im-
provement over CryptoNet. Specifically, for inference over
MobileNetV2, a lightweight network with a relatively small
number of parameter, they achieve 60.4%/82.7% top-1/top-5
accuracy and an amortized runtime of 381 ms/image on the
ImageNet dataset. Yet, these figures are obtained under the
“client-aided model,” in which the client decrypts the inter-
mediate result of each linear layer for non-linear activations.

GELU-net [Zhang er al., 2018] proposed a secure DNN
training protocol that still relies on HE for outsourcing the
weighted sum operation to a centralized server (for each neu-
ron layer during the forward propagation). For non-linear ac-
tivation over the resulting encrypted dot-product, instead of
still relying on the server to perform some complicated cryp-
tographic operation, it is returned to a data provider for de-
cryption and performing activation on the plaintext. A take-
home message confirmed by GELU-net via experiment is that
such plaintext computation, even with the frequent network
communication, is better than the FHE approach of using
fifth-order Taylor expansion for approximating the activation
function via FHE. Note that backpropagation also relies on
HE. For the server to update the model, the data provider ap-
plies random masks to the gradients before returning them.

Seeing the potential of using extremely-efficient plain-
text computation for “supplementing” HE-based linear op-
erations, BAYHENN [Xie et al., 2019] proposed a secure
Bayesian neural network (BNN) inference protocol by al-
lowing the client to learn intermediate results in clear, but
“without” using the original private DNN model. Presum-
ably, their weights in “BNN” are sampled from a trained
DNN model with Gaussian noises added, and taking the av-
erage over the final results. Their security argument resorts
to the learning-with-error assumption (LWE), which is a cor-
nerstone of lattice-based cryptography and widely used. Ob-
serving the similarity between LWE and DNN with Gaus-
sian noise, they claim the protocol is secure against any semi-
honest adversary for an unlimited number of queries.

1.1 Our Contribution

Cryptography is famous for its provably-secure guarantee
against generic attack strategies without imposing too many
ad-hoc assumptions (e.g., the plaintext data is full of entropy).
To avoid “too much” plaintext leakage, GELU-net suggested
a heuristic defense of imposing a bound on the number of
times a client’s data can be used continuously for training,
which is randomly picked from [1,m + 2], where m is the
number of neurons in a layer. Learning the rationale behind
the rate-limiting of GELU-net, lifting the restriction in BAY-
HENN without a formal analysis is walking a tightrope.
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This paper refutes the security claim of BAYHENN via
both theoretical and empirical analyses. We formally define a
security game with oracle queries modeling a realistic threat
in practice. Concretely, given merely meta information (the
input and output sizes), our attack can completely reveal the
parameters in a single layer (from the leakage of the inter-
mediate outputs), which in turn recover the whole model ul-
timately (under a slightly stronger adversary model or with
more oracle queries). The model learned from our attack is
“as good as” how good the BNN approximated the original
DNN in the first place. This showcases the risk of adding
noise “casually” instead of using well-studied cryptographic
tools — the noise introduced by BNN (originally for another
purpose) cannot provide the intended protection.

To measure the effectiveness of our attack, we analyze the
extraction accuracy, which is the closeness of the results be-
tween the extracted and the original models for the same test
dataset with respect to the number of queries and parameters.
We conduct experiments to extract the BNN model on differ-
ent real-world datasets to validate our claim. We argue that
the LWE assumption can never protect the model for scenar-
ios implicitly envisioned by BAYHENN.

1.2 Related Work

In model inversion attack, some specific background infor-
mation and their connection with a specific training data item
are often needed. For example, for face recognition tasks, a
unique identifier or a blurred image is needed [Fredrikson et
al., 2015]. In contrast, our attack aims to “denoise” the obfus-
cated model without the need for such auxiliary information.

Cryptography is for reducing the trust of the well-behavior
of the computing party. Some researchers thus shoot for us-
ing lesser cryptographic techniques by relying on extra trust
assumptions or the involvement of more servers instead of
more server-client interactions. Examples include relying on
a trusted processor [Tramer and Boneh, 2019] or the assump-
tion that two or more individually-untrustworthy servers col-
laboratively perform the inference yet without colluding with
each other. To overcome HE inefficiency on non-linear func-
tions, SecureNN [Wagh er al., 2019] utilizes additive-secret
sharing' that also allows linear operation, but multiplication
requires online interaction for the share-holding parties (that
is why they cannot collude). Computations are faster than
prior work but at the cost of increased communication rounds
linear in the maximum multiplicative depth of the function.

With the current state-of-the-affairs, it remains a challeng-
ing open problem to come up with a secure design that can
speed up privacy-preserving inference.

QOutline. Section 2 presents some background of crypto-
graphic primitives and BAYENN. We present and analyze our
attack theoretically in Section 3 and empirically in Section 4.

2 Preliminary

Throughout the paper, boldface capital letters (e.g., A) and
small letters (e.g., ) respectively denote matrix and vector of
scalars, which are denoted by regular small letters (e.g., a).

'Secret sharing of « is {xx}. = can be recovered given a suffi-
cient number of x. Insufficient shares leak no information about x.
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Algorithm 1: BNN or DNN (S = 1, 3 = () Inference

Algorithm 2: BAYHENN

Input: a, {W’, b", X, ¢'}c11,4, S
Output: The mean of the output z
: {a) < a}lrep,g {initialize a with the same a}
: fori € [1,4] do S
{W;cv b;q}ke[l,S] < N((le bl)a ZZ)
{2}, < 2, "W + b Jren,s)
{ay, < ©"(24) brep.s)
end for
return z + L Y0_ af

A A o

2.1 Cryptographic Primitives

Learning with Errors (LWE). Let Z, denote the ring of
integers modulo a positive integer ¢ and let Z; denote the
set of n-vectors over Z,. Given a probability distribution x
over Z, a positive integer n, and a positive integer ¢ of size
dependent on n, the LWE distribution £, , is obtained by:
for any s € Zy, sample a uniformly from Zj and the error
e € Z, according to x, and output (a, (a,s) +¢) € Z{ X Z,.
The (search) LWE problem is to recover s from any LWE
instance randomly sampled from L, ,. This is conjectured to
be computationally hard. Such an assumption is widely used

in cryptography, in particular, for building SHE/FHE.

Homomorphic Encryption (HE). In a public-key encryp-
tion (PKE) scheme, a client generates a key pair (pk, sk) by
invoking KGen(1*), where X is the security parameter. The
secret key sk is kept private while pk will be published. Enc
encrypts a message m under a public key pk, which outputs
M <— Encpe(m). We use the /7 notation to denote an encryp-
tion of m. Dec takes sk and 7, and outputs m <— Decg ().
HE is PKE that features homomorphic operations (P, ®)
where @Y = Encpk(z+y) and (cor é) g = Encpk(c X y).
Specifically, (linear) HE supports only addition and plaintext-
ciphertext multiplication (¢ ® g, but not ¢ ® ). An HE
scheme that supports some/unlimited ciphertext-ciphertext
multiplications is called somewhat/fully homomorphic en-
cryption (S/FHE). The standard security requirement of HE
is indistinguishability against chosen-plaintext attack, or se-
mantic security. Namely, it guarantees that any probabilistic
polynomial-time adversary cannot distinguish between the ci-
phertexts encrypting two adversarially-chosen messages.

2.2 Neural Network

Deep Neural Network (DNN). A DNN consists of weight
matrix W*, bias b?, and activation function ¢° for each layer
i € [1,£]. We call {W' b’} ;.1 4 the model parameter. For a
DNN inference task over an input feature vector a (:= a0,
the i-th layer (i > 0) takes the output from the (i — 1)-th
layer a’~! and computes z° = a’~"'W' + b?, then it outputs
the activated value of z’ as a’ = ¢*(z?). The final output is a
class label ¢ or a score for each class.

Secure Computation of Non-linear Function. To protect
{W',b'};c1,¢, we should also protect the i-th (linear) inter-
mediate vector z' = a’ "W’ + b’ before it is activated by
the non-linear ¢*(-). Most works compute the non-linear
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Client Input: Feature vector a
Server Input: Model with Gaussian noise covariance
{WZ7 bl) 217 @Z}ie[l,é] ) S
QOutput: The label with the highest mean score ¢
I: Client: Execute (pk, sk) <— KGen(1™) and send pk
2: Server: Send S, {¢" }icq1,¢
3: Client: {a < a}yeq1,g]
4: fori € [1,¢] do
5. Client: Send {a} " + Encpe(a) ")} rep,s)
6 Server: {Wltm bé}ke[l,S] A N((Wt7 bl)a El)
7: Server: {b « Encpk(bi)}ke[lﬁ]
8 Server: Send {z} < ai ' ® Wi @ b }rep1.]
9:  Client: {2 < Dec(2})}rep,s)
10:  Client: {a}, < ©'(2},) rep,s]
11: end for
12: p L300 al
13: return t < arg max;(p;)

via (polynomial or piecewise linear) approximation, which
requires only addition and multiplication for HE-based ap-
proach, or relies on OR and AND gates for the garbled-circuit
approach with addition processing. Alternatively, secret-
sharing approaches [Wagh et al., 2019] supports efficient on-
line computation by doing a lot of offline pre-computation.
Also, they either rely on two non-colluding servers or letting
the client play as one such “server.”

Bayesian Neural Network (BNN). Unlike the DNN,
which uses fixed weights, BNN represents the weights by
a probability distribution over possible values. It trains an
ensemble of networks with weights drawn from a private
probability distribution and can be used to measure the un-
certainty of weights. In BAYHENN, the posterior distribu-
tion of the weights given the dataset is estimated by Bayes
by Backprop [Blundell er al., 2015]. The BNN inference
in BAYHENN is obtained by averaging evaluations of mul-
tiple DNN models, with the weights and biases sampled from
the posterior distribution. More formally, an ¢-layer BNN
model is defined by {NV((W*,b%), %) }icp1 g, ie., £ Gaus-
sian distributions with means (W, b) and covariance 3, re-
spectively. The server samples S instances of noisy DNN
model {{W}, b} }ici1.g}rep,s) (¢f. Algorithm 1, DNN can
be considered as a special instance with S = 1 and 3! = 0
Vi € [1,4]). Inference invokes S DNN inference instances in
parallel, and the user receives S output vectors (or label dis-
tribution) ai. The user averages the S output vectors (as the
predicative distribution) and returns the index ¢ that has the
greatest value. We will focus on this kind of BNN in the rest
of the paper since it is at the core of BAYHENN.

2.3 Bayesian (Homomorphically-Encrypted) NN

BAYHENN (Algorithm 2) separates the model evaluation
into linear and non-linear (activation) parts, which are eval-
uated by the server and the client, respectively. For the k-th
model in layer 7, the client encrypts the input az_l under
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Algorithm 3: Experiment Expg‘A\(,_|E,\,,\,_mode_type
Input: {W* b’ 3% '},cp1 g, S, mode, type
Output: 0/1
1: Embed ({WZ, bi, 22’7 (Pi}ie[l,é]a S) to OBAYHENN—mode
,4 : BAYHENN-mode .
2 {W', b} ic1,q + A° e tieng, S)
3: return isCloseype((W,b), (W', b))

the client public key; and sends the resulting é’jc_l to the
server. The server then homomorphically evaluate? the sam-
pled noisy model (Wi, bt) perturbed by Gaussian noises
with covariance X* over 512—1. Such linear (homomorphic)
evaluation requires the bias vector b, to be encrypted under
the client public key as well. For the non-linear part, a client
merely evaluates ¢ over the plaintext z; obtained from de-
crypting the evaluated ciphertext returned by the server, and
uses the evaluated value as the input for the (¢ 4+ 1)-th layer.
This process is repeated until it reaches the final layer. Over
S parallel-run evaluations, the client computes the mean of
the outputs and returns the label with the highest mean score.
In BAYHENN, the privacy of the client data is inherited
from the security of the HE scheme. The privacy of the
BNN model is claimed to be protected via LWE, presum-
ably from its structure analogous to the model evaluation,
e.g., z = aW + b. The connection may look specious at
first glance. It turns out there exists some explicit connection
after some reformulation. (See Table 1). However, there is
still a missing piece. We will explain why the LWE assump-
tion is not applicable for the usage expected by BAYHENN,
and propose a concrete attack to refute their security claim.

3 Proposed Attack

Our attack issues direct queries to the model (e.g., via a
machine-learning service API) on arbitrary input a. The goal
is to extract a model that is “close” to the victim model. We
present our attack for single layer BAYHENN under semi-
honest setting, and generalize it to whole-model extraction
for multiple-layer BAYHENN under the malicious setting.

3.1 Formal Security Model for BAYHENN

Algorithm 3 defines our proposed security game (also known
as an experiment), which formally captures what an attacker
can do and what the goal of an attacker is, which in turn de-
fines the security requirement. The challenger of the game
holds a DNN model with a Gaussian distribution covariance.
It embeds the DNN model to an oracle, for which the adver-
sary can query by issuing a feature vector of its choice. The
challenger first picks a Gaussian distribution for producing
S instances of noisy DNN model. Upon the feature vector
query, the challenge evaluates the noisy DNN models over
it. The actual evaluation depends on the type of adversary to
be explained below. Eventually, the adversary returns an esti-
mated model that is evaluated by the isClose function to check

*More precisely, HE encrypts an SIMD encoding of a for effi-
ciency, but it does not matter for the security analysis in this paper.
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Algorithm 4: Oracle (OBAYHENN-semi-honest

Input: a S
Secret Internal Input: {W*,b*, 3", ©'};cp1 ¢, S
Output: {{aj}, 2} }re(1,5) }ic[1.4
1 {a) < a}ren,s)
: fori c [1,/] do S
{W;cv b}c}ke[l,S] <_ N((Wzv bl)v El)
{z), « a;;l X Wi+ b rep,s)
{a}, < ©"(zp) Freq,s)
end for o
return {{a, 7} }ie(1,51}ien g

L N

AR A

Algorithm 5: Oracle (OBAYHENN-malicious

Input: {a;}rep,g S
Secret Internal Input: {W*,b*, 3%, ©'};cp1 1, S
Initial State: st = 0
Output: {z; }rcp1,9)

1: if st = O then

2: {ag « ai}repn,s

3: end if
4 {Wi, br}ren,s) < N((W*, b), £
5
6
7

: {Zk — ag XWk‘i’bk}ke[Ls]
:st<—st+1mod/¢
. return {Zk}ke[l,S]

whether the error is within a certain bound and output a bit
0/1 to indicate loss or win. It either measures the uniform
error or the test error. The uniform error is determined by ¢; -
norm of difference between (W, W’) and (b, b’), while the
test error is determined by the occurrence of outputting the
same label for the same input derived from real experiments.

The adversarial power is determined by the attack mode,
which can either be semi-honest or malicious. A semi-honest
adversary does not deviate from the protocol specification,
which is captured by the oracle in Algorithm 4. In particular,
the oracle directly evaluates the activation function, as the ad-
versary would faithfully do by itself regardless, and returns all
layers’ intermediate results in one shot upon a query a. Since
the adversary (as a querying client) holds the decryption key,
the oracle returns all the intermediate values in plaintext.

A malicious adversary can arbitrarily choose its input to
each layer and hence to a stateful oracle different from the
semi-honest one. Algorithm 5 defines the oracle for malicious
attack mode. It returns the intermediate results for the st-th
layer, where st is the state storing the current layer number.

While BAYHENN assumes semi-honest attackers, we be-
lieve security in the malicious setting is relevant and worthy
to consider as attackers have no incentive to follow the proto-
col in practice, especially when BAYHENN inherently allows
freely chosen input for all layers. Without extra cryptographic
machinery, such kind of arbitrary adversarial behavior is hid-
den from the server due to the indistinguishability of HE.
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BAYHENN-semi-honest
o )

Algorithm 6: Procedure of A
Input: S
Output: (W', b')
1 {20 1. eepn,s) ie.e
3
225 4 5 2 z ),
3: for j € [1,n] do
4 {{2) 1 een.s tien e
5
6
7

] s OBAYHENN-semi—honest (0)

BAYHENN-semi-honest
10 (ej)

s
Z; — é(Zk:l Zjl‘,k-) -z
: end for
: return (W', b') < ({2} }ep1.n),20)

OBAYHENN-ma“CiOLIS(.)

Algorithm 7: Procedure of A
Input: S
Output: (W', b’)
1: fori € [1,¢] do
2 {le,k}kE[l,S] — OBAYHENN_ma“CIOUS({0}k6[17s})
7 S i
3 Zh ¢ 5 21 %ok
4: end for
5: for j € [1,n] do
6: foriell,{]do
7
8
9
0
1

(QBAYHENN—maIicious({e

{2 1 rens) < i Yren,s))

i 1 S i i
25 < 5(2p= z5,) — %o
:  end for
: end for

: return (W', b') « ({{z}}jep.m ticp.a: {20 Yicp.a)

3.2 Model Extraction Attack on BAYHENN

Since the client can learn the intermediate result (aW + b)
in plain, our attack works by picking a suitable input a. The
server provides intermediate results over S parallel evalua-
tions. If an attacker can execute the inference (n+1) times on
the same DNN model but with different inputs, by writing the
(n+1) arbitrarily chosen queries or inputs to the next layer in
a matrix form, and further assume such matrix is invertible,
then the underlying DNN model can be extracted easily.
However, the above straightforward attack does not work
against BAYHENN since it samples noisy models for each
query, i.e., the weight W and bias b changes. In other
words, writing the queries in a matrix in the form of Z =
A[WT|bT]T, with input a; and output z; of the j-th query
being the j-th row of matrix A and Z respectively, the above
attack requires (W, b) to be the same for all a;. So, the
model cannot be approximated ideally by taking the inverse.

Attack Strategy. We then craft a designated “small” query.
By keeping the same input for each query and then taking
the average, we can effectively reduce the noise and obtain
a better sample mean by increasing the number of queries.
Furthermore, as the noise is amplified by the query input (co-
variance of the error increases linearly with the average of
£1-norm of the involved queries’ input), a fixed query with a
small norm can minimize its effect on the extracted model.
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BAYHENN LWE Requirements for LWE’s Security

[a 1] a  Uniformly distributed
/
{VZ } ] Secret to be protected
€b e Bounded

Table 1: Connecting BAYHENN parameters to the LWE assumption

Attack Procedure and its Analysis. The attack procedure
for single-layer BAYHENN (¢ = 1) is given in Algorithm 6.
The semi-honest adversary issues the same query for the in-
ference task of all noisy models. (The first output of the or-
acle, i.e., the activated values, is not useful here, and hence
omitted.) It firstly queries zero vector O and computes the
average over the inference results as z}), which is an estimate
of b from OW’ 4 b’. The error of this estimation is a zero-
mean Gaussian distribution with covariance 3/S. Second,
for j € [1,n], where n is the dimension of the input feature
vector, it queries a standard basis e; and takes an average over
the inference results, which gives an estimation of (w; + b)
from (e; W’ +b’), where w; is the j-th row of weight matrix
W. For w; itself, the attacker can cancel out the bias b by
subtracting the estimated bias b/, i.e., w;- =w,+b—b’. The
estimated w; has a 0-mean Gaussian noise with covariance
233/S. Given the covariance of the error, the exact bound can
be easily obtained via Gaussian tail inequality.

All-Level Recovery under Semi-Honest Attacks. For the
remaining layers, the attacker needs to use the estimated
weights and biases of all previous layers (and the activation
functions {¢'};¢(1,) to compute a special query, which leads
to a designated input on the next layer. However, the error be-
comes larger since the noise added to the model perturbed the
inverse calculation; it thus needs significantly more queries.

Actively Malicious Attack. A malicious adversary can ar-
bitrarily choose the input for each layer as in Algorithm 7 to
independently estimate the weight and bias for each layer.

3.3 Misuse of LWE

The LWE assumption was misused [Xie et al., 2019]. An
LWE problem instance requires a uniformly random basis,
but the analogous basis in the BAYHENN is the input chosen
by the attacker. As an illustration, for an LWE instance, if one
keeps sampling for the same basis and secret, and keeps aver-
aging the samples, the bound of the Gaussian noise tends to
be zero, which leads to an instance with zero noise ultimately.
Our attack on BAYHENN exploits this fact.

Table 1 formulates the structure in BAYHENN (a noisy
weight vector w’, a single element bias b, and the Gaussian
noise added to the bias e;) and draws the correspondence to
the LWE instance. As our attacks show, the problem of BAY-
HENN stems from the input a. It is supposed to be the basis
for the LWE instance, but it is not sampled uniformly at ran-
dom. An attacker can thus query a = (1,...,0) to obtain
(so + e). Our attack technically reduces to estimating the
maximum likelihood of a Gaussian distribution, instead of at-
tacking any underlying hard lattice problems.
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3.4 The Case for nGraph-HE2

nGraph-HE2 [Boemer et al., 2019] did not specify the treat-
ment for the non-linear layers and left it as a placeholder for
any secure protocol. In its experiments, it reveals the interme-
diate results in clear to clients, without the “obfuscation” of
BAYHENN. Our attack thus applies, showing that such treat-
ment is insecure. We remark that the nGraph-HE2 team is
aware of the potential leakage about the model. Correspond-
ingly, they suggest using additive secret sharing and GC for
secure computation, or using a trusted processor to perform
the decryption, and call for more secure implementations.

3.5 The Case for GELU-net for Learning

GELU-net [Zhang er al., 2018] also allows the client to learn
the intermediate result in clear to facilitate efficient evalua-
tions of activation functions. Such an interactive decryption
plus random masks approach is subject to a major constraint
in preserving security — for a layer having m neurons, a data
provider cannot participate in more than (m + 2) iterations
and needs to switch to another non-colluding data provider (if
available). Unfortunately, the security definition provided for
GELU-net is informal and does not capture collusion among
data providers. Their simulation-based security proof does
not capture the information from the view of the data provider
in the backpropagation phase either, in which it can observe
the gradient of the weights (for gradient descent). More se-
riously, the protocol does leak intermediate values that con-
tain information about the server’s model-in-training. Specif-
ically, when the model is converging, i.e., the gradient of
weights is small, the intermediate results, including gradients
of weights, can be used to approximate the model accurately.
Consequently, the pitfall is that rate-limiting is required to
prevent complete leakage of the parties’ input. The user can
recover the weights in a layer by Gaussian elimination dur-
ing forward propagation if it can obtain enough linear equa-
tions (aw + b) (which is performed in DNN). Thus the user
can only provide m rounds of forward propagation. Even
worse, the client knows the gradient during backpropagation.
With the magnitude of the gradient, one can infer whether
the model is near satisfactory and possibly extract the model
using this knowledge (small gradient) within the rate limit.

4 Experiments

We simulate an attacker to recover a single (fully-connected)
layer BAYHENN (with 91.45% testing accuracy on the
MNIST dataset) by querying input vector {a;};c[m) to the
victim model and obtain query results {z; };c[,,,) for a single
round of attack. Given this experiment, one can apply the
single-layer extraction attack under the semi-honest setting
to the whole model extraction under the malicious setting.

Parameter Choices. The model parameter W and b of the
victim model is of dimension 784 x 10 and 1 x 10, respec-
tively. The entries in a; are integers, while the entries in W
and result matrix Z are floating-point numbers. As HE only
works over Z,, we need to quantize all the values of a;, W,
and b (added by noises). We did that by first scaling up the
values of each a;, W, and b by 28 and then rounding them to
Z, for matching the HE computation. We chose ¢ = 2'9 — 3
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Figure 1: Closeness between the extracted and ground-truth models

as BAYHENN limits the bit-length to 20. To sample Gaussian
noises used by in BAYHENN, we use 0 mean and different
standard deviation o (values provided are before scaled up)
for different S. The test dataset consists of 10, 000 samples.

Evaluation Goal. We repeat with different m to eval-
uate the number of queries needed to extract (W' b’)
that performs as good as our ground-truth model (W, b).
We evaluate how successful our attack is by computing
isClosetest (W, b), (W', b’)) that returns the occurrence of
outputting the same label for the same test dataset. In BAY-
HENN, § is set by the model owner and known to the client.
We compare the effect of different .S in our attack.

Results. Figure 1 illustrates the effect of S and m. When S
is large, we only need to conduct a small 7m number of rounds
of attacks to obtain a model that is nearly equivalent to the
ground truth. Our results show that the similarity between
the testing results of our extracted model converges to the
testing results of the victim model when m increases. If S
is small, more rounds of attacks (m) are needed. When S =
512, (W', b’) attains 98.22% as the percentage of matching
results relative to (W, b). We thus showed empirically that
our attack can effectively extract a model as good as the one
that was supposed to be protected by BAYHENN.

S5 Conclusion and Open Problems

Cutting corners in designing cryptographic protocols, e.g.,
using some “arbitrary” noises to replace the use of cryptog-
raphy, is risky, especially without solid cryptographic proof.
Unfortunately, in this paper, we refute the heuristic arguments
given by a recent work for the privacy of model parameters,
which comes from the resemblance of the noise introduced in
the BNN model and that for the learning-with-error assump-
tion. Several design defects break the security claim of BAY-
HENN - the introduced Gaussian noise can be easily elim-
inated, so the leakage of the recovered intermediate vector
enables simple attacks from linear algebra, and the use of en-
cryption prevents the server from detecting malicious attacks.
We pose an open problem to investigate the possibilities of 1)
complete model extraction under the semi-honest model or 2)
extraction of more complex neural networks (e.g., CNN with
hidden hyper-parameters) under the BAYHENN framework.
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