
Transformers as Soft Reasoners over Language

Peter Clark , Oyvind Tafjord and Kyle Richardson
Allen Institute for AI, Seattle, WA
{peterc,oyvindt,kyler}@allenai.org

Abstract
Beginning with McCarthy’s Advice Taker (1959),
AI has pursued the goal of providing a system with
explicit, general knowledge and having the system
reason over that knowledge. However, expressing
the knowledge in a formal (logical or probabilistic)
representation has been a major obstacle to this re-
search. This paper investigates a modern approach
to this problem where the facts and rules are pro-
vided as natural language sentences, thus bypassing
a formal representation. We train transformers to
reason (or emulate reasoning) over these sentences
using synthetically generated data. Our models,
that we call RuleTakers, provide the first empiri-
cal demonstration that this kind of soft reasoning
over language is learnable, can achieve high (99%)
accuracy, and generalizes to test data requiring sub-
stantially deeper chaining than seen during training
(95%+ scores). We also demonstrate that the mod-
els transfer well to two hand-authored rulebases,
and to rulebases paraphrased into more natural lan-
guage. These findings are significant as it suggests
a new role for transformers, namely as limited “soft
theorem provers” operating over explicit theories in
language. This in turn suggests new possibilities
for explainability, correctability, and counterfactual
reasoning in question-answering.1

1 Introduction
AI has long pursued the goal of giving a system explicit
knowledge, and having it reason over that knowledge to reach
conclusions, dating back to the earliest years of the field, e.g.,
McCarthy’s Advice Taker (1959), and Newell and Simon’s
Logic Theorist (1956). While this has resulted in impres-
sive applications (e.g., [Metaxiotis et al., 2002]), building
and reasoning over the required formal representations has
also proved challenging [Musen and Van der Lei, 1988]. In
this work, we explore a modern approach to this goal, and ask
whether transformers can be trained to reason (or emulate rea-
soning) using rules expressed in language, thus bypassing a

1 A live demo and all our datasets are available at
https://allenai.org/data/ruletaker

(Input Facts:) Alan is blue. Alan is rough. Alan is young.
Bob is big. Bob is round.
Charlie is big. Charlie is blue. Charlie is green.
Dave is green. Dave is rough.

(Input Rules:) Big people are rough.
If someone is young and round then they are kind.
If someone is round and big then they are blue.
All rough people are green.

Q1: Bob is green. True/false? [Answer: T]
Q2: Bob is kind. True/false? [F]
Q3: Dave is blue. True/false? [F]

Figure 1: Questions in our datasets involve reasoning with rules.
The inputs to the model are the context (facts + rules) and a ques-
tion. The output is the T/F answer to the question. Here the under-
lying reasoning for the true fact (Q1) is: Bob is big, therefore rough
(rule1) therefore green (rule4). Note that the facts + rules themselves
change for different questions in the datasets.

formal representation. If so, new opportunities for question-
answering, explainability, correctability, and counterfactual
reasoning may become possible.

This goal is quite distinct from question-answering as
selecting an answer span in a passage, today’s prevailing
paradigm, e.g., [Rajpurkar et al., 2016]. Rather, we want the
system to reason over the provided rules to find conclusions
that follow. Our goal is also distinct from that of inducing
rules from examples, e.g., given instances of family relation-
ships, inducing that a parent’s parent is a grandparent [Sinha
et al., 2019], something that transformers are already known
to do well. Rather, here we provide rules explicitly, and wish
transformers to draw appropriate conclusions, as illustrated
in Figure 1. Here, rather than inducing rules from examples,
our task involves learning to emulate a reasoning algorithm.

We provide the first demonstration that this is possible,
i.e., that transformers can reason with rules expressed in lan-
guage. Our approach uses a broadly applicable training regi-
men: Characterize the desired behavior in a formal way, syn-
thesize formal examples, generate linguistic equivalents, and
train a model. The result suggests a new role for transform-
ers, namely as a kind of limited “soft theorem prover” over
language (Figure 2). This in turn may allow inspection and
control of the knowledge that the model is manipulating, with

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3882



Figure 2: (a) Traditional formal reasoning applies a theorem prover
to axioms in order to answer a question. (b) Our work here strives
for a linguistic analog, where a transformer serves as a “soft theorem
prover” over knowledge expressed linguistically.

potential benefits for explanation, correctability, and counter-
factual reasoning.

Our investigations here are in a limited setting: Rules are
linguistic expressions of conjunctive implications condition
[∧ condition]* → conclusion, with the semantics of logic
programs with negation [Apt et al., 1988]; and reasoning is
the deduction of a statement’s truth according to these seman-
tics. However, although there is still a potentially large gap
to natural language inference (NLI),2 our approach also sug-
gests a path to teaching machines to reason over broader lan-
guage, with similar potential benefits.

We leave open the question of whether the transformer is
actually “reasoning”, and even what that might mean in a neu-
ral setting. Rather, we show that transformers can reliably
emulate the i/o behavior of a formal reasoner, including ap-
plied to test data requiring more reasoning than at training
time, two hand-authored rulebases, and rulebases rephrased
into more natural (crowdsourced) language.

The paper is organized to address the following questions,
and contributes the following results:

1. Can transformers learn to reason with rules? We
train and test on rules expressed in (synthetic) language,
and find high (99%) accuracy, including on test ques-
tions requiring a greater depth of reasoning than seen
during training (scoring up to 95%, Table 1).

2. Can the trained model solve hand-authored reason-
ing problems? We find the trained models are able to
solve five of six variants of two independently authored
rule-based problems, zero shot (90%+ scores, Table 4).

3. Do the results transfer to theories expressed in more
natural language? Models also perform well when
trained and tested on theories paraphrased into more nat-
ural (crowdsourced) language (98% score). The best
earlier model can even partially solve these problems
zero-shot (66% accuracy, Table 5).

4. Can the model identify which facts an answer de-
pends on? We show that the model is largely able to do
this (94% F1), including perfect identification for over
70% of the questions. This is a first step towards having
a model create an explanation for its conclusions. (Sec-

2 NLI is informally defined as making inferences from language
that “a person would typically infer” [Dagan et al., 2013], and in-
cludes use of many linguistic forms, unstated background knowl-
edge, and sometimes unsound inference steps.

tion 4.5 and Figure 8).
5. Can other neural architectures learn to reason? Our

experiments show a particular transformer (RoBERTa)
is sufficient for our tasks, but is it necessary? We show
that two other systems, BERT and ESIM (an LSTM-
based model) [Chen et al., 2017], are also able to learn
these tasks, albeit with lower scores (95% and 80% re-
spectively, vs. 98%). This suggests that our results
are not specific to RoBERTa or transformers, although
transformers learn the tasks more easily (Table 6).

2 Related Work
While our work is, to the best of our knowledge, the first sys-
tematic study of transformers directly reasoning with rules in
language, there are several datasets that make a first step to-
wards this by testing whether neural systems can apply a sin-
gle rule in a particular situation. Task 15 in the bAbI dataset
[Weston et al., 2016] tests whether a rule of the form “Xs
are afraid of Ys” can be correctly applied, e.g., “Sheep are
afraid of wolves. Gertrude is a sheep. What is Gertrude afraid
of? A:wolves”. Similarly, the synthetic, conditional probes in
[Richardson et al., 2020] test single rule application. In addi-
tion, the datasets QuaRTz [Tafjord et al., 2019] and ROPES
[Lin et al., 2019] involve applying general statements to a sit-
uation, but also require many other reading comprehension
skills, rather than specifically testing reasoning.

Although our core datasets may seem similar to the bAbI
dataset [Weston et al., 2016] in using synthetic data, our
probes are qualitatively different. Specifically, apart from
bAbI Task 15 (above), the underlying rules needed to infer
an answer in the bAbI tasks are implicit, while our concern
here is reasoning with explicit rule sets, potentially different
for each example (Figure 1).

Our approach contrasts with prior efforts that attempt to
semantically parse language into a formal form, so that a for-
mal reasoner can then be applied [Kamath and Das, 2019].
Despite substantial research, semantic parsing remains chal-
lenging, with few examples of systems that can reliably con-
vert multi-sentence text into formal theories. Instead, we ex-
plore reasoning with language directly, bypassing the seman-
tic parsing task.

Our work can be seen as evaluating transformers for (a sub-
set of) Natural Logic [MacCartney and Manning, 2014], i.e.,
formal inference over statements expressed in language. It
is also related to textual entailment and Natural Language
Inference (NLI) [Manning and MacCartney, 2009], but with
the important difference that NLI also allows unsupported in-
ferences that “a person would typically infer” [Dagan et al.,
2013]. We discuss bridging the gap between our work and
NLI in Section 5.3.

Several researchers have developed methods for Neural
Theorem Proving (NTP), combining symbolic and neural
methods to reason step-wise over language-derived struc-
tures, e.g., [Weber et al., 2019]. Similarly, there has been
work on SAT solving [Selsam et al., 2019], approximate
(DNF) model counting [Abboud et al., 2020], and formula
embedding [Abdelaziz et al., 2020] to help solve formal rea-
soning problems. While our goals are similar, we do not im-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3883



pose any structure on the neural reasoning process, instead
wanting to know if the (i/o of the) reasoning process itself is
learnable, using knowledge expressed in language.

Our task can perhaps best be viewed as one of algorithm
emulation, here for systematic reasoning with rules. There
have been numerous other demonstrations that transformers
either already know [Talmor et al., 2019; Richardson and
Sabharwal, 2019] or can learn to emulate other algorithms,
including for semantic parsing [He and Choi, 2019], ma-
chine translation [Wang et al., 2019], integration [Lample and
Charton, 2019], and math [Saxton et al., 2019]. Here we in-
vestigate a transformer’s ability to learn rule-based reasoning.

3 Dataset Generation
To investigate a transformer’s ability to emulate rule-based
reasoning, we generate five datasets requiring various depths
of inference to answer the questions. Each example in a
dataset is a triple (context,statement,answer), where context
has the form (fact*,rule*), statement is the question, namely
a declarative sentence to prove, and answer is either T (true) if
statement deductively follows from the context, or F if it does
not (false under a closed-world assumption, CWA). Facts,
rules, and the question statements are expressed in (synthetic)
English. Each example is essentially a (linguistic) standalone
logical theory with an “Is it true?” question posed against it.

3.1 Overview
To generate each example, we first generate a small theory
(facts + rules) in logic, perform forward inference to de-
rive all its implications, then select question statements from
those implications (answer=true), and from unproven (posi-
tive) facts (answer=false, under the CWA). We generate five
datasets, each constrained by the maximum depth of infer-
ence required to prove the facts used in its questions (up to
depths D=0, D≤1, D≤2, D≤3 and D≤5 respectively). Depth
D=0 means the true facts can be “proved” by simple lookup
in the context (no inference). The fifth dataset, called DMax,
contains questions up to depth 5, and is used to test general-
ization to depths unseen in training on the other four datasets.

3.2 Theory Generation
Theories contain two types of facts:

• attributes is(ei, aj) e.g., is(Alan,Big).
• relations rk(ei, ek) e.g., eats(Dog,Rabbit).

The is() predicate assigns attributes to entities, while the rk()
predicates relate two entities. Like people names, the symbols
Dog, Rabbit, etc. also denote specific entities, i.e., denote
“the dog”, “the rabbit”, etc. Rules are of the form:

condition [∧ condition]*→ conclusion.

The first condition is a predicate whose first argument is a
variable,3 and second argument is an attribute or entity. For
each subsequent condition and the conclusion, they are also
predicates whose first argument is either the same variable or
a previously mentioned entity, and the second argument is a

3 Or with 20% probability, an entity, in order to include some
fully grounded rules in the datasets.

The bald eagle does not eat the dog. The cat chases the dog.
The cat eats the bald eagle. The cat is nice. The cat likes the dog.
The cat likes the rabbit. The dog is furry.
The rabbit chases the bald eagle. The rabbit eats the bald eagle.

If someone does not eat the cat then they do not eat the dog.
If someone likes the bald eagle then they do not like the rabbit.
If someone eats the bald eagle and they do not eat the rabbit

then they are furry.
If someone is furry then they like the cat.

Q1. The bald eagle likes the cat. True/false? [F]
Q2. The rabbit likes the cat. True/false? [T]
Q3. The bald eagle is furry. True/false? [F]

Figure 3: An example of a rulebase and 3 questions using relations
with negation. The reasoning for the [T] answer is: The rabbit eats
the bald eagle (given), therefore the rabbit is furry (rule3), therefore
the rabbit likes the cat (rule4).

new attribute or entity. (In this way, rules are constrained to
have at most one variable. Rules are implicitly universally
quantified over that variable). For example, the formal form
of the first rule in Figure 1 looks:

// If someone is young and round then they are kind.
is(?X,Young) ∧ is(?X,Round)→ is(?X,Kind).

Each theory contains 1-16 facts and 1-9 rules generated at
random. We generate two types of theory:

1. Type 1 uses only the is() predicate, with 4 entities
{Alan,Bob,...} and 7 (non-mutually-exclusive) attributes
{Blue,Rough,Young,...}, drawn randomly from pools of
10 names and 14 attributes respectively.

2. Type 2 uses is() and 3 other predicates {likes(),
chases(), ...}, 4 entities {Cat,Dog,BaldEagle,...}, and 5
attributes {Big,Furry,...}, drawn randomly from pools of
size 6, 10, and 10 respectively.

We also generate a version of each that adds negation (not) in
the facts and rule conditions/conclusions (negation-as-failure
for conditions, strong negation for conclusions). Figure 1 is
an example of Type 1, without negation. Figure 3 is an ex-
ample of Type 2, with negation. Each dataset contains 100k
examples (25k of each Type × without/with negation). Data
is randomly split 70/10/20 into train/dev/test partitions, en-
suring no overlap of theories between each partition.

3.3 Forward Inference
Given a randomly generated theory (facts+rules), we perform
exhaustive forward inference to find all its implications, not-
ing their proof(s). (As the domains are finite, the number of
implications are finite too). For semantics, we treat the rule-
base as a logic program, and infer the minimal, supported
answer set implied by the program [Apt et al., 1988]. Nega-
tions in the rules’ conditions are treated as negation as failure
(NAF), and we ensure that the rulebase is stratified to avoid
ambiguity and cycles [Bidoit and Froidevaux, 1991]. Infer-
ence is performed layerwise to find the minimal supported
model, and inconsistent and unstratified rulebases are dis-
carded. We also check that inference proceeds to the depth
required, e.g., for the D≤3 dataset, at last one fact must re-
quire depth 3 inference to infer it for all its theories.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3884



3.4 Question Generation and English Synthesis
For each theory, we generate several questions with answer
‘true’ by selecting from the inferred facts, one at each depth
of inference from 0 to the dataset’s target depth (e.g., for the
D≤2 dataset, we generate 3 ‘true’ questions at depths d = 0, 1,
and 2 for each theory). For each ‘true’ question we also gen-
erate a ‘false’ question by negating a conclusion proven at the
same depth. We then generate the same number of questions
using facts that are unproven (false under a closed-world as-
sumption), drawing equally from unproven, instantiated pos-
itive rule conclusions or other unproven positive facts. Half
are used as questions labeled as false (via the CWA), and for
diversity, half are flipped by negating the fact and changing
the label to true (i.e., “f? False” becomes “Not f? True”).
Thus a theory for depth d has (up to) 4(d+1) questions, with
an equal balance of true and false answers. Each question is
also annotated with the inference depth needed to answer it.

Finally the theories and questions are converted into (syn-
thetic) English, using simple natural language templates plus
rules to improve fluency (e.g., using pronouns). We use three
templates (randomly selected per rule): “If condition [and
condition]* then conclusion.”, “All attribute* people|things
are attribute.”, and “attribute* people|things are attribute.”,
the last two only applicable to rules involving just attributes.
Examples are shown in Figures 1 and 3.

4 Experiments
4.1 Models
We conduct all our experiments (bar Section 4.6) using
RoBERTa-large, additionally fine-tuned on the RACE dataset
[Lai et al., 2017]. We use fixed hyperparameters (learning
rate etc), inheriting the settings from RoBERTa on RACE
[Liu et al., 2019].

We train RoBERTa to predict true/false (i.e., binary clas-
sification) for each question statement. Questions are sup-
plied to RoBERTa as: [CLS] context [SEP] statement [SEP],
where context is the theory (facts+rules, expressed in lan-
guage) and statement is the fact to try and prove. The [CLS]
output token is projected to a single logit. A logit score of
>0 is treated as predicting true, otherwise the answer is false.
Training is performed using cross-entropy loss. For evalua-
tion, we measure accuracy. (The test data has an equally bal-
ance of TRUE/FALSE answers, hence the baseline of random
guessing is 50%).

4.2 Can RoBERTa Answer Reasoning Questions?
We train and test RoBERTa models on each of our datasets
D=0, D≤1, D≤2, D≤3, and DMax, containing problems re-
quiring reasoning up to depths 0, 1, 2, 3, and 5 respectively.
We then test the models on the DMax dataset, that includes
problems at depths greater than the other datasets. The re-
sults are shown in Table 1. The results suggest the following
findings:

1. RoBERTa is able to master the test data almost per-
fectly (99% accuracy, row 1) even though the specific
reasoning problems (facts+rules) in each test question
are distinct from those in the training set.

Table 1: Accuracy of models (Mod0,...) trained and tested on the five
datasets (“Test (own)” row), and tested on all, and different slices, of
the DMax test set. The boxed area indicates test problems at depths
unseen during training.

2. The Depth=0 model, Mod0, only trained on lookup
questions, is (unsurprisingly) unable to answer ques-
tions requiring reasoning (column Mod0).4

3. As we train with increasingly deep inference, the mod-
els’ ability to generalize improves. The D≤2 model
(questions involving problems up to depth 2) achieves
71.1% on Depth=3 problems, while the D≤3 model
generalizes well right up to the maximum depth tested
(e..g, 97.6% for Depth=5 problems).

We additionally test the robustness of the models’ answers
by perturbing the original theories. Specifically, for each test
fact f that is true, we test whether removing a sentence that
is part of the proof of f causes the prediction to (desirably)
flip from true to false. We call these sentences in the proof
tree critical sentences, as the truth of f depends on them.
Conversely, removing an irrelevant sentence should cause no
change to the model’s prediction. As we know the original
proof trees for each fact f in the dataset, we can identify the
critical and irrelevant sentences by simple inspection of those
trees.5 Typically, 1-6 sentences of the ≈15-20 sentences are
critical for proving each provable fact.

We test this using the no-negation6 half of the DMax test
set (≈10k questions). In this partition, 5904 questions have
proofs (are true). (The remaining questions are false under
the CWA). For each of these questions, we remove each of
the theory sentences si in turn, and measure the prediction ac-
curacy on each result. As there are about 19 sentences/theory
on average, this results in 113978 “sentence removed” probes
(of which 20746 have a critical sentence removed, and 93232
have an irrelevant sentence removed). Ideally, removing a
sentence critical to a question f should flip the model’s pre-

4 In fact, we see an interesting learning artifact, namely Mod0
scores worse than random (50%) at depths higher than 2. This arises
because most questions at these depths are provably true facts, but
Mod0 learns to predict all facts are false except those explicitly given
(as that is all it has seen at training time), hence systematically gets
these wrong.

5 If there are multiple, alternative proofs for f , we define a criti-
cal sentence as one that is used in all the proofs. To support this, we
generate and record all possible proofs for each provable fact f

6 With negation, the definition of critical sentence becomes more
complex because the the theory is non-monotonic (i.e., removing a
sentence may cause a fact to become true). Hence, we omit theories
with negation for this analysis.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3885



Original Remove Remove Remove
Irrelevant Critical Any

Accuracy (test) 99.4 99.6 81.2 96.3

Table 2: Accuracy on the DMax (no negation) subset, and all its
(113k) perturbed (one context sentence removed) variants. The over-
all accuracy (Remove Any, last column) is largely unchanged, but
with a drop for the subset where a critical sentence was removed.

Original predictions for true (positive) facts:
T F

New T 3895 (should have flipped) 10 (incorrectly flips)
Pred. F 16654 (correct flips) 187 (becomes correct)

Table 3: On the true questions that were originally answered cor-
rectly (column 1), the predicted T answer should flip to predicted
F when a critical sentence is removed. In practice, we observe this
happens 81% of the time (16654/(16654+3895)).

diction from T to F, while removing a noncritical sentence
should leave the prediction unchanged as T. We also measure
overall performance on the entire dataset of questions with
perturbed theories.

The results are shown in Tables 2 and 3. We observe:
1. The overall accuracy is largely unchanged on the full

collection of questions with perturbed theories, suggest-
ing robustness to these variants (last column, Table 2).

2. For the (20k) questions where the prediction is expected
to flip from true to false, we see this flip occurs 81% of
the time, Table 3. This suggests moderate robustness to
this specific type of perturbation, although notably less
than for a formal theorem prover (that would make this
flip 100% of the time). For the remaining (93k) ques-
tions, the prediction (correctly) stays true over 99% of
the time (no Table).

4.3 Performance on Hand-Authored Problems
To further test robustness and out-of-distribution perfor-
mance, we test the trained models on two hand-authored
reasoning problems, both including reasoning with negation,
written independently of our datasets. Note that these new
datasets are used purely as test sets (no training on them,
i.e., zero-shot performance); their vocabulary of entities, at-
tributes, and predicates (except for is()) are all new to the
models at test time. The two test datasets are as follows:

Birds. The “birds” rulebase is a well-known logic problem
illustrating the use of “abnormality” predicates [McCarthy,
1984]. We entered Sergot’s formulation of it7 verbatim (bar
syntax), and generated a series of test questions using the
same procedure as earlier. Figure 4 illustrates the problem (in
restricted English, exactly as presented to our model) and four
example questions. We created two linguistic expressions of
the formal theory, Birds1 and Birds2. Birds2 is shown in Fig-
ure 4, while Birds1 is identical except “can/cannot fly” is re-
placed with “is/is not flying” to make the negation (“not”)
more explicit (this turns out not to matter). Questions require
reasoning up to depth 1.

7https://www.doc.ic.ac.uk/∼mjs/teaching/KnowledgeRep491/
ExtendedLP 491-2x1.pdf, p5

If someone is a bird and not abnormal then they can fly.
If someone is an ostrich then they are a bird.
If someone is an ostrich then they are abnormal.
If someone is an ostrich then they cannot fly.
If someone is a bird and wounded then they are abnormal.
If someone is wounded then they cannot fly.

Arthur is a bird. Arthur is not wounded. Bill is an ostrich.
Colin is a bird. Colin is wounded.
Dave is not an ostrich. Dave is wounded.

Q1.Arthur can fly. True/false?[T] Q2.Bill can fly. True/false?[F]
Q3.Colin can fly. True/false?[F] Q4.Dave can fly. True/false?[F]

Figure 4: Sergot’s “birds” puzzle includes reasoning about abnor-
mality predicates. The dataset contains these and other questions
about the single theory.

The circuit has a switch.
The switch is on.
The circuit has a light bulb.

If a circuit has a switch and the switch is on
then the circuit is complete.

If a circuit does not have a switch then the circuit is complete.
If a circuit is complete then a current runs through the circuit.
If a current runs through a circuit and the circuit has a light bulb

then the light bulb is glowing.
If a current runs through a circuit and the circuit has a bell

then the bell is ringing.
If a current runs through a circuit and the circuit has a radio

then the radio is playing.

Q1. The circuit is not complete. True/false? [F]
Q2. The light bulb is glowing. True/false? [T]
Q3. The radio is playing. True/false? [F]

Figure 5: The simple Electricity2 rulebase, an example circuit, and 3
questions about the circuit. (Circuit diagram is for illustration only).

Electricity. We also created a small rulebase about an elec-
trical circuit, describing the conditions for an appliance to
function. We created 4 variants of increasing complexity,
containing 5, 6, 11, and 12 rules respectively. For each rule-
base, we generate different scenarios (the facts) by randomly
selecting from possible ground facts. Questions are then gen-
erated against each scenario using the same procedure as ear-
lier, resulting in 4 test sets. Figure 5 shows the Electric-
ity2 rulebase with an example scenario plus three questions.
Questions against the four rulebases require inference up to
depth 2, 3, 3, and 4 respectively.

Results
The results are in Table 4, tested using the earlier trained mod-
els. Note that these new problems and vocabularies were un-
seen during training (i.e., are zero-shot). We observe:

1. The “birds” problems are solved (almost) perfectly by
all but the non-reasoning (Mod0) model (MMax gets one
question wrong on Birds1).

2. The MMax model (trained on DMax) solves all but one
of these datasets with 90%+ scores.

These are two point demonstrations that the trained models

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3886



Table 4: Accuracy of the earlier models tested on hand-crafted rule-
bases (zero shot, no fine-tuning). Note that the models were only
trained on the earlier datasets (e.g., Figures 1 and 3), and thus the
new rulebases’ entities, attributes, and predicates (bar is()) are com-
pletely unseen until test time.

can be used to solve novel reasoning problems with high reli-
ability (90%+ in all but one case).

We see one surprising anomaly also: the models trained
with deeper reasoning depths do slightly worse on Electric-
ity4 than the depth 1 model, Mod1. From investigation, we
find almost all failing questions at higher depths are those
where the queried fact f is an unsatisfied rule conclusion
(hence should be false), in particular when the first argument
of f is not the first argument of one of the rule’s conditions.
Because of the way the original dataset was generated, exam-
ples similar to this are very rare in the training data, possibly
causing this anomaly. More generally this illustrates that even
when trained on a diversity of problems, the trained model
can have unanticipated blind spots.

4.4 Reasoning with Paraphrased Rules
Our experiments so far have been with synthetic language,
but our ultimate goal is to reason over full natural language.
To test transfer to more natural linguistic forms, we generated
a new dataset of 40k examples, using crowdworkers to para-
phrase our theories. Of course, this only tests robustness to
paraphrasing, not to abitrary natural language. Nevertheless,
it is a small first step in this direction.

To generate our data, we follow a similar approach to
[Sinha et al., 2019]. For this experiment, we used Type 1
theories without negation, i.e., the same form as in Figure 1.

Dataset Generation
To generate the new dataset, called ParaRules, we first gener-
ated a novel collection of 10k theories (facts+rules) expressed
in synthetic language, as before, then extracted the “fact
groups” and rules from each. A “fact group” is all the facts in
a theory about a particular person, e.g., (from Figure 1) “Alan
is blue. Alan is rough. Alan is young.”, while a rule is just the
original “If...then...” sentence. We then asked crowdworkers
to creatively re-express the fact-groups and rules, shown to
them in English, in their own words. For example, the earlier
fact-group might be rewritten as: “Alan is on the young side,
but rough. He often feels rather blue.”. Rewritten fact-groups
were then turned into templates by variabilizing the person
name. Turkers also rephrased each rule (no variabilization
needed). Rephrasings were automatically checked to make
sure that all the key attributes were mentioned (and no others
included), and rejected otherwise.

Alan, who is round, red, kind, and also green, tends to be rather
blue. In the snow sits Bob, crying from being cold. Charlie has
green teeth and rough skin. People also notice his blue eyes.

A quite nice person who is red and green is also big.
Any big, kind person that turns red is cold to the touch.
Young, kind people have a habit of being nice.
A kind person will certainly be young.

Q1. Dave is nice. True/false? [F]
Q2. Charlie is big. True/false? [F]
Q3. Alan is nice. True/false? [T]

Figure 6: A paraphrased theory in the ParaRules dataset. The rea-
soning for the true answer here is: Alan is kind (given), therefore
young (rule4), therefore nice (rule3).

Table 5: Accuracy with rules paraphrased into more natural lan-
guage (ParaRules), without fine-tuning (zero shot) and with (last
column only). The strongest zero-shot model (MMax) partially
solves (66.6%) this problem zero-shot, with strongest performance
for depth 0 and 1 inferences.

We use these to assemble the new ParaRules dataset of 40k
questions against ≈2k theories expressed in the paraphrased
language. To build each theory, facts were collected by ran-
domly sampling and instantiating fact-group templates with
people’s names, and rules were randomly sampled. An ex-
ample is shown in Figure 6. The train, dev, and test sets were
generated using different partitions of the templates, to ensure
that no templates were shared between partitions.

As we kept track of the corresponding logic underlying
each fact group and rule, we can then generate questions as
before: Exhaustively forward-chain on the (logic version of)
the theory, discard if a contradiction is hit or reasoning is of
insufficient depth (we require at least depth 3 reasoning), and
then for each depth select inferred and non-inferred facts as
true/false questions as before.

Results
We ran the earlier trained models on the ParaRules test par-
tition (no fine-tuning, i.e., zero shot). The results are shown
in Table 5. The strongest model, MMax, partially solves this
dataset with a score of 66.6%, higher for questions requiring
less inference, and lower for questions requiring more infer-
ence. (The below-random scores for D=0 reflect the same ar-
tifact as earlier, namely predicting everything as false except
for facts explicitly given. See Footnote 4).

Note that these results are for zero-shot, with no model ex-
posure to the paraphrased data during training. In contrast,
we also trained a model using both of the D≤3 and ParaRules
training partitions. The resulting model (last column Table 5)
has an accuracy of 98.8% on ParaRules test (even though the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3887



Figure 7: In this (abbreviated) example, the model has correctly
identified the sentences critical to the answer (shown in green). Per-
fect identification occurs for over 70% of the provable answers (See
Figure 8 for a full histogram).

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

Figure 8: Counts of the F1 scores for predicting which sentences are
critical to the proofs of questions in DMax (test, no negation subset).
For over 70% of the questions, the model predicts critical sentences
perfectly (F1=1.0), with high F1 in the remaining case.

ParaRules test rewordings are distinct from train and dev),
showing near-perfect performance is learnable. Although a
limited study, this suggests that our findings may extend to
rulebases expressed in more natural language.

4.5 Generating Explanations
In Section 4.2, we tested (for the no-negation theories)
whether removing a theory sentence si caused the prediction
for a true fact f to flip to false, and found that sentences caus-
ing a flip were very often (98%) part of the original proof of
f (i.e., critical sentences), while sentences that did not were
not (97%). Using that data about which removed sentences
caused a flip, we can build a map of the theory paragraph
showing which sentences the model considers critical to a
conclusion, a potentially first step to providing an explana-
tion for the model’s answers (see Figure 7).

We can quantify this “explanatory” performance by mea-
suring the per-proof scores of predicted vs. actual critical
sentences for each question, measuring the precision, recall,
and F1 scores for each question in turn. The (macro)average
P/R/F1 scores are P=98.7, R=86.9, and F1=92.4, suggesting
a high degree of reliability in predicting sentences critical to
a proof. (This is essentially an alternative view on the earlier
robustness data, viewed from a per-proof perspective). A his-
togram of the F1 scores is shown in Figure 8, indicating per-
fect critical sentence identification for over 70% of the ques-
tions, and high F1 for the remaining questions. This suggests
the model has some knowledge of the dependencies between
the context sentences and a particular conclusion.

4.6 Other Architectures
To what extent are our results specific to RoBERTa? To ex-
plore this, we also trained BERT and ESIM (an LSTM-based
model for natural language inference) [Chen et al., 2017] on
our datasets. As a sanity check we also ran the decomposable
attention model (DECOMP) on our data [Parikh et al., 2016].
The results are shown in Table 6.

We observe that the strongest BERT model trained up to
depth 3 (Mod3) masters the dataset that includes higher in-
ference depths (DMax) with 95%+ accuracy, while ESIM’s

Table 6: Transformers (RoBERTa,BERT) are sufficient but not
strictly necessary for this task, although other architectures (ESIM)
do not score as well.

scores are lower (≈80%). Note that unlike RoBERTa and
BERT, ESIM was not pre-trained on large amounts of text,
perhaps contributing to its lower scores. This suggests that
our results are not specific to RoBERTa or transformers, al-
though transformers seem to learn the tasks more easily. As
expected, DECOMP does not do well (random score is 50%),
suggesting the datasets are not trivially solvable.

Finally, to explore the role of pretraining, we generated a
version of the D≤3 dataset in which every word was (sys-
tematically) replaced by a random word, so that there was
no grammaticality in the theories. After training, RoBERTa
scores 83.3% on the test partition, substantially below the
original 99.3%, suggests that pretrained knowledge is play-
ing an important role.

5 Discussion and Future Work
Although our demonstrations have been in a limited setting,
the implications of being able to predictably reason with lan-
guage are significant. With further advances, we may poten-
tially be able to:
• author theories in English (e.g., Figure 5), thus sidestep-

ping the intricacies of formal languages and offering
new opportunities for easy creation and maintenance of
knowledge.
• have the machine apply general knowledge, e.g., from

Wikipedia, to explainably solve novel problems
• teach our AI when it makes a mistake, by providing

the missing facts and/or correcting the erroneous ones
it used (“instructable systems”).
• reason about counterfactual situations. For example, we

might describe a world in which plastic is a type of
metal, and see how the conductivity of objects change.
This useful capability has previously been out of scope
for transformers.

Our RuleTaker models demonstrate these capabilities in a
narrow setting. We now discuss additional steps needed to
achieve these goals more broadly.

5.1 Extending The Theory Language
While we have shown that transformers can emulate a form
of deductive reasoning, our demonstrations have been with

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3888



small theory sizes (< 20 facts, < 10 rules), small domains (<
100 possible ground facts), and with a limited rule language
(at most one variable that is universally quantified over). Ex-
panding the expressiveness of the rule language would en-
hance the model’s utility. For example, we have not yet ex-
plored using multi-variable rules such as “If a person’s father
is a second person, and the second person’s father is a third
person, then the first person’s grandfather is the third person,”
limiting what can be stated (e.g., rules of transitivity). Sim-
ilarly there are other forms of reasoning we would like to
train the model to handle, e.g., taxonomic inheritance, rea-
soning with disjunctive conclusions, and handling functional
relations (“A country has exactly one capital”). This again
requires characterizing the semantics of such statements, and
generating training data showing the valid conclusions.

More generally, there are many natural language state-
ments whose formal meaning is less clear (e.g., “Most birds
fly”, “It often rains in Seattle in winter.”). To apply our
methodology to statements with more complex semantics
would require new training data, either synthesized from a
richer formal representation and model of inference,8 or col-
lected from people.

5.2 Generating Training Data
We assume that our synthetic training data is sufficiently rep-
resentative of the real problems that the model will eventually
be used for. However, it is possible that the generation pro-
cedure under-represents or misses some important types of
theory, potentially giving the model a “blind spot” on novel
problems if it is unable to fully generalize. (A minor example
of this was the MMax results on Electricity4, last paragraph
of Section 4.3). It would be valuable to find ways to charac-
terize the different types of inference problems in the space,
and design training curricula to ensure they are systematically
covered and/or the model is able to generalize to them. Ad-
versarial approaches to generation, where the generator learns
to create theories that are hard for a partially trained model,
may be useful in this context, e.g., [Kalyan et al., 2019].

5.3 Natural Language Inference (NLI)
We have shown that transformers can perform deductive in-
ference over English statements. However, human reasoning
over language - natural language inference (NLI) - is not al-
ways deductive. In particular, NLI allows for unsupported in-
ferences that “a person would typically infer” [Dagan et al.,
2013], while we have used a precise model of inference in
which all of a rule’s conditions need to be proven true in or-
der for the conclusion to follow. Our model may still be quite
far from that required for fully natural reasoning over lan-
guage. For example, we would like our model to still proceed
if there are gaps in the explicitly provided knowledge, pro-
viding the missing knowledge is “obvious” (and not contra-
dicted by the explicitly provided facts), perhaps by leveraging
its pretrained knowledge. Similarly, our model’s treatment of
negation as failure (NAF) sometimes clashes with intuitions
about NLI, for example given (just) “If my car does not have

8 If one even exists - formal reasoning is still far from modeling
all of natural language inference.

gas then it is not working.” our model will conclude (given
nothing else) that “My car is not working.” as it cannot prove
that “My car has gas.”.

This raises a fundamental tension about the nature of the
reasoning we ultimately desire: We want reasoning to be
rigorous (conclusions justified by the information provided),
but also “soft” (tolerant of phrasing differences and common-
sense knowledge gaps), and strictly speaking these two goals
are in conflict. Our experiments with Turk-authored language
illustrates tolerance of phrasing differences, which we view
as desirable, although in a strict deductive sense it is unjusti-
fied to conclude (say) “A person is green” from “Charlie has
green teeth” (Figure 6). Similarly we would like the model to
tolerate minor, unstated taxonomic gaps, for example given
“Buildings have roofs” conclude “My house has a roof”, even
if “Houses are buildings” is not explicitly stated (but not con-
clude that result if it is explicitly stated that “Houses are not
buildings”). Characterizing which inferences should be de-
ductive vs. which can be assumed in NLI, and training a
model to combine explicitly stated knowledge with implicit
(pretrained) knowledge, remain significant open challenges.

6 Conclusion

Just as McCarthy advocated 60 years ago for machines rea-
soning (“taking advice”) in logic, we have shown (in a re-
stricted setting) that machines can by trained to reason over
language. While we have assumed a particular semantics of
inference, the methodology we have used is general: Charac-
terize the desired behavior in a formal way, synthesize exam-
ples, generate linguistic equivalents, and train a model. The
result, at least within our experiments, appears to be both nat-
ural and robust, in a way distinct from working with the orig-
inal formalization.

The ability to reason (or emulate reasoning) over rules
expressed in language has potentially far-reaching implica-
tions. For example, rules might be easily authored by a per-
son, sidestepping some of the intricacies of a formal lan-
guage (a simple kind of “programming in English”); or they
could be retrieved from natural sources (e.g., science texts,
Wikipedia). Similarly, if the answer is wrong, the user
may be able to directly teach the system by providing gen-
eral missing knowledge (or correcting erroneous knowledge)
that can then also be used for new problems - a step to-
wards instructable algorithms. Finally, the mechanism opens
the door to neural counterfactual reasoning. For example,
we can modify the earlier “birds” rulebase to describe a
world in which birds typically don’t fly, but where ostriches
can fly, and see the consequences. To encourage further
progress, an interactive demo and all our datasets are avail-
able at https://allenai.org/data/ruletaker

Acknowledgements

Thanks to Chitta Baral, Jonathan Berant, Oren Etzioni, Matt
Gardner, Ashish Sabharwal, and Alon Talmor for comments
on earlier drafts.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3889



References
[Abboud et al., 2020] R. Abboud, I. Ceylan, and T. Luk-

asiewicz. Learning to reason: Leveraging neural networks
for approximate dnf counting. In AAAI, 2020.

[Abdelaziz et al., 2020] Ibrahim Abdelaziz, Veronika Thost,
Maxwell Crouse, and Achille Fokoue. An experimental
study of formula embeddings for automated theorem prov-
ing in first-order logic. arXiv, 2002.00423, 2020.

[Apt et al., 1988] K. Apt, H. Blair, and A. Walker. Towards
a theory of declarative knowledge. In Foundations of De-
ductive Databases and Logic Programming., 1988.

[Bidoit and Froidevaux, 1991] N. Bidoit and C. Froidevaux.
General logical databases and programs: Default logic se-
mantics and stratification. Inf. Comput., 91:15–54, 1991.

[Chen et al., 2017] Qian Chen, Xiao-Dan Zhu, Zhen-Hua
Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced lstm
for natural language inference. In ACL, 2017.

[Dagan et al., 2013] Ido Dagan, Dan Roth, Mark Sammons,
and Fabio Zanzotto. Recognizing Textual Entailment:
Models and Applications. Morgan and Claypool, 2013.

[He and Choi, 2019] Han He and Jinho D. Choi. Establish-
ing strong baselines for the new decade: Sequence tag-
ging, syntactic and semantic parsing with bert. ArXiv,
abs/1908.04943, 2019.

[Kalyan et al., 2019] Ashwin Kalyan, Oleksandr Polozov,
and Adam Kalai. Adaptive generation of program-
ming puzzles. Technical report, Georgia Tech, 2019.
(https://openreview.net/forum?id=HJeRveHKDH).

[Kamath and Das, 2019] Aishwarya Kamath and Rajarshi
Das. A survey on semantic parsing. In AKBC’19, 2019.

[Lai et al., 2017] G. Lai, Q. Xie, H. Liu, Y. Yang, and
E. Hovy. RACE: Large-scale reading comprehension
dataset from examinations. In EMNLP, 2017.

[Lample and Charton, 2019] G. Lample and F. Charton.
Deep learning for symbolic mathematics. In ICLR, 2019.

[Lin et al., 2019] Kevin Lin, Oyvind Tafjord, Peter Clark,
and Matt Gardner. Reasoning over paragraph effects in
situations. In Proc. MRQA Workshop (EMNLP’19), 2019.
also arXiv:1908.05852.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: a robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

[MacCartney and Manning, 2014] Bill MacCartney and
Chris Manning. Natural logic and natural language
inference. Computing Meaning, 47:129–147, 2014.

[Manning and MacCartney, 2009] Christopher D. Manning
and Bill MacCartney. Natural language inference. Stan-
ford University, 2009.

[McCarthy, 1959] John W. McCarthy. Programs with com-
mon sense. In Proc. Tedding Conf. on the Mechanization
of Thought Processes, pages 75–91, 1959.

[McCarthy, 1984] J. McCarthy. Applications of circumscrip-
tion to formalizing commonsense. In NMR, 1984.

[Metaxiotis et al., 2002] Kostas S Metaxiotis, Dimitris Ask-
ounis, and John Psarras. Expert systems in production
planning and scheduling: A state-of-the-art survey. Jour-
nal of Intelligent Manufacturing, 13(4):253–260, 2002.

[Musen and Van der Lei, 1988] Mark A Musen and Johan
Van der Lei. Of brittleness and bottlenecks: Challenges
in the creation of pattern-recognition and expert-system
models. In Machine Intelligence and Pattern Recognition,
volume 7, pages 335–352. Elsevier, 1988.

[Newell and Simon, 1956] A. Newell and H. Simon. The
logic theory machine-a complex information processing
system. IRE Trans. Information Theory, 2:61–79, 1956.

[Parikh et al., 2016] Ankur Parikh, Oscar Täckström, Dipan-
jan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In EMNLP, 2016.

[Rajpurkar et al., 2016] P. Rajpurkar, J. Zhang, K. Lopyrev,
and P. Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In EMNLP, 2016.

[Richardson and Sabharwal, 2019] Kyle Richardson and
Ashish Sabharwal. What does my qa model know? de-
vising controlled probes using expert knowledge. ArXiv,
abs/1912.13337, 2019.

[Richardson et al., 2020] Kyle Richardson, Hai Hu,
Lawrence S Moss, and Ashish Sabharwal. Probing
natural language inference models through semantic
fragments. In AAAI’20, 2020.

[Saxton et al., 2019] David Saxton, Edward Grefenstette,
Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In ICLR, 2019.

[Selsam et al., 2019] Daniel Selsam, Matthew Lamm,
Benedikt Bünz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT solver from single-bit
supervision. In ICLR, 2019.

[Sinha et al., 2019] K. Sinha, S. Sodhani, J. Dong, J. Pineau,
and W. Hamilton. CLUTRR: a diagnostic benchmark for
inductive reasoning from text. In EMNLP, 2019.

[Tafjord et al., 2019] Oyvind Tafjord, Matt Gardner, Kevin
Lin, and Peter Clark. Quartz: An open-domain dataset of
qualitative relationship questions. In EMNLP, 2019.

[Talmor et al., 2019] A. Talmor, Y. Elazar, Y. Goldberg, and
J. Berant. oLMpics - on what language model pre-training
captures. ArXiv, abs/1912.13283, 2019.

[Wang et al., 2019] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li,
D. Wong, and L. Chao. Learning deep transformer models
for machine translation. In ACL, 2019.

[Weber et al., 2019] Leon Weber, Pasquale Minervini,
Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel.
Nlprolog: Reasoning with weak unification for question
answering in natural language. In ACL, 2019.

[Weston et al., 2016] J. Weston, A. Bordes, S. Chopra, and
T. Mikolov. Towards AI-Complete question answering: A
set of prerequisite toy tasks. In ICLR, 2016.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3890


	Introduction
	Related Work
	Dataset Generation
	Overview
	Theory Generation
	Forward Inference 
	Question Generation and English Synthesis 

	Experiments
	Models
	Can RoBERTa Answer Reasoning Questions?
	Performance on Hand-Authored Problems 
	Results 

	Reasoning with Paraphrased Rules
	Dataset Generation
	Results

	Generating Explanations 
	Other Architectures 

	Discussion and Future Work 
	Extending The Theory Language 
	Generating Training Data 
	Natural Language Inference (NLI) 

	Conclusion 

