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Abstract
Convolutional neural networks (CNNs) are the back-
bones of deep learning paradigms for numerous
vision tasks. Early advancements in CNN archi-
tectures are primarily driven by human expertise
and elaborate design. Recently, neural architecture
search (NAS) was proposed with the aim of au-
tomating the network design process and generating
task-dependent architectures. This paper introduces
NSGA-Net – an evolutionary search algorithm that
explores a space of potential neural network archi-
tectures in three steps, namely, a population ini-
tialization step that is based on prior-knowledge
from hand-crafted architectures, an exploration step
comprising crossover and mutation of architectures,
and finally an exploitation step that utilizes the hid-
den useful knowledge stored in the entire history
of evaluated neural architectures in the form of a
Bayesian Network. The integration of these compo-
nents allows an efficient design of architectures that
are competitive and in many cases outperform both
manually and automatically designed architectures
on CIFAR-10 classification task. The flexibility
provided from simultaneously obtaining multiple
architecture choices for different compute require-
ments further differentiates our approach from other
methods in the literature.

1 Introduction
Deep convolutional neural networks have been overwhelm-
ingly successful in a variety of computer-vision-related tasks
like object classification, detection, and segmentation. One of
the main driving forces behind this success is the introduction
of many CNN architectures, including GoogLeNet [Szegedy
et al., 2015], ResNet [He et al., 2016], DenseNet [Huang et
al., 2017], etc., in the context of object classification. Con-
currently, architecture designs such as ShuffleNet [Zhang et
al., 2018], MobileNet [Sandler et al., 2018], LBCNN [Juefei-
Xu et al., 2017], etc., have been developed with the goal of

∗This is an extended abstract of the original paper [Lu et al.,
2019], which won the best-paper award at the GECCO-2019 under
Evolutionary Machine Learning track.

enabling real-world deployment of high-performance models
on resource-constrained devices. These developments are the
fruits of years of painstaking efforts and human ingenuity.

Neural architecture search (NAS), on the other hand,
presents a promising path to alleviate this painful process
by posing the design of CNN architectures as an optimiza-
tion problem. By altering the architectural components in an
algorithmic fashion, novel CNNs can be discovered that ex-
hibit improved performance metrics on representative datasets.
The huge surge in research and applications of NAS indicate
the tremendous academic and industrial interest NAS has at-
tracted, as teams seek to stake out some of this territory. It is
now well recognized that designing bespoke neural network
architectures for various tasks is one of the most challenging
and practically beneficial component of the entire Deep Neural
Network (DNN) development process, and is a fundamental
step towards automated machine learning.

In this paper, we present NSGA-Net, a multi-objective ge-
netic algorithm for NAS to address the aforementioned limita-
tions of current approaches. A pictorial overview of NSGA-
Net is provided in Figure 1. The salient features of NSGA-Net
are, (1) multi-objective optimization: Real-world deploy-
ment of NAS models demands small-sized networks, in ad-
dition the models being accurate. For instance, we seek to
maximize performance on compute devices that are often con-
strained by hardware resources in terms of power consumption,
available memory, available FLOPs, and latency constraints,
to name a few. NSGA-Net is explicitly designed to opti-
mize such competing objectives. (2) Flexible architecture
search space: The search space for most existing methods is
restricted to a block that is repeated as many times as desired.
In contrast, NSGA-Net searches over the entire structure of
the network. This scheme overcomes the limitations inher-
ent in repeating the same computation block throughout an
entire network, namely, that a single block may not be op-
timal for every application and it is desirable to allow NAS
to discover architectures with different blocks in different
parts of the network. (3) Non-dominated sorting: The core
component of NSGA-Net is the Non-Dominated Sorting and
Crowding distance based multi-objective selection module
from NSGA-II [Deb et al., 2002], a multi-objective optimiza-
tion algorithm that has been successfully employed for solving
a variety of multi-objective problems [Tapia and Coello, 2007;
Pedersen and Yang, 2006]. Here, we leverage its ability to
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Figure 1: Overview of the stages of NSGA-Net. Networks are represented as bit strings, trained through gradient descent, ranking and selection
by NSGA-II, search history exploitation through BOA. Output is a set of networks that span a range of complexity and error objectives.

maintain a diverse trade-off frontier between multiple con-
flicting objectives, thereby resulting in a more effective and
efficient exploration of the search space. (4) Efficient recom-
bination: In contrast to state-of-the-art evolution-based NAS
methods [Real et al., 2017; Real et al., 2019] in which only mu-
tation is used, we employ crossover (in addition to mutation)
to combine networks with desirable qualities across multiple
objectives from the diverse frontier of solutions, and finally
(5) Bayesian learning: We construct and employ a Bayesian
Network inspired by the Bayesian Optimization Algorithm
(BOA) [Pelikan et al., 1999] to fully utilize the promising
solutions present in our search history archive and the inherent
correlations between the layers of the network architecture.

We demonstrate the efficacy of NSGA-Net on CIFAR10
[Krizhevsky et al., 2009] image classification task by mini-
mizing two objectives: classification error and computational
complexity. Here, computational complexity is defined by the
number of floating-point operations (FLOPs) that a network
carries out during a forward pass. Experimentally, we observe
that NSGA-Net can find a set of network architectures con-
taining solutions that are significantly better than hand-crafted
methods in both objectives, while being competitive with sin-
gle objective state-of-the-art NAS approaches. Furthermore,
by fully utilizing a population of networks through recombina-
tion and utilization of the search history, NSGA-Net explores
the search space efficiently and requires less computational
time for search than other competing methods.

2 Proposed Approach
Compute devices are often constrained by hardware resources
in terms of their power consumption, available memory, avail-
able FLOPs, and latency constraints. Hence, real-world design
of DNNs are required to balance these multiple objectives (e.g.,
predictive performance and computational complexity). Often,
when multiple design criteria are considered simultaneously,
there may not exist a single solution that performs optimally
in all desired criteria, especially with competing objectives.
Under such circumstances, a set of solutions that provide repre-
sentative trade-off information between the objectives is more
desirable. This enables a practitioner to analyze the impor-
tance of each criterion, depending on the application, and to
choose an appropriate solution on the trade-off frontier for
implementation. We propose NSGA-Net, a genetic algorithm
based architecture search method to automatically generate a
set of DNN architectures that approximate the Pareto-front be-
tween performance and complexity on an image classification
task. The rest of this section describes the encoding scheme,

and main components of NSGA-Net in detail.

2.1 Encoding
Genetic algorithms, like any other biologically inspired search
methods, often do not directly operate on phenotypes. From
the biological perspective, we may view the DNN architecture
as a phenotype, and the representation it is mapped from as
its genotype. As in the natural world, genetic operations like
crossover and mutation are only carried out in the genotype
space; such is the case in NSGA-Net as well. We refer to the
interface between the genotype and the phenotype as encoding
in this paper.

Most existing CNN architectures can be viewed as a com-
position of computational blocks that define the layer-wise
computation (e.g. ResNet blocks [He et al., 2016], DenseNet
block [Huang et al., 2017], and Inception block [Szegedy et
al., 2015], etc.) and a scheme that specifies the spatial reso-
lution changes. For example, down-sampling is often used
after computational blocks to reduce the spatial resolution of
information going into the next computational blocks in image
classification DNNs. In NSGA-Net, each computational block,
referred to as a phase, is encoded using the method presented
by [Xie and Yuille, 2017], with the small change of adding
a bit to represent a skip connection that forwards the input
information directly to the output bypassing the entire block.
And we name it as the Operation Encoding xo in this study.

Operation Encoding xo. Unlike most of the hand-crafted
and NAS generated architectures, we do not repeat the same
phase (computational block) to construct a network. In-
stead, the operations of a network are encoded by xo =(
x
(1)
o ,x

(2)
o , . . . ,x

(np)
o

)
where np is the number of phases.

Each x
(i)
o encodes a directed acyclic graph consisting of no

number of nodes that describes the operation within a phase
using a binary string. Here, a node is a basic computational
unit, which can be a single operation like convolution, pooling,
batch-normalization [Ioffe and Szegedy, 2015] or a sequence
of operations. This encoding scheme offers a compact repre-
sentation of the network architectures in genotype space, yet
is flexible enough that many of the computational blocks in
hand-crafted networks can be encoded, e.g. VGG [Simonyan
and Zisserman, 2015], ResNet [He et al., 2016] and DenseNet
[Huang et al., 2017]. Figure 2 and Figure 3 shows examples
of the operation encoding.

Search Space. With a pre-determined scheme of spatial res-
olution reduction (similarly in [Zoph et al., 2018; Real et al.,
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Figure 2: Encoding: Illustration of a classification network encoded by x = xo, where xo is the operations at a phase (gray boxes, each with a
possible maximum of 6 nodes). In this example the spatial resolution changes (orange boxes that connect the phases) are fixed based on prior
knowledge of successful approaches. The phases are described by the bit string xo which is formatted for readability above. The bits are
grouped by dashes to describe what node they control. See Section 2.1 for detailed description of the encoding schemes.
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Figure 3: Crossover Example: A crossover (denoted by ⊗) of a VGG-like structure with a DenseNet-like structure may result in a ResNet-like
network. In the figure, red and blue denotes connections that are unique to VGG and DenseNet respectively, and black shows the connections
that are common to both parents. All black bits are retained in the final child encoding, and only the bits that are not common between the
parents can potentially be selected at random from one of the parent.

2019; Liu et al., 2019]), the total search space in the genotype
space is governed by our operation encoding xo:

Ωx = Ωxo = np × 2no(no−1)/2+1

where np is the number of phases (computational blocks), and
no is the number of nodes (basic computational units) in each
phase. However, for computationally tractability, we constrain
the search space such that each node in a phase carries the
same sequence of operations, i.e. a 3×3 convolution followed
by batch-normalization and ReLU.

It is worth noting that, as a result of nodes in each phase hav-
ing identical operations, the encoding between genotype and
phenotype is a many-to-one mapping. Given the prohibitive
computational expense required to train each network archi-
tecture before its performance can be assessed, it is essential
to avoid evaluating genomes that decode to the same architec-
ture. We develop an algorithm to quickly and approximately
identify these duplicate genomes (see [Lu et al., 2019] for
details).

2.2 Search Procedure
NSGA-Net is an iterative process in which initial solutions
are made gradually better as a group, called a population. In
every iteration, the same number of offspring (new network
architectures) are generated from parents selected from the
population. Each population member (including both parents
and offspring) compete for both survival and reproduction
(becoming a parent) in the next iteration. The initial population
may be generated randomly or guided by prior-knowledge (e.g.

seeding the hand-crafted network architectures into the initial
population). Following initialization, the overall NSGA-Net
search proceeds in two sequential stages, an exploration and
exploitation.

Exploration. The goal of this stage is to discover diverse
ways of connecting nodes to form a phase (computational
block). Genetic operations, crossover and mutation, offer an
effective mean to realize this goal.

Crossover. The implicit parallelism of population-based
search approaches can be unlocked when the population mem-
bers can effectively share (through crossover) building-blocks
[Holland, 1975]. In the context of NAS, a phase or the sub-
structure of a phase can be viewed as a building-block. We
design a homogeneous crossover operator, which takes two
selected population members as parents, to create offspring
(new network architectures) by inheriting and recombining the
building-blocks from parents. The main idea of this crossover
operator is to 1) preserve the common building-blocks shared
between both parents by inheriting the common bits from both
parents’ binary bit-strings; 2) maintain, relatively, the same
complexity between the parents and their offspring by restrict-
ing the number of “1” bits in the offspring’s bit-string to lie
between the number of “1” bits in both parents. The proposed
crossover allows selected architectures (parents) to effectively
exchange phases or sub-structures within a phase. An example
of the crossover operator is provided in Figure 3.

Mutation. To enhance the diversity (having different net-
work architectures) of the population and the ability to escape
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Architectures Params (M) Test Error (%) MAdds (M) Search Cost (GPU-days) Search Method

Wide ResNet [Zagoruyko and Komodakis, 2016] 36.5 4.17 - - manual
DenseNet-BC (k = 40) [Huang et al., 2017] 25.6 3.47 - - manual

NAS [Zoph and Le, 2016] 7.1 4.47 - 3150 RL
NAS + more filters [Zoph and Le, 2016] 37.4 3.65 - 3150 RL
ENAS [Pham et al., 2018] 21.3 4.23 - 0.5 RL + WS
ENAS + more filters [Pham et al., 2018] 38.0 3.87 - 0.5 RL + WS

NSGA-Net 3.3 3.85 1290 8 EA

DARTS second order + cutout [Liu et al., 2019] 3.3 2.76 - 4 WS
NASNet-A + cutout [Zoph et al., 2018] 3.3 2.65 - 2,000 RL
ENAS + cutout [Pham et al., 2018] 4.6 2.89 - 0.5 RL + WS
AmoebaNet-A [Real et al., 2019] 3.2 3.34 - 3,150 EA

NSGA-Net (6 @ 560) + cutout 3.3 2.75 535 4 EA
NSGA-Net (7 @ 1536) + cutout 26.8 2.50 4147 4 EA

Table 1: Comparison of NSGA-Net with baselines on CIFAR-10 image classification. In this table, the first block presents architectures
designed by human experts. The second block presents NAS methods that design the entire network. The last block presents NAS methods that
design modular blocks which are repeatedly combined to form the final architecture. We use (N @ F) to indicate the configuration of each
model, where N is the number of repetition and F is the number of filters right before classification. WS stands for weight sharing.

from local optima, we use a bit-flipping mutation operator,
which is commonly used in binary-coded genetic algorithms.
Due to the nature of our encoding, a one bit flip in the genotype
space could potentially create a completely different architec-
ture in the phenotype space. Hence, we restrict the number
of bits that can be flipped to be at most one for each mutation
operation. As a result, only one of the phase architectures can
be mutated at one time.

Exploitation. The exploitation stage follows the exploration
stage in NSGA-Net. The goal of this stage is to exploit and re-
inforce the patterns commonly shared among the past success-
ful architectures explored in the previous stage. The exploita-
tion step in NSGA-Net is heavily inspired by the Bayesian
Optimization Algorithm (BOA) [Pelikan et al., 1999] which
is explicitly designed for problems with inherent correlations
between the optimization variables. In the context of our NAS
encoding, this translates to correlations in the blocks and paths
across the different phases. Exploitation uses past informa-
tion across all networks evaluated to guide the final part of
the search. More specifically, say we have a network with
three phases, namely x

(1)
o , x(2)

o , and x
(3)
o . We would like to

know the relationship of the three phases. For this purpose, we
construct a Bayesian Network (BN) relating these variables,
modeling the probability of networks beginning with a partic-
ular phase x(1)

o , the probability that x(2)
o follows x(1)

o , and the
probability that x(3)

o follows x(2)
o . In other words, we estimate

the distributions p
(
x
(1)
o

)
, p

(
x
(2)
o |x(1)

o

)
, and p

(
x
(3)
o |x(2)

o

)
by using the population history, and update these estimates
during the exploitation process. New offspring solutions are
created by sampling from this BN.

3 Experiments
In this section, we briefly explain the experimental setup and
implementation details of NSGA-Net, followed by the em-
pirical results to demonstrate the efficacy of NSGA-Net to
automate the NAS process on image classification task in

Table 1.
Dataset. We consider the CIFAR-10 [Krizhevsky et al.,
2009] dataset for our classification task. We split the original
training set (80%-20%) to create our training and validation
sets for architecture search. The original CIFAR-10 testing set
is only utilized at the conclusion of the search to obtain the
test accuracy for the models on the final trade-off front.
Hyper-parameters. We set the number of phases np to
three and the number of nodes in each phase no to six. The
initial population is generated by uniform random sampling.
The probabilities of crossover and mutation operations are
set at 0.9 and 0.02 respectively. The population size is 40
and the number of generations is 20 for the exploration stage.
And another ten generations for exploitation. Hence, a total
of 1,200 network architectures are searched by NSGA-Net.
During architecture search, we limit the number of filters
(channels) in any node to 16 for each one of the generated
network architecture. We then train them on our training set
using stochastic gradient descent (SGD) with initial learning
rate is 0.025 anneals down to zero in 25 epochs.

4 Conclusions
This paper presented NSGA-Net, a multi-objective evolution-
ary approach for neural architecture search. NSGA-Net af-
fords a number of practical benefits: (1) the design of neural
network architectures that can effectively optimize and trade-
off multiple competing objectives, (2) advantages afforded
by population-based methods being more effective than op-
timizing weighted linear combination of objectives, and (3)
more efficient exploration and exploitation of the search space
through a customized crossover scheme and leveraging the
entire search history through BOA. Experimentally, by opti-
mizing both prediction performance and computational com-
plexity NSGA-Net finds networks that are significantly better
than hand-crafted networks on both objectives and is com-
pares favorably to other state-of-the-art single objective NAS
methods for classification on CIFAR-10.
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