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Abstract

We study the problem of policy synthesis for uncer-
tain partially observable Markov decision processes
(uPOMDPs). The transition probability function of
uPOMDPs is only known to belong to a so-called
uncertainty set, for instance in the form of probabil-
ity intervals. Such a model arises when, for example,
an agent operates under information limitation due
to imperfect knowledge about the accuracy of its
sensors. The goal is to compute a policy for the
agent that is robust against all possible probability
distributions within the uncertainty set. In particular,
we are interested in a policy that robustly ensures the
satisfaction of temporal logic and expected reward
specifications. We state the underlying optimization
problem as a semi-infinite quadratically-constrained
quadratic program (QCQP), which has finitely many
variables and infinitely many constraints. Since QC-
QPs are non-convex in general and practically in-
feasible to solve, we resort to the so-called convex-
concave procedure to convexify the QCQP. Even
though convex, the resulting optimization problem
still has infinitely many constraints and is NP-hard.
For uncertainty sets that form convex polytopes, we
provide a transformation of the problem to a convex
QCQP with finitely many constraints. We demon-
strate the feasibility of our approach by means of
several case studies that highlight typical bottle-
necks for our problem. In particular, we show that
we are able to solve benchmarks with hundreds of
thousands of states, hundreds of different observa-
tions, and we investigate the effect of different levels
of uncertainty in the models.

1 Introduction
Partially observable Markov decision processes (POMDPs)
model sequential decision-making problems under stochastic
uncertainties and partial information [Kaelbling et al., 1998].
In particular, an agent that operates in an environment modeled
by a POMDP receives observations according to which it tries
to infer the likelihood, called the belief state, of the system
being in a certain state. Based on this partial information about

the environment, the agent chooses action whose outcome is
stochastically determined.

The assumption that the transition and observation proba-
bilities in POMDPs are explicitly given does often not hold.
Unforeseeable events such as (unpredictable) structural dam-
age to a system [Meuleu et al., 2010] or an imprecise sensor
model [Bagnell et al., 2001] may necessitate to account for
additional uncertainties in the value of the probabilities. Uncer-
tain POMDPs (uPOMDPs) address this need by incorporating
sets of uncertainties in the probabilities. The sets may be
described as, for example, intervals [Givan et al., 2000] or
more generally by likelihood functions [Nilim and Ghaoui,
2005]. For example, take a robust aircraft collision avoidance
system that issues advisories to pilots [Kochenderfer, 2015].
Modeled as a uPOMDP, the actions relate to such advice and
concern the flying altitude and the speed. Uncertainty enters
the model via unreliable data of the reaction time of a pilot,
and in uncertain probability of receiving false observations
regarding the speed and altitude of other aircrafts.

We study the synthesis of policies in uPOMDPs. Specif-
ically, we seek to compute a policy that satisfies temporal
logic [Pnueli, 1977] or expected reward specifications against
all possible probability distributions from the uncertainty set.
For the aforementioned collision avoidance system, such a
policy would minimize the acceleration due to fuel efficiency
and ensure that the probability of not colliding with another
aircraft is above a certain threshold.

The robust synthesis problem for uncertain MDPs, that is,
with full observability, has been extensively studied. The
existing approaches rely, for instance, on dynamic program-
ming [Wolff et al., 2012], convex optimization [Puggelli et
al., 2013], or value iteration [Hahn et al., 2017]. While the
complexity of solving a standard MDP is polynomial in the
number of states and actions, solving an uncertain MDP is
NP-hard in general [Wiesemann et al., 2013]. The existing
approaches for uPOMDPs rely on sampling [Burns and Brock,
2007] or robust value iteration [Osogami, 2015] on the belief
space of the uPOMDP, but do not take temporal logic con-
straints into account. In general, the robust synthesis problem
for uPOMDPs is hard. Already computing an optimal policy
for POMDPs with no uncertainty is undecidable [Madani et
al., 1999] and NP-hard [Vlassis et al., 2012] if policies do not
take the execution history into account. In that case, policies
are called memoryless.
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We develop a novel solution for efficiently computing poli-
cies for uPOMDPs using robust convex optimization. We re-
strict the problem to memoryless policies, while the approach
is readily applicable to finite-memory policies by explicitly
encoding finite state controllers into the state space [Junges et
al., 2018]. For brevity in this paper, we focus on uncertainty
sets that are given by intervals, i.e., upper and lower bounds
on probabilities. The approach, though, is applicable to all
uncertainty sets that are represented as convex polytopes.

First, we encode the problem as a semi-infinite
quadratically-constrained quadratic program (QCQP), which
includes finitely many variables but infinitely (in fact uncount-
ably) many constraints that capture the uncertainty set [Wiese-
mann et al., 2013]. The structure of the encoding is similar
to the one for POMDPs without uncertainty [Amato et al.,
2006]. This optimization problem is non-convex in general
and thereby infeasible to solve in practice [Chen et al., 2017].
We use the so-called convex-concave procedure to convexify
the problem [Lipp and Boyd, 2016]. The resulting convex
QCQP provides a sound over-approximation of the original
problem, yet, it still has infinitely many constraints and renders
the application of the convex-concave procedure impractical.

Towards computational tractability for solving the semi-
infinite convex QCQP, we restrict the uncertainty set to convex
polytopes and gain two key advantages. First, a convex poly-
tope represents the valid probability distributions exactly and
avoids an unnecessarily coarse approximation of the uncer-
tainty. Second, it suffices to enumerate over the finite set of
vertices of these polytopes to retain optimal solutions [Löfberg,
2012, Section 5.2]. We exploit this property and transform
the semi-infinite program to a finite convex QCQP which,
integrated with the convex-concave procedure, provides an
efficient solution to the robust synthesis problem.

Three complicating factors require special attention in the
proposed solution. First, the iterative convex-concave proce-
dure (CCP) may take exponentially many iterations in the num-
ber of its input variables [Park and Boyd, 2017]. The reason is
that the standard stopping criterion of the CCP is conservative,
and we observe in the numerical examples that it largely af-
fects the runtime. We provide a dedicated version of the CCP
that mitigates this problem by integrating a robust verification
method [Benedikt et al., 2013], similar as in [Cubuktepe et al.,
2018] for so-called parametric MDPs [Dehnert et al., 2015;
Junges et al., 2019]. In particular, we compute the exact
probability and expected cost values in intermediate candidate
solutions delivered by the CCP. We check whether these so-
lutions already satisfy the specifications, otherwise the exact
values are used as input for the next iteration of the CCP.

Second, enumerating the vertices of the convex polytope
causes an exponential number of constraints in the number
of uncertain transitions. This number, however, depends here
on the number of successor states of each state-action pair in
the uPOMDP, and typical benchmarks, as available at http:
//pomdp.org or used in [Norman et al., 2017], are usually
sparse, reducing the effect of this theoretical blowup.

The third complicating factor is the general hardness of
problems with partial observability and particularly due to
the number of observations. On the other hand, the size of
the resulting convex optimization problems in the proposed

solution is polynomial in the number of observations as well
as states. Note that the range of the uncertainty sets, or more
specifically the size of the intervals, does not affect the number
of constraints. With our prototype implementation, we solve
problems with hundreds of thousands of states and thousands
of observations for several well-known case studies.

Related work. To the best of our knowledge, the proposed
approach is the first that accounts for temporal logic specifica-
tions in the computation of policies for uPOMDPs. Beyond
that, [Burns and Brock, 2007] relies on sampling and [Os-
ogami, 2015] uses robust value iteration on the belief space
of the uPOMDP. [Ahmadi et al., 2018] uses sum-of-squares
optimization for verification of uPOMDPs, but the approach
only scales to very small models. [Itoh and Nakamura, 2007;
Cubuktepe et al., 2020] assume distributions over exact prob-
ability values. Robustness in [Chamie and Mostafa, 2018]
is defined over fixed belief regions. [Aras et al., 2007;
Kumar et al., 2016] employ mixed-integer linear program-
ming for POMDPs. An adaption to uPOMDPs would induce
a rather coarse over-approximation of optimal robust policies.

2 Preliminaries
A probability distribution over a finite or countably infinite set
X is a function µ : X → [0, 1] ⊆ R with

∑
x∈X µ(x) = 1.

The set of all distributions on X is denoted by Distr(X). A
convex polytope is an n-dimensional shape defined by linear
inequalities A~x ≤ ~c, where A ∈ Rn×m and ~c ∈ Rn.

Definition 1 (uMDP). An uncertain Markov decision process
(uMDP) is a tuple M = (S, sI ,Act ,P, I) where S is a set
of states, sI ∈ S is the initial state, Act is the set of actions,
I = {[a, b] | a, b ∈ (0, 1] and a ≤ b} is a set of probability
intervals, such that P : S ×Act × S → I forms the uncertain
transition function. A reward function r : S × Act → R≥0
assigns rewards to state action pairs.

For a uMDPM and a transition probability function P : S×
Act → Distr(S), we write P ∈ P if for all s, s′ ∈ S and α ∈
Act we have P (s, α, s′) ∈ P(s, α, s′). Intuitively, P yields
only values from the corresponding intervals of P for each
state-action pair s, α and successor state s′, which is equivalent
to having independent uncertainty between different actions.
We restrict P to only select values from the intervals that form
valid probability distributions and discuss later how this is
achieved algorithmically. A uMDP is instantiated by P ∈ P ,
yielding a Markov decision process (MDP) M [P ].
Remark 1. For the correctness of our method, we require the
lower bounds of the intervals to be strictly larger than zero,
that is, an instantiation cannot “eliminate” transitions. Put
differently, either a transition exists in all instantiations of the
uMDP, or in none. That assumption is standard and, for in-
stance, also employed in [Wiesemann et al., 2013]. Moreover,
the problem statement would be different and theoretically
harder to solve, see [Winkler et al., 2019]. We allow the upper
and lower bound of an interval to be the same, resulting in
nominal transition probabilities.

Definition 2 (uPOMDP). An uncertain partially observable
MDP (uPOMDP) is a tuple M = (M,Z,O), with M =
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(S, sI ,Act ,P, I) the underlying uMDP ofM, Z a finite set of
observations and O : S → Distr(Z) the observation function.

For ease of presentation, we often assume that the observa-
tion function is deterministic, that is, of the form O : S → Z.
Note that deterministic observation functions can be derived
from general stochastic functions by expanding the state
space [Chatterjee et al., 2016]. Furthermore, we assume that
all states have the same actions.

An observation-based policy σ : Z → Distr(Act) for a uP-
OMDP maps observations to distributions over actions. Note
that such a policy is referred to as memoryless and randomized.
More general (and powerful) types of policies take an (in)finite
sequence of observations and actions into account. ΣM is the
set of observation-based strategies forM. Applying σ ∈ ΣM

to M resolves all choices and partial observability and an
induced (uncertain) Markov chainMσ results.

For a POMDPMe (without uncertainties) and a set of target
states T ⊆ S, the reachability specification ϕr = P≥λ(♦T )
states that the probability of reaching T shall be at least λ.
Similarly, the expected cost specification ϕc = E≤κ(♦G)
states that the expected cost of reaching the goal set G ⊆ S
shall be less than or equal to κ. A policy σ ∈ ΣMe satisfies ϕr
(or ϕc) if it is satisfied on the Markov chainMσ, denoted by
σ |= ϕr (σ |= ϕc). A policy for uPOMDPs takes all possible
instantiations from the uncertainty sets into account.

Definition 3 (Robust Policy). For a uPOMDPM, the under-
lying uMDP M = (S, sI ,Act ,P, I), and a specification ϕ,
an observation-based policy σ ∈ ΣM robustly satisfies ϕ for
M (σ |= ϕ) if for all P ∈ P it holds thatM[P ]σ satisfies ϕ.

Intuitively, the policy needs to satisfy the specification for
all instantiations fromM[P ]. If we have several (expected
cost or reachability) specifications ϕ1, . . . , ϕm, we write σ |=
ϕ1 ∧ . . . ∧ ϕn where σ robustly satisfies all specifications.
Note that general temporal logic constraints can be reduced to
reachability specifications [Baier and Katoen, 2008; Bouton
et al., 2020], therefore we omit a detailed introduction to the
underlying logic.

3 Formal Problem and Outline
We first state the central problem of this paper.

Problem (Robust Synthesis for uPOMDPs). Given an
uPOMDPM = (M,Z,O) and a specification ϕ, which
is either a reachability specification ϕr = P≥λ(♦T ) or
an expected cost specification ϕc = E≤κ(♦G), compute
a randomized memoryless policy σ ∈ ΣM forM such
that σ robustly satisfies the specification, that is, σ |= ϕ.

Outline. Figure 1 shows the outline of our approach. The
input is a uPOMDPM and one or more specifications ϕ. We
first state a semi-infinite optimization problem which defines
the robust synthesis problem within this section. In Sect. 4, we
show how this nonlinear problem can we convexified around
an initial policy σ ∈ ΣM, followed by Sect. 5 which describes
how a finite, efficiently solvable problem is obtained. This
procedure is augmented by an efficient robust verification
method.

Semi-infinite
QCQP

Semi-infinite
Convex QCQP

Finite
Convex QCQP

Robust Verification
Verifying uDTMC
Mσ |= ϕ

Solving
Convex QCQP

Convexify
Around σ

Enumeration

Uncertain Model
uPOMDP M

Specification ϕ X

SAT

UNSAT

Update σ

Figure 1: Flowchart of the overall approach.

3.1 Semi-infinite Optimization Problem
We introduce the following variables for the optimization prob-
lem: {ps | s ∈ S} for the probability to reach the targets T
from state s, {cs | s ∈ S} for the expected cost to reach the
goal set G from s, and{σs,α | s ∈ S, α ∈ Act} to encode the
randomized policy.

minimize csI (1)
subject to psI ≥ λ, csI ≤ κ, (2)
∀s ∈ T. ps = 1, ∀s ∈ G. cs = 0, (3)

∀s ∈ S.
∑

α∈Act
σs,α = 1, (4)

∀s ∈ S \ T. ∀P ∈ P .

ps ≤
∑

α∈Act
σs,α ·

∑
s′∈S

P (s, α, s′) · ps′ ,
(5)

∀s ∈ S \G. ∀P ∈ P .

cs ≥
∑
α∈Act

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · cs′
)

(6)

∀s, s′ ∈ S.∀α ∈ Act . O(s) = O(s′)→ σs,α = σs′,α. (7)

The objective is to minimize csI for minimizing the expected
cost at the initial state. The constraints in (2) encode a reach-
ability and expected cost threshold, respectively. (3) defines
the fixed reachability and cost values for states that belong
to the respective target and goal set, and (4) encodes valid
policy probabilities. (5) and (6) define the reachability and
cost variables for all other states. Note that ps may at least
be assigned the exact probability to reach T , ensuring the
correct satisfaction of the specification P≥λ(♦T ). Finally, (7)
defines policy variables from states with the same observation
to have the same value, ensuring our policy is based on the
observations instead of the states.

We will now take a closer look at the type of this optimiza-
tion problem. First, the functions in (5) and (6) are quadratic.
Essentially, the policy variables σs,α are multiplied with the
probability variables ps in constraint (5) and with the cost
variables cs in (6). As the entries in the transition probabil-
ity matrices P (s, α, s′) for s, s′ ∈ S and α ∈ Act belong
to continuous intervals, there are infinitely many of the con-
straints (5) and (6) over a finite set of variables. Note that
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we only consider policies where for all states s and actions
α it holds that σs,α > 0, such that applying the policy to the
uPOMDP does not exclude states or transitions.

4 Convexifying the Semi-Infinite QCQP
We discuss how we convexify the semi-infinite QCQP. We use
the penalty convex-concave procedure (CCP) [Lipp and Boyd,
2016] which iteratively over-approximates a non-convex op-
timization problem via linearization. The resulting convex
problem can then be solved efficiently, and the process is
iterated until a suitable solution is found. Specifically, we
rewrite the quadratic functions in (5) and (6) as a sum of con-
vex and concave functions and compute upper bounds for
the concave functions. We check the feasibility regarding
the reachability and expected cost specifications using robust
value iteration [Wiesemann et al., 2013]. Until such a feasible
solution is found, the CCP seeks solutions in the vicinity of
previous ones.
Remark 2. This section assumes we can effectively solve a
semi-infinite convex optimization problem. How to do this in
our setting is discussed in Section 5.

The CCP method starts with any (possibly infeasible) as-
signment p̂s, ĉs, and σ̂s,α to the variables ps, cs, and σs,α.
Consider the bilinear function

hc(s, α, s′, P ) = P (s, α, s′) · σs,α · cs′

for any s, s′ ∈ S, α ∈ Act and P ∈ P whose right-hand is
part of the constraint (6) in the original QCQP. For simplicity,
we set P (s, α, s′) = 2 · d, σs,α = y, and cs′ = z and get
hc(s, α, s′, P ) = 2 · d · y · z. We rewrite 2 · d · y · z to
2 · d · y · z + d(y2 + z2) − d(y2 + z2). Then, we can write
2 · d · y · z + d(y2 + z2) as hccvx(s, α, s′, P ) = d(y + z)2,
which is a quadratic convex function. Recalling (6), we add
the cost function c(s, α) and get the convex function ĥccvx =
hccvx + y · c(s, α) as y · c(s, α) is affine.

The function hcccv(s, α, s′, P ) = −d(y2 + z2), however,
is concave, and we have to convexify it. In particular, we
transform hcccv(s, α, s′, P ) to ĥcccv(s, α, s′, P ) = d(ŷ2 + ẑ2) +
2 ·d(ŷ2 + ẑ2−yŷ−zẑ), where ŷ and ẑ are any assignments to
the policy and probability variables. ĥcccv(s, α, s′, P ) is affine
in y and z and therefore convex.

We convexify (5) analogously and replace the quadratic
functions with ĥpcvx(s, α, s′, P ) and ĥpccv(s, α, s′, P ).

After the convexification step, we replace (5) and (6) by

∀s ∈ S \ T. ∀P ∈ P . (8)

− ps ≥
∑
α∈Act

∑
s′∈S

(
ĥpcvx(s, α, s′, P ) + ĥpccv(s, α, s′, P )

)
,

∀s ∈ S \G. ∀P ∈ P . (9)

cs ≥
∑
α∈Act

∑
s′∈S

(
ĥccvx(s, α, s′, P ) + ĥcccv(s, α, s′, P )

)
,

which are semi-infinite convex constraints in σs,α, ps′ and cs′ .
We switch the sign of ps as it was upper bounded before.

The resulting problem is convex (yet semi-infinite). As we
over-approximate the quadratic functions, any feasible solu-
tion to the convex problem is also feasible for the original

semi-infinite QCQP. However, due to the over-approximation,
the resulting convex problem might be infeasible though the
original one is not. To find a feasible assignment, we assign
a so-called non-negative penalty variable ks for each of the
probability constraints in (8) for s ∈ S \ T , and ls for the cost
constraints in (9). To find a solution that induces a minimal in-
feasibility, or minimal violations to the convexified constraints,
we minimize the sum of the penalty variables. This gives us
another semi-infinite convex problem:

minimize csI + τ
(∑

s∈S\T
ks +

∑
s∈S\G

ls
)

(10)

subject to psI ≥ λ, csI ≤ κ, (11)
∀s ∈ T. ps = 1, ∀s ∈ G. cs = 0, (12)

∀s ∈ S.
∑

α∈Act
σs,α = 1, (13)

∀s ∈ S \ T. ∀P ∈ P. (14)

ks − ps ≥
∑
α∈Act

∑
s′∈S

(
ĥpcvx(s, α, s′, P ) + ĥpccv(s, α, s′, P )

)
,

∀s ∈ S \G. ∀P ∈ P. (15)

ls + cs ≥
∑
α∈Act

∑
s′∈S

(
ĥccvx(s, α, s′, P ) + ĥcccv(s, α, s′, P )

)
,

∀s, s′∈ S.∀α ∈ Act . O(s) = O(s′)→ σs,α = σs′,α. (16)

If a solution assigns all penalty variables to zero, then the
solution QCQP is feasible for the original non-convex QCQP,
as we over-approximate the concave functions by affine func-
tions. If any of the penalty variables ks and ls are assigned to
a positive value, we update the penalty parameter τ by µ+ τ
for a µ > 0, similar to the approach in [Lipp and Boyd, 2016].
We put an upper limit τmax on τ to avoid numerical problems
during the procedure. After getting a new assignment, we
convexify the non-convex QCQP by linearizing the concave
functions around the new assignment, and solve the resulting
convex QCQP. We repeat the procedure until we find a feasible
solution. If the CCP converges to an infeasible solution, we
restart the procedure with another value of the policy σ̂. The
convergence to a locally optimal solution is guaranteed for a
fixed τ , i.e, after τ = τmax, but it may converge to an infeasible
point of the original problem [Lipp and Boyd, 2016].

5 Derivation of the Convex QCQP
In this section, we describe how to transform the semi-infinite
convex QCQP to a finite convex QCQP that is amenable to
efficient solving techniques. That transformation largely de-
pends on the type of uncertainty set that enters the problem.
So far, we stated that we have to account for all concrete
probability functions P within the uncertainty set P , see the
constraints (5) and (6). We now describe this notion as a spe-
cific uncertainty set. In particular, we enumerate exactly all
possible (valid) probability distributions from the uncertainty
set that enter the problem in the form of probability intervals.

For a uPOMDPM = (M,Z,O) and its underlying uMDP
M = (S, sI ,Act ,P, I), each state-action pair has a fixed
number of associated probability intervals. For state s ∈ S and
action α ∈ Act , we assume n intervals [ai, bi] ∈ I, 1 ≤ i ≤ n.
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For each transition probability function P ∈ P at (s, α),
we ensure that P is valid via ∀P ∈ P.

∑
s′∈S P (s, α, s′) =

1. We define the set of all possible probability distributions
formed by the intervals [ai, bi], expressed by the following set
of linear constraints that form a convex polytope:

∀i, 1 ≤ i ≤ n. ai ≤ xi ≤ bi,
∑n

i=1
xi = 1.

We rewrite these constraints into their canonical form of
As,α~x ≤ ~cs,α for all state-action pairs. Note that ai ≤ xi ≤ bi
can be rewritten as ∀i. − xi ≤ −ai, ∀i. xi ≤ bi. The equal-
ity constraint are rewritten as the conjunction of ≤ and ≥, and
multiplying by −1 flips the ≥:∑n

i=1
xi ≤ 1,

∑n

i=1
−xi ≤ −1.

We then construct matrix As,α and vector ~cs,α:

A>s,α =
[
−In In H>n −H>n

]
,

~c>s,α = [−a1 · · · −an b1 · · · bn 1 −1]

In is the n×n identity matrix, and Hn is the 1×n single row
matrix consisting of only ones. This matrix and vector are the
canonical form to describe a convex polytope. We enumerate
all the vertices of this convex polytope by using the double
description method [Fukuda and Prodon, 1996].
Exact representation of distributions. By construction,
the polytope describes exactly the set of valid probability dis-
tributions from the intervals. Moreover, because the polytope
is convex, it suffices to enumerate over the vertices [Löfberg,
2012] to capture all of these distributions. As we have these
vertices now, we can simply replace the robust constraints
(14) and (15) by a (finite) number of constraints in which the
uncertainty is replaced by all possible combinations of val-
ues from the vertices. Effectively we enumerate all possible
probabilities against which the policy needs to be robust. The
resulting convex QCQP can directly be solved, for instance,
by the QCQP solver Gurobi.
Complexity of the convex QCQP. Note that solving a ro-
bust convex QCQP with polytopic uncertainty is still NP-
Hard [Bertsimas et al., 2011] as the number of vertices of
a convex polytope can be exponential in the number of di-
mensions. However, in our specific case where we apply this
method to uPOMDPs, the dimension of each polytope is deter-
mined by the number of successor states for each state-action
pair. As mentioned before, we expect the number of succes-
sors to be low, and thus the dimension of each polytope and
the number of vertices, to be manageable.
Integrating robust verification. In each iteration of the
CCP as described in Sect.4, the QCQP solver assigns concrete
values to the variables which induces a concrete policy σ ∈
ΣM. We apply this instantiation to the uPOMDPM, resulting
in an uncertain Markov chainMσ. For this model without
partial observability and nondeterminism, we employ robust
value iteration [Wiesemann et al., 2013] to check whether the
specifications are already satisfied. Our numerical examples
show that this additional verification step is a good heuristic for
an earlier termination of the CCP when the penalty variables
have not evaluated to zero yet. We also use the result to ensure
that the probability and the cost variables are consistent with
the policy variables for the next iteration of the CCP.

(a) Grid-world.

0 1 2 3 4

5 6 7

8 910

11 1213
(b) Maze.

Figure 2: Two standard POMDP examples.

6 Numerical Examples

We evaluate our robust synthesis procedure on benchmark
examples that are subject to either reachability or expected
cost specifications. As part of a Python toolchain, we use the
probabilistic model checker Storm [Dehnert et al., 2017] to
extract an explicit state space representation of uPOMDPs.
The experiments were performed on a computer with an Intel
Core i9-9900u 2.50 GHz processor and 64 GB of RAM with
Gurobi 9.0 as the QCQP solver and our own implementation
of a robust value iteration. We use a 1 hour time-out (TO).
For all our examples we use a standard POMDP model so-
called nominal probabilities, as well as two different sizes of
probability intervals, namely a small one and a big one. The
reason for these three options is that we want to showcase the
effect of growing uncertainty on the runtime governed by the
number of CCP iterations.

6.1 Standard POMDP Examples

We consider the following POMDP case studies with added
uncertainties in the form of intervals. Grid-world robot is
based on the POMDP example in [Littman et al., 1995]. A
robot is placed randomly into a grid and the goal is to safely
reach the north-east corner, see Fig. 2(a). The robot may only
reach intended states with a certain probability. We consider
three variants for that probability: 0.98 (nominal), [0.95, 0.98]
(small interval), and [0.50, 0.98] (big interval), yielding two
distinct uPOMDPs and one POMDP. The reachability specifi-
cation P≥λ ensures to reach the target without visiting “traps’.

The second example is a maze setting, introduced in [Mc-
Callum, 1993], where a robot is to reach a target location in
minimal time see Fig. 2(b). Again, we consider a “slippery”
maze, similar to the previous example. We use the following
probabilities for slipping: 0.97 (nominal), [0.94, 0.97] (small
interval), and [0.50, 0.97] (big interval). We define an expected
cost specification E≤κ to reach the goal.

Our third example concerns scheduling wireless traffic,
where at each time period a scheduler generates a new packet
for each user [Yang et al., 2011]. The scheduler does not know
the current states of the users, and has to schedule wireless
traffic based on partial information with 9743 possible obser-
vations. We assume exact probabilities of the channel reliabil-
ities are not known, and we have 0.9 (nominal), [0.875, 0.9]
(small interval), and [0.8, 0.9] (big interval). The specification
E≤κ is to minimize the expected number of dropped packets
for the scheduler.
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Nominal Small Interval Big Interval
Problem Type States Constraints Iteration Time (s) Constraints Iteration Time (s) Constraints Iteration Time (s)

Maze E≤80 30 27 40 1.46 68 100 4.68 68 275 13.90
Maze E≤50 30 27 42 1.84 68 101 4.90 68 1222 52.07
Maze E≤25 30 27 49 1.35 68 104 4.67 68 2122 105.54
Grid P≥0.84 18 14 8 0.11 56 8 0.20 56 23 2.15
Grid P≥0.92 18 14 8 0.11 56 9 0.22 56 56 6.26

Aircraft P≥0.80 175861 214448 2 5.89 399094 5 39.61 399004 13 106.72
Aircraft P≥0.90 175861 214448 5 31.98 399004 26 215.94 399004 59 540.33
Aircraft P≥0.95 175861 214448 40 274.43 399004 172 1475.70 399004 TO TO
Aircraft P≥0.97 175861 214448 50 339.78 399004 TO TO 399004 TO TO
Network E≤90 38719 107068 8 100.57 187591 8 114.99 187591 8 234.57
Network E≤50 38719 107068 10 118.51 187591 10 148.98 185791 10 291.18
Network E≤5 38719 107068 12 135.25 187591 12 171.78 187591 12 336.33

Table 1: Numerical examples.

6.2 Aircraft Collision Avoidance
In this more sophisticated example, we consider a robust air-
craft collision avoidance problem [Kochenderfer, 2015]. The
objective is to maximize the probability of avoiding a colli-
sion with an intruder aircraft while taking into account sensor
errors and uncertainty in the future paths of the intruder. The
problem is a POMDP with state variables (1) h, altitude of
the intruder relative to the own aircraft, (2) ḣ, vertical rate of
the intruder relative to the own aircraft, (3) τ , time to poten-
tial collision, and (4) sres, whether the pilot is responsive to
requested commands.

We discretize the h variable into 33 points over the range
±4000 feet, the ḣ variable into 25 points between ±10, 000
feet/minute, and τ to 40 points from 0 to 40 seconds. The
1905 possible observations give partial information of h and
ḣ. In the POMDP model, the probability of getting a correct
observation is 0.95. Again, we assess the effect of the interval
size by means of two intervals, namely [0.90, 0.95] (small in-
terval) and [0.75, 0.95] (big interval). The specification P≥λ is
to maximize the probability of not having a collusion with the
intruder within 40 seconds. Similarly, we use different values
of λ to show the effect of different probability thresholds.

6.3 Discussion of the Results
In Table 1, we list the experimental results for different spec-
ification thresholds for each example. “States” denotes the
number of states in the model, “Constraints” denotes the num-
ber of constraints in the convex QCQP, “Iterations” denotes
the number of CCP iterations, and “Time (s)” denotes the time
spent in Gurobi in seconds. We pick the specification thresh-
olds such that one is near to the point where our procedure
converges to an infeasible solution.

We remark that the number of constraints in each example
increases by adding intervals (instead of concrete probabilities)
to the model, due to the explicit enumeration of polytope
vertices, see Section 5. However, the number of constraints
does not depend on the size of the intervals. We also note
that the solution time for each iteration for the problem with
uncertainty (uPOMDP) is larger than for the original model
(POMDP) due to these additional constraints.

For the examples with small state spaces, namely Maze and
Grid, we picked the thresholds 25 and 0.92, respectively, to
be very near the threshold where our method converges to an
infeasible solution for the case with a larger uncertainty. We
observe that the number of iterations may grow rapidly with
a decreasing threshold. In particular, already for a threshold
25 for the Maze example, the number of iterations for the
case with a larger uncertainty is much bigger compared to the
nominal and the small uncertainty case.

For the Aircraft example, we observe that the number of
iterations required to satisfy a reachability specification in-
creases significantly with an increasing degree of uncertainty.
For threshold 0.95, we cannot find a policy that induces a
reachability probability that is larger than the threshold with
large uncertainty. Similarly, for 0.97, both of the uPOMDPs
converged to a policy that does not satisfy the specification.

On the other hand, for the Network example, the number
of iterations for all three cases is the same with three differ-
ent models, and the only difference between the cases is the
computation time per iteration. Particularly, the optimization
problems with larger uncertainty were more numerically chal-
lenging for Gurobi, and computing the optimal solution for
the optimization problems took more time per iteration.

7 Conclusion

We presented a new approach to computing robust policies
for uncertain POMDPs. The experiments showed that we are
able to apply our method based on convex optimization on
well-known benchmarks with varying levels of uncertainty.
Future work will investigate finite memory policies, similar
to [Junges et al., 2018], and recurrent neural networks as
efficient representation for robust policies [Carr et al., 2019].
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