
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with
Partial Observability (Extended Abstract)*

Vincent François-Lavet 1,3 , Guillaume Rabusseau 2,3 , Joelle Pineau 1,3 ,
Damien Ernst 4 and Raphael Fonteneau 4

1 McGill University
2 Université de Montréal
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Abstract
When an agent has limited information on its en-
vironment, the suboptimality of an RL algorithm
can be decomposed into the sum of two terms: a
term related to an asymptotic bias (suboptimality
with unlimited data) and a term due to overfitting
(additional suboptimality due to limited data). In
the context of reinforcement learning with partial
observability, this paper provides an analysis of the
tradeoff between these two sources of error. In par-
ticular, our theoretical analysis formally character-
izes how a smaller state representation increases the
asymptotic bias while decreasing the risk of overfit-
ting.

1 Formalization
When acquisition of new observations is possible (the “on-
line” case), data scarcity is gradually phased out using strate-
gies balancing the exploration / exploitation (E/E) trade-
off. The scientific literature related to this topic is vast;
in particular, Bayesian RL techniques [Ross et al., 2011;
Ghavamzadeh et al., 2015] offer an elegant way of formal-
izing the E/E tradeoff.

However, such E/E strategies are not applicable when the
acquisition of new observations is not possible anymore. In
the pure “batch” setting (also called the “offline” setting), the
task is to learn the best possible policy from a fixed set of
transition samples [Farahmand, 2011; Lange et al., 2012].

We consider a discrete-time POMDP [Sondik, 1978]
model M described by the tuple (S,A, T, R,Ω, O, γ) where

• S is a finite set of states {1, . . . , NS},
• A is a finite set of actions {1, . . . , NA},
• T : S ×A× S → [0, 1] is the transition function,
• R : S ×A×S → R is the reward function, whereR is

a continuous set of possible rewards in a range Rmax ∈
R+,

• Ω is a finite set of observations {1, . . . , NΩ},

* This paper is an extended abstract of an article in the Journal
of AI Research [François-Lavet et al., 2019].

• O : S × Ω → [0, 1] is a set of conditional observation
probabilities, and

• γ ∈ [0, 1) is the discount factor.
The initial state is drawn from an initial distribution b(s0).

In this paper, the conditional transition probabilities T , the
reward function R and the conditional observation probabil-
ities O are unknown. The only information available to the
agent is the past experience it gathered while interacting with
the POMDP.

1.1 Processing a History of Data
A history of previously observed features can be used to es-
timate the hidden state dynamics [McCallum, 1996; Littman
and Sutton, 2002; Singh et al., 2004]. We denote by Ht =
Ω × (A × R × Ω)t the set of histories observed up to time

t for t ∈ N0, and by H =
∞⋃
t=0
Ht the space of all possible

observable histories.
In this paper, we consider a mapping φ : H → φ(H),

where φ(H) = {φ(H)|H ∈ H} is of finite cardinality
|φ(H)|. On the one hand, we will show that when φ discards
information from the whole history, the state representation
φ(H) that the agent uses to make decision might depart from
sufficient statistics, which can hurt performance. On the other
hand, we will show that it is beneficial to use a mapping φ that
has a low cardinality |φ(H)| to avoid overfitting.

Let us first introduce a notion of information on the latent
hidden state s through the notion of belief state [Cassandra et
al., 1994].
Definition 1.1. The belief state b(s|H) is defined as the
vector of probabilities where the ith component (i ∈
{1, . . . , NS}) is given by P(s = i | H), for any history
H ∈ H.
Definition 1.2. The belief state bφ (s|φ(H)) is defined as
the vector of probabilities where the ith component (i ∈
{1, . . . , NS}) is given by P(s = i | φ(H)), for any history
H ∈ H 1.

1Note that s and H are random variables and their exact distri-
bution will depend on the context that is considered. For any given
probability distribution DH over histories: H ∼ DH , the proba-
bility P (s|φ(H)) is the expectation of the state when φ(H) is ob-
served: bφ(s | ϕ) = E

H∼DH ,ϕ=φ(H)
b(s | H).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5055



Among all possible mappings φ, the notion of sufficient
statistics [Kaelbling et al., 1998; Aberdeen et al., 2007] cor-
responds to the ones that extract enough information from the
history to accurately capture the corresponding belief state.
Definition 1.3. In a POMDP M , a statistic φ(H) is a suffi-
cient statistic at the condition that ∀s ∈ S:

P(s | H) = P(s | φ(H)),

for H ∈ H. A mapping φ which provides sufficient statistics
for all histories H ∈ H is called a sufficient mapping and is
denoted as φ0.

One of the key notions on which our analysis relies is the
one of “approximately sufficient mappings”, i.e. mappings
whose corresponding belief state lies in an L1-ball of radius
ε centered on b(·|H):
Definition 1.4. In a POMDP M , a statistic φ(H) is an ε-
sufficient statistic at the condition that it meets the following
condition with ε ≥ 0 and with the L1 norm:

‖bφ(·|φ(H))− b(·|H)‖1 ≤ ε,
for H ∈ H. A mapping φ that provides ε-sufficient statistics
for all histories H ∈ H is called an ε-sufficient mapping and
is denoted as φε(H).

1.2 Working with a Limited Dataset
Let M(S,A,Ω, γ) be a set of POMDPs with fixed S , A,
Ω, and γ. For any POMDP M(T,R,O) ∈ M, we de-
note by DM,πs,Ntr,Nl a random dataset generated accord-
ing to a probability distribution DM,πs,Ntr,Nl over the set
of Ntr trajectories of length Nl. One such trajectory is de-
fined as the observable history HNl ∈ HNl obtained in M
when starting from s0 and following a stochastic sampling
policy πs that ensures a non-zero probability of taking any
action given an observable history H ∈ H. For simplicity
we denote DM,πs,Ntr,Nl , simply as D ∼ DM . For the pur-
pose of the analysis, we also introduce the asymptotic dataset
D∞ = DM,πs,Ntr→∞,Nl→∞ that would be theoretically ob-
tained in the case where one could generate an infinite num-
ber of observations (Ntr →∞ and Nl →∞).

1.3 Assessing the Performance of a Policy
Let us consider stationary and deterministic control policies
π : φ(H) → A with π ∈ Π. Any particular choice of φ in-
duces a particular definition of the policy space Π. We intro-
duce V πM (φ(H)) withH ∈ H as the expected return obtained
over an infinite time horizon when the system is controlled
using policy π in the POMDP M . For any given distribution
DH over histories, this is defined as:

V πM (φ(H)) = E
H′∼DH :

φ(H′)=φ(H)

V πM (H ′ | φ),

with V πM (H | φ) given by

V πM (H | φ) = E

[ ∞∑
t=0

γtrt|s0 ∼ b(·|H), π

]
,

where we have P
(
ωt | st

)
= O(st, ωt), at = π(φ(Ht)),

P
(
st+1|st, at

)
= T (st, at, st+1) and rt = R

(
st, at, st+1

)
.

We also define π∗ as an optimal policy in M :

π∗ ∈ argmax
π:φ0(H)→A

V πM (φ0(H0)),

where H0 is taken out of the distribution of initial observa-
tions (compatible with the distribution b(s0) of initial states
through the conditional observation probabilities).

2 Bias-overfitting in RL with Partial
Observability

In this section, we study the performance gap between the
expected return that can be obtained following the policy
built from limited data and the highest possible expected re-
turn that we would obtain if the algorithm had access to the
POMDP parameters.

To study the importance of the feature space, let us assume
that the policies built from limited data are optimal accord-
ing to frequentist statistics, which allows removing from the
analysis how the RL algorithm converges. In order to de-
fine the optimal policy according to frequentist statistics, let
us first introduce a frequentist-based (augmented) MDP from
the dataset D:
Definition 2.1. With M defined by (S,A, T,R,Ω, O, γ) and
the dataset D built from interactions with M , the frequentist-
based augmented MDP M̂D,φ, also denoted for simplicity
M̂D = (Σ,A, T̂ , R̂,Γ), is defined with

• the state space: Σ = φ(H),
• the action space: A = A,
• the estimated transition function: for σ, σ′ ∈ Σ and
a ∈ A, T̂ (σ, a, σ′) is the number of times we observe the
transition (σ, a) → σ′ divided by the number of times
we observe (σ, a) 2

• the estimated reward function: for σ, σ′ ∈ Σ and a ∈ A,
R̂(σ, a, σ′) is the mean of the rewards observed for the
tuple (σ, a, σ′) 3

• the discount factor Γ ≤ γ.
We introduce Vπ

M̂D
(σ) with σ ∈ Σ as the expected return

obtained over an infinite time horizon when the system is con-
trolled using a policy π : Σ → A in the augmented decision
process M̂D:

Vπ
M̂D

(σ) = E

[ ∞∑
t=0

Γkr̂t|σ0 = σ, π

]
,

where r̂t is the reward s.t. r̂t = R̂(σt, at, σt+1) and the tran-
sition is defined by P(σt+1|σt, at) = T̂ (σt, at, σt+1).

A policy π is defined to be better than or equal to a policy
π′ if its expected return is greater than or equal to that of π′
for all states. In an MDP, there is always at least one policy

2if any (σ, a) has never been encountered in a dataset, we arbi-
trarily set T̂ (σ, a, σ′) = 1/|Σ|, ∀σ′.

3if any (σ, a, σ′) has never been encountered in a dataset, we
arbitrarily set R̂(σ, a, σ′) to the average of rewards observed over
the whole dataset D.
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that is better than or equal to all other policies and this is an
optimal policy [Sutton and Barto, 1998]. In the augmented
MDP M̂D, we denote the optimal policy as πD,φ and we also
call it the frequentist-based policy. Let us now decompose the
error of using a frequentist-based policy πD,φ in the actual
POMDP:

E
D∼DM

[
V π
∗

M (φ0(H))− V πD,φM (φ(H))
]

=(
V π
∗

M (φ0(H))− V πD∞,φM (φ(H))
)

︸ ︷︷ ︸
bias function of datasetD∞ (function of πs)

and frequentist-based policy πD∞,φ (function of φ and Γ)

+ E
D∼DM

[
V
πD∞,φ
M (φ(H))− V πD,φM (φ(H))

]
︸ ︷︷ ︸
overfitting due to finite dataset D (function of πs,Nl,Ntr)

in the context of frequentist-based policy πD,φ
(function of φ and Γ)

.

(1)

The term bias actually refers to an asymptotic bias when
the size of the dataset tends to infinity, while the term overfit-
ting refers to the expected suboptimality due to the finite size
of the dataset (and thus due to the variance in the estimated
transition function and reward function).

We start by providing a bound on the bias, which is an
original result based on the belief states via the ε-sufficient
statistic.
Theorem 1. ”Bound on the bias”: Let M be a POMDP
described by the 7-tuple (S,A, T, R,Ω, O, γ). Let M̂D∞ be
an augmented MDP (Σ,A, T̂ , R̂,Γ = γ) estimated, accord-
ing to Definition 2.1, from a dataset D∞. Then, for any
ε-sufficient mapping φ = φε, the asymptotic bias can be
bounded as follows:

max
H∈H

(
V π
∗

M (φ0(H))− V πD∞,φM (φ(H))
)
≤ 2εRmax

(1− γ)3
. (2)

Proof. We consider the frequentist-based MDP
M̂D∞,φ0

(Σ0,A, T̂ , R̂,Γ = γ), for H ∈ H and a ∈ A,
let us define

QπD∞,φ0
M̂D∞,φ0

(φ0(H), a) = R̂′(φ0(H), a)+

γ
∑

ϕ∈φ0(H)

T̂ (φ0(H), a, ϕ)VπD∞,φ0
M̂D∞,φ0

(ϕ),

where the reward

R̂′(φ0(H), a) =
∑

ϕ∈φ0(H)

T̂ (φ0(H), a, ϕ)R̂(φ0(H), a, ϕ).

Then the main part of the proof is to demonstrate Proposi-
tion 2 below. From there, by applying Lemma 1 by Abel et
al. 2016, we have:∥∥∥VπD∞,φ0MD∞,φ0

− VπD∞,φεMD∞,φ0

∥∥∥
∞
≤

2 εRmax1−γ

(1− γ)2
=

2εRmax
(1− γ)3

.

By further noticing that, when starting in s0, M̂D∞,φ0 and M
provide an identical value function for a given policy πD,φ
and that πD∞,φ0

∼ π∗, i.e. V π
∗

M = V
πD∞,φ0
M , the theorem

follows.

Remark. As compared to Hutter 2014 and Abel et al. 2016,
this bound relates directly to the capacity of the mapping
φ(H) to retrieve sufficient information on the latent hidden
state. As compared to PBVI [Pineau et al., 2003] and similar
approaches, we do not make the assumption that T , R and O
are known and, as such, they need to be estimated from data.

We now provide Proposition 2, which is the key result re-
quired in the proof of Theorem 1.

Proposition 2. Let φε be an ε-sufficient mapping, and let φ0

be a sufficient mapping. Then, for any H(1), H(2) such that
φε(H

(1)) = φε(H
(2)), we have

max
a

∣∣∣QπD∞,φ0
M̂D∞,φ0

(φ0(H(1)), a)−QπD∞,φ0
M̂D∞,φ0

(φ0(H(2)), a)
∣∣∣

≤ ε Rmax
(1− γ)

.

Proof. For this proposition, we rely on the fact that since
φε(H

(1)) = φε(H
(2)), we are able to bound the L1 error

terms of the associated belief states of H(1) and H(2). From
that bound, we then present two different ways of indepen-
dent interest to prove Proposition 2. The first proof makes
use of a tree of possible future observations, rewards and cor-
responding actions given a policy π, and we show that when
starting from H(1), H(2) such that φε(H(1)) = φε(H

(2)), the
bound holds. We also provide an alternative proof that makes
use of the formalism of the bisimulation metric [Ferns et al.,
2004] along with the data processing inequality. The details
of the proofs are given in the full paper.

We now provide a bound on the overfitting error that mono-
tonically grows with |φ(H)|. Theorem 3 shows that using a
large set of features potentially leads to a stronger drop in per-
formance when the available dataset D is limited (the bound
decreases proportionally to 1√

n
). A theoretical analysis in the

context of MDPs with a finite dataset was performed by Jiang
et al. 2015.

Theorem 3. ”Bound on the overfitting”: Let M be a
POMDP described by the 7-tuple (S,A, T, R,Ω, O, γ). Let
M̂D be an augmented MDP (Σ,A, T̂ , R̂,Γ = γ) estimated,
according to Definition 2.1, from a dataset D with the as-
sumption that D has n transitions from any possible pair
(φ(H), a) ∈ φ(H) × A (sampled i.i.d according to DM ).
Then the overfitting due to using the frequentist-based policy
πD,φ instead of πD∞,φ in the POMDP M can be bounded as
follows:

max
H∈H

(
V
πD∞,φ
M (φ(H))− V πD,φM (φ(H))

)
≤

2Rmax
(1− γ)2

√
1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)
,

(3)

with probability at least 1− δ.

Proof. The proof of Theorem 3 is deferred to the full paper.
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Overall, Theorems 1 and 3 can help choose a good state
representation for POMDPs as they provide bounds on the
two terms that appear in the bias-overfitting decomposition
of Equation 1. An additional feature in the mapping φ has an
overall positive effect only if the increase of information on
the belief state prevails over the additional risk of overfitting.

3 Experiments
This section provides empirical illustrations of the theoretical
results on a distribution of synthetic POMDPs. Experiments
on a POMDP with real-world data are available in the full
paper.

3.1 Protocol
We randomly sample NP POMDPs such that NS = 5,
NA = 2 and NΩ = 5 (except when stated otherwise) from
a distribution P that we refer to as Random POMDP. Ran-
dom transition functions T (·, ·, ·) are drawn by assigning, for
each entry (s, a, s′), a zero value with probability 3/4, and,
with probability 1/4, a non-zero entry with a value drawn
uniformly in [0, 1]. For all (s, a), if all T (s, a, s′) are zeros,
we enforce one non-zero value for a random s′ ∈ S . Val-
ues are normalized. Random reward functions are generated
by associating to all possible (s, a, s′) a reward sampled uni-
formly and independently from [−1, 1]. Random conditional
observation probabilities O(·, ·) are generated in the follow-
ing way: the probability of observing o(i) when in state s(i)

is equal to 0.5, while all other values are chosen uniformly
randomly so that it is normalized for any s. For all POMDPs,
we have γ = 1 and Γ = 0.95 if not stated otherwise and we
truncate the trajectories to a length of Nl = 100 time steps.

For each generated POMDP P ∼ P , we generate 20
datasets D ∈ DP where DP is a probability distribution over
all possible sets of n trajectories (n ∈ [2, 5000]); where each
trajectory is made up of a history H100 of 100 time steps,
when starting from an initial state s0 ∈ S and taking uniform
random decisions. Each datasetD induces a policy πD,φ, and
we want to evaluate the expected return of this policy while
discarding the variance related to the stochasticity of the tran-
sitions, observations and rewards. To do so, policies are tested
with 1000 rollouts of the policy. For each POMDP P , we are
then able to get an estimate of the average score µP which is
defined as:

µP = E
D∼DP

E

[
Nl∑
t=0

γtrt|s0, πD,φ

]
.

We are also able to get an estimate of a parametric variance
σ2
P defined as:

σ2
P = Var

D∼DP
E

[
Nl∑
t=0

γtrt|s0, πD,φ

]
.

3.2 History Processing
We show experimentally that any additional feature from the
history Ht is likely to reduce the asymptotic bias, but may
also increase the overfitting. For any history length h, we
consider the mapping φh that extracts the current observation
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Figure 1: Evolution (as a function of the size of the dataset) of es-
timated values of E

P∼P
µP ± E

P∼P
σP computed from a sample of

NP = 50 POMDPs drawn from P . The bars are used to represent
the variance observed when dealing with different datasets drawn
from the distribution.

and the last h − 1 (observation, action) tuples. In the experi-
ments, we compare the policies πD,φh for h = 1, 2, 3.

The values E
P∼P

µP and E
P∼P

σP are displayed in Figure 1.

One can observe that a small set of features (small history)
appears to be a better choice when the dataset is small (only a
few trajectories). With an increasing number of trajectories,
the optimal number of features increases.

In addition, one can also observe that the expected variance
of the score decreases as the number of samples increases. As
the variance decreases, the risk of overfitting also decreases,
and it becomes possible to target a larger policy class (using
a larger feature set).

4 Conclusion and Future Works

In the context of POMDPs, this paper discusses the bias-
overfitting tradeoff of RL algorithms with limited available
data (batch RL). We show that it may be preferable to con-
cede an asymptotic bias in order to reduce overfitting. The
main theoretical results of this extended abstract relate to the
state representation, for which we introduce the notion of the
ε-sufficient statistics and showed that it enables the formal-
ization of the bias-overfitting trade-off.
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