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Abstract

An accurate short-term electric load forecasting is
critical for modern electric power systems’ safe
and economical operation. Electric load forecast-
ing can be formulated as a multi-variate time series
problem. Residential houses in the same neighbor-
hood may be affected by similar factors and share
some latent spatial dependencies. However, most
of the existing works on electric load forecasting
fail to explore such dependencies. In recent years,
graph neural networks (GNNs) have shown impres-
sive success in modeling such dependencies. How-
ever, such GNN based models usually would re-
quire a large amount of training data. We may have
a minimal amount of data available to train a reli-
able forecasting model for houses in a new neigh-
borhood area. At the same time, we may have a
large amount of historical data collected from other
houses that can be leveraged to improve the new
neighborhood’s prediction performance. In this
paper, we propose an attentive transfer learning-
based GNN model that can utilize the learned prior
knowledge to improve the learning process in a
new area. The transfer process is achieved by an
attention network, which generically avoids nega-
tive transfer by leveraging knowledge from multi-
ple sources. Extensive experiments have been con-
ducted on real-world data sets. Results have shown
that the proposed framework can consistently out-
perform baseline models in different areas.

1 Introduction
Electric load forecasting is of significant importance for the
efficient operation of modern power grids. An accurate elec-
tric load forecasting is beneficial to the controlling and plan-
ning the operation of modern electric grid systems. Based
on the time horizon, electric load forecasting can range from
short-term (minutes or hours ahead) to long-term forecast-
ing (years ahead). Among them, short-term load forecasting
(STLF) is mainly used to assist real-time energy dispatching
in the practice [Wu et al., 2014], and thus it is of great interest
in the industry. However, an accurate STLF is increasingly

difficult to achieve nowadays because the modern power sys-
tem has been become more and more sophisticated. On the
one hand, a variety of electric applicants have been adopted in
the power network. On the other hand, a fast-growing amount
of renewable sources have been adopted for the power gen-
eration side. Renewable energy sources, such as solar energy
and wind energy generations, are desirable for sustainable de-
velopment. However, compared to traditional energy sources,
they are sensitive to weather conditions and have high volatil-
ity outputs.

Factors related to STLF include temperature, humidity,
electronic appliances usage in a household, and so forth.
These uncertain factors hinder the accuracy of an STLF
model. Different types of approaches have been investi-
gated to improve the accuracy of STLF. As a typical time-
series regression problem, STLF can be tackled by classic
methods such as multivariate linear regression [Papalexopou-
los and Hesterberg, 1990], and autoregressive moving aver-
age with exogenous variable [Huang et al., 2005]. Besides
classic methods, machine learning-based methods have also
been gaining attention for solving STLF in recent years be-
cause machine learning methods are more capable of cap-
turing complex nonlinear relationships [Wu et al., 2019a].
For instance, various machine learning models have been re-
ported for STLF, including support vector regression (SVR)
[Kavousi-Fard et al., 2014], kernel-based method [Wu et al.,
2017], and feed-forward neural network (FNN) [Malki et al.,
2004]. Recurrent neural networks (RNNs) and their variants,
such as long short-term memory (LSTM) and gated recurrent
unit (GRU), are found promising in solving sequence prob-
lems [Kong et al., 2017].

However, the aforementioned methods only utilize histori-
cal temporal values from electric load and weather informa-
tion. Besides using the temporal values, researchers are also
paying attention to investigate the spatial correlation between
different units [Carreno et al., 2010; Corizzo et al., 2021], as
the spatial correlation can be utilized to improve the predic-
tion accuracy. In terms of spatial correlation between residen-
tial households, researchers have also built models that can
extract spatial information (i.e., the relation between house-
holds) in an electric grid to improve the accuracy of STLF
[Tascikaraoglu, 2018]. Load forecasting using spatial correla-
tions is usually referred to as spatial-temporal STLF. Spatial-
temporal STLF is based on the hypothesis that load consump-
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tion patterns between households might share similar trends
[Tascikaraoglu, 2018].

Besides electricity data, the latent dependencies between
units have also been utilized for other time-series problems
such as traffic prediction and wind prediction. Graph neural
network (GNN) has demonstrated its effectiveness on these
problems. For instance, GNN based models have demon-
strated impressive success in traffic prediction [Wu et al.,
2020; Wu et al., 2019b; Li et al., 2017; Yu et al., 2017] and
wind speed prediction [Khodayar and Wang, 2018]. How-
ever, GNN-based spatial-temporal models have been rarely
studied for STLF problems. Since GNN has demonstrated
its capability of capturing latent dependencies for time series
problems, in this paper, we propose to use GNN for short-
term load forecasting.

In the real world, we may not be able to have enough data
to learn a reliable machine learning forecasting model. Trans-
fer learning can be used to deal with such challenges. A
multi-kernel based transfer learning algorithm has been pro-
posed to transfer knowledge learned from source domains
(e.g., data-sufficient domains) to the target domain (e.g., the
domain we are interested in but with a limited amount of data)
[Wu et al., 2019a]. However, to the best of our knowledge,
a transfer learning framework for GNN has not yet been well
studied for time series problems, especially STLF. The goal
of this paper is to use GNN and transfer learning on STLF for
domains where we do not have a large amount of data. Specif-
ically, we propose a transfer learning framework to transfer
the spatial-temporal knowledge learned by GNN-based mod-
els from source domains to the target domain. Therefore, this
framework not only transfers the knowledge from the histor-
ical temporal data but also transfers the knowledge of latent
dependencies learned by the GNN-based model.

2 Technical Background
2.1 GNN based Model for Time-Series Regression
GNN has been developed into many variants and becom-
ing popular in recent years [Zhou et al., 2018]. It has
demonstrated its excellence in exploiting non-Euclidean spa-
tial relationships to improve the prediction accuracy for dif-
ferent time-series forecasting problems [Wu et al., 2019b;
Wu et al., 2020]. To utilize GNN-based models, data has
to be presented in the form of graph structure G = (V, E),
where vi ∈ V represents a node and eij ∈ E denotes an edge
pointing from vi to vj . In the meanwhile, an adjacency ma-
trix A ∈ Rn×n is used to quantitatively describe the con-
nectedness between nodes, i.e. Aij = 1 if eij ∈ E and
Aij = 0 if eij 6∈ E . To extract the spatial information in graph
structure data, graph convolutions are the most common ap-
proaches. Methods for graph convolutions are categorized
into spatial-based and spectral-based [Zhou et al., 2018]. To
illustrate how graph convolution extracts spatial information,
the diffusion convolution neural network, which is one of
the spatial-based graph convolution methods [Li et al., 2017;
Wu et al., 2019b], will be introduced here. This method
regards graph convolution as a diffusion process, in which
information is transmitted between nodes connected with a
possibility transition matrix calculated according to the ad-

jacency matrix. The diffusion graph convolution is defined
as

Hk = Wk ∗ P kX (1)

Z =
K∑

k=0

Hk (2)

where ∗ is the element-wise product, P = A/rowsum(A) is
the possibility transition matrix, X is the graph structure in-
put data, Hk is the hidden output of the kth diffusion step,
Wk is the learnable parameters for the kth diffusion step,
and Z is the final output of a diffusion graph convolution
layer. By combining graph convolution and spatial-temporal
time-series input data, GNN-based models can solve spatial-
temporal time-series regression problems [Wu et al., 2020].

2.2 Residential Houses based Graph Structure for
STLF

Spatial-temporal STLF can be regarded as a spatial-temporal
time series prediction problem. Given the historical values
of a group of households, the model aims at learning from
the temporal data and spatial relationships in order to predict
the load values ahead. Mathematically, Xt = {xt1, ..., xtn}
represent the load values at the t-th time step for households
1, 2, ..., n. A spatial-temporal electric load dataset is repre-
sented by {X1, ..., XT } ∈ Rn×T , with total house num-
ber n and a total time step of T . Then, by combining the
spatial-temporal dataset and the adjacency matrix that de-
scribes the correlation between households, a graph structure
data {X1, ..., XT ,A} is formulated, where XT ∈ Rn con-
sists of the load values of n households at the time step of T ,
and A ∈ Rn×n is the adjacency matrix. The graph structure
will facilitate the operation of GNN for STLF.

2.3 Transfer Learning
Machine learning based STLF methods, especially deep
learning based methods would require a sufficient amount of
data to achieve reasonable accuracy. However, data collection
could be expensive and difficult in practice, especially for an
STLF model to be applied in a new-built smart grid system.
The concept of transfer learning is designed to tackle this kind
of problem [Pan and Yang, 2009]. In transfer learning, the do-
main we are interested in refers to the target domain, usually
lacking data. Meanwhile, sufficient data might be available in
other related domains. These related domains refer to source
domains. Therefore, it is reasonable and desirable to transfer
knowledge learned from source domains to the target domain
so that a better generalization can be achieved in the target
domain even with a relatively small amount of data. Besides
designing a mechanism to transfer knowledge, a challenge
in transferring knowledge is negative transfer [Weiss et al.,
2016], which deteriorates the complete model when the target
domain and source domains are not closely related. Thus, it is
necessary to distinguish and exclude knowledge from certain
source domains that might hinder the learning in the target
domain. Different types of meta-learning methods [Vilalta
and Drissi, 2002] have been proposed to enable the models
to learn fast. However, most of these methods require that
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the learning tasks should be sampled from the same task dis-
tribution. Therefore these methods are not suitable for our
problem.

3 Methodology
To solve the problem of negative transfer generically, an at-
tentive and adaptive transfer architecture has been proposed
for reinforcement learning [Rajendran et al., 2015]. This ar-
chitecture’s key contribution is that an attention mechanism
based on a deep neural network learns to assign weights to
pre-learned solutions so that the most suitable solutions are
decided to be transferred. A similar architecture of attention-
based ensemble has been also reported in [Bräm et al., 2019],
in which an attention network learns to group task knowledge
into sub-networks on a state-level granularity.

Inspired by the attentive and adaptive transfer learning
applied in reinforcement learning [Rajendran et al., 2015;
Bräm et al., 2019], we propose an attentive transfer frame-
work for transferring knowledge from GNN models trained
in source domains. These GNN models in source domains, as
indicated by Wu et al [Wu et al., 2020], have learned not only
temporal knowledge but also the knowledge of latent spatial
dependencies.

Therefore, it is expected that a transfer learning framework
for GNN models can transfer both the temporal and spatial
knowledge in trained GNN models. Also, this framework
hypothesizes that as the spatial information explored by a
GNN-based model can improve the accuracy of the STLF
in a source domain, spatial knowledge learned from source
domains can also be exploited to improve a transfer learn-
ing framework. In this section, the formation of STFL based
on graph structure will be given first. The attentive transfer
framework will be illustrated afterward.

3.1 STLF based on Graph Structure
As demonstrated in Sec.2.2, a graph structure data
{X1, ..., XT ,A} consists of the historical load data of ev-
ery household and the adjacency matrix describing the cor-
relation between households. This graph structure data can
be operated by a GNN-based STLF model f(·), which aims
to learn from the Graph structure data of last h time steps
to predict the spatial-temporal data of the next time step,

i.e. {Xt−h+1, ..., Xt,A} f(·)−→ Xt+1. In addition, the cor-
relations between households are related to locations, living
habits, types of appliances, and so forth. Thus, the adjacency
matrix A for STLF is difficult to predetermine. So, the GNN
model that can discover latent correlation, such as [Wu et al.,
2019b], can be preferable for spatial-temporal STLF.

3.2 Proposed Forecasting Framework
Figure 1 illustrates the transfer learning framework based
on a set of base GNN models. This framework consists
of three parts: a base GNN network learned from the tar-
get domain, N GNN models learned from source domains,
and an attention network learning to assign weights. The
base GNN model is trained with insufficient data in the train-
ing set of the target domain. The N source GNN models

....

Base GNN 
Network

Trained 
source GNN 
Networks

Input data 

Weight vector

Attention 
Network

𝑦𝑠𝑟𝑐 ,1,𝑦𝑠𝑟𝑐 ,2, … ,𝑦𝑠𝑟𝑐 ,𝑁

𝑦𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

𝑦𝑏𝑎𝑠𝑒

Figure 1: Attentive transfer network framework. Solid arrows:
forward-propagation. dashed arrows: backward-propagation.

are pre-trained by a sufficient amount of data in the corre-
sponding source domains. The base model yields the base
output ŷBase and the N source models yield source out-
puts ŷsrc,1, ŷsrc,2, ..., ŷsrc,N . It is noted that all GNN models
share the same node number so that they can be merged after-
ward.

The attention network is designed to learn to weight the
models’ outputs ŷsrc,1, ŷsrc,2, ..., ŷsrc,N and ŷBase. The at-
tention network is based on a multi-layer perceptron (MLP),
which can be represented as (e1,X , .., eN+1,X) = fa(X; θa),
where X is the input data, θa is learnable parameters,
(e1,X , .., eN+1,X) are outputs with the dimension of RN+1.
The output from the MLP is converted to weights assigned
to models by the soft-attention mechanism, which allows the
attention network to generate more than one non-zero weight
[Rajendran et al., 2015; Bahdanau et al., 2014]

wi =
exp(ei,X)∑N+1

j=1 exp(ej,X)
(3)

where
∑N+1

i=1 wi = 1, wi ∈ [0, 1]. Therefore, the complete
model’s output ŷcomplete is the weighted summation of the
outputs from source models and the base model

ŷcomplete = wN+1ŷBase +
N∑
i=1

wiŷsrc,i (4)

Different approaches are adopted to update parameters
in source models, the base model, and the attention net-
work. All source models are pre-trained and their param-
eters are kept constant during the attentive ensemble. Pa-
rameters in the base model are updated according to the
loss calculated by the output of the complete model ŷBase

and the real value in the data of target domain yreal, i.e.
LT (ŷBase, yreal). Parameters in the attention network are up-
dated according to the final output from the complete model
ŷcomplete and the real value in the data of target domain yreal,
i.e., LT (ŷcomplete, yreal). As indicated in Figure 1, there are
two separate back-propagations in the base GNN network and
in the attention network. The loss function is selected as the

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2718



-100 0 100 200 300 400 500 600 700
-10

0

10

20
N

o
rm

a
liz

e
d

 l
o

a
d VA

-100 0 100 200 300 400 500 600 700
-10

0

10

20

N
o

rm
a

liz
e

d
 l
o

a
d CO

-100 0 100 200 300 400 500 600 700
-10

0

10

20

N
o

rm
a

liz
e

d
 l
o

a
d WI

-100 0 100 200 300 400 500 600 700

Time step (hour)

-10

0

10

20

N
o

rm
a

liz
e

d
 l
o

a
d AZ

Training set Test set

Figure 2: Aggregated normalized electric loads in target areas.

mean absolute error function

L(ŷ, y; Θ) =
1

n

i=n∑
i=1

|ŷ(i) − y(i)| (5)

where n is the total household number.

4 Experiment
This framework will be evaluated upon the dataset OpenEI1.
The dataset consists of residential hourly electric load data
recorded in different cities in the year 2012. Specifically,
8760 hourly data points are in the record for each house.

4.1 Experiment Setup
In this section, experiments are conducted to transfer knowl-
edge from six source domains to four target domains. The
six source domains contain source data from Pennsylvania
(PA), New Mexico (NM), New York (NY), Oregon (OR), Al-
abama (AL), and Texas (TX), respectively. For convenience,
these six source domains are denoted as source domains 1 to
6, respectively. Each source data consists of 10 households’
historical temporal electric loads in the first 90 days of the
year (2160 data-points). A source model is trained with the
corresponding dataset. All source data is divided into train-
ing/validation/test sets with a ratio of 0.7/0.2/0.1 chronolog-
ically. In addition, Graph WaveNet [Wu et al., 2019b] is the
chosen model as an example to validate the attentive ensem-
ble framework. The reason is that Graph WaveNet has the
ability to discover the relationship between nodes in a graph
without any prerequisite knowledge of nodes relationships.
This ability to discover hidden node relations makes Graph
WaveNet a potential candidate for spatio-temporal STLF. All
source models are Graph WaveNets with the same set of pa-
rameters listed in Table 1. This set of hyperparameters is the

1available at https://openei.org/datasets/files/961/pub/
RESIDENTIALLOADDATAEPLUSOUTPUT/HIGH/

same as the one in [Wu et al., 2019b] which also demon-
strates a good performance on the OpenEI dataset. All source
models are pre-trained individually and kept fixed during the
subsequent training in the attentive ensemble framework. It
is noted that source models are trained to predict the one-
hour load values of all households ŷ ∈ RN , with the in-
put of the latest 4 time-steps historical temporal load val-
ues of all households X ∈ RN×T , where household num-
ber N = 10 and time step T = 4. The four target domains
include target data from Virginia (VA), Colorado (CO), Wis-
consin (WI), and Arizona (AZ), respectively. Each target data
has 10 households’ temporal load values of 37 days (888 data-
points) between January and February. The target data is di-
vided into training/test sets with a ratio of 7/30 chronologi-
cally. All data in the source or target domain is normalized
by the mean value µtrain and the standard deviation σtrain of
the training set in the corresponding domain. Figure 2 shows
the aggregated normalized load profiles in different target ar-
eas. The normalized load patterns in AZ and CO are more
regular than the patterns in VA and WI.

In the attentive ensemble framework, the base model is a
Graph WaveNet with the same parameters in Table 1 except
the batch size and epoch number. The attention network con-
sists of a flatten layer followed by a three-layer perceptron
with hidden layer sizes of (32, 32). During the training for
the complete model, the batch size is 8 and the epoch number
is 100. The complete model was implemented using PyTorch
library on a desktop with a NVIDIA GeForce GTX 1080Ti
graphics processing unit card and 32 GB memory.

As illustrated in Figure 1, the attentive ensemble frame-
work updates the parameters in the base model and the pa-
rameters in the attention network separately. After the train-
ing, besides the complete model obtained by the attentive en-
semble, a base model trained by the target training set is also
obtained. To demonstrate how the attention network transfers
knowledge from domains, the complete model, base model,
and the 6 source models will be compared and evaluated by
the data in the target test set. Also, the aforementioned mod-
els are compared with baselines including linear regression
(Regr), feedforward neural networks (FNN) with hidden units
of (32, 32), support vector regression (SVR), and a stacked
LSTM with hidden units of (32, 32). These baselines are
trained with the target training data.

Mean absolute percentage error (MAPE) and mean ab-
solute error (MAE) are used as the metrics for evaluation:
MAPE = | ŷ−y

y | × 100%, and MAE = |ŷ − y|. In addition,
similar to [Kong et al., 2017], the average error of individual
loads and the error of aggregated load will be evaluated.

4.2 Experimental Result
Performance of Models
Table 2 demonstrates the performance of 6 source models,
the base model, and the complete model on the test sets of
the four different target domains. And Table 3 demonstrates
the baselines’ performance. Figure 3 visualizes the selected
data presented in Table 2 and 3, and it compares the perfor-
mance of the best baseline, the best source model, the base
models and the complete model in different target areas un-
der different evaluation metrics.
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Name Value
Sequence of dilation factor (1,2,1,2,1,2,1,2)

Layer of GWN 8
Size of node embeddings 10

Diffusion step 4
Drop-out rate 0.3
Learning rate 0.001

Batch size 128
Epoch number 120

Table 1: Main parameters used in Graph WaveNet.
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Figure 3: Visualization of MAPE and MAE performance from Table
2 and 3. a) Average MAPE of individual load forecasting. b) MAPE
of aggregated load forecasting. c) Average MAE of individual load
forecasting. d) MAE of aggregated load forecasting.

Also, to intuitively understand the performance improve-
ment when comparing different models with the best base-
lines in different target areas, Figure 4 presents the error im-
provement percentage from the best baselines to the selected
models. The best source model evidently outperforms the
best baseline in the target areas of VA, CO, and WI. But
the best source model performs significantly worse than the
baseline in the target area of AZ. This phenomenon shows
that though trained with an abundant amount of source data,
source models are still possibly incompetent in some target
data. In terms of the base model, because it is trained by
insufficient target data, its performance is hardly compara-
ble with the best baselines in different target areas. Thus,
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Figure 4: Visualization of error improvement percentage from the
best baselines to various models. Improvement percentage of a) Av-
erage MAPE of individual load forecasting; b) MAPE of aggregated
load forecasting; c) Average MAE of individual load forecasting; d)
MAE of aggregated load forecasting. It is noted that positive values
refer to improvement and negative values refer to deterioration.

1
2
3
4
5
6

Base

VA

0

50

100

1
2
3
4
5
6

Base

CO

0

50

100

1
2
3
4
5
6

Base

WI

0

50

100

1 50 100 150 200 250 300

Time step (hour)

1
2
3
4
5
6

Base

AZ

0

50

100
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to source models and the base model in the first 300 time steps of
various target test sets.

it is difficult to achieve accurate STLF with a single base-
line/source/base model. And the complete model steadily and
evidently excels the best baseline in all target areas and eval-
uation metrics. This shows that transfer learning is necessary
in achieve accurate STLF when target data is insufficient.

From Table 2 and Figure 3, it is noticed that the target data
from different areas significantly influences the performance
of source models as well as the base model. When compar-
ing the performance between source models, although source
model 4 performs the best in all target areas under most of
the evaluation metrics, source model 4 does not outperform
the other source models by a large margin. Also, even with
a limited amount of training data in the target domain, the
base model is possible to be relatively well-trained and out-
perform source models. In Table 2, the base model performs
significantly worse than the best source models in the area of
VA, CO, and WI. But in the target area AZ, the base model
outperforms all source models under all evaluation metrics
except the average MAE of individual loads. Therefore, even
though the best model varies among source models and the
base model in different target areas, the attentive ensemble
framework can always lead to a complete model with the per-
formance equivalent with or better than the best source/base
model. This excellent performance relies on the attention
network, which successful ensembles the results from these
models in an optimal way.

Impact of the Learned Weights
Figure 5 visualizes the weights of the attention network out-
put in different target test sets. From the patterns, it is no-
ticed that the weight changes with input data. This shows
that the attention network recognizes the pattern of input data
and assigns weights to corresponding suitable models. Also,
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Target Area Metrics SRC 1 SRC 2 SRC 3 SRC 4 SRC 5 SRC 6 Base Complete

VA

Avrg. MAPE 6.98% 7.04% 6.82% 6.64% 6.45% 6.85% 6.70% 5.87%
Aggr. MAPE 4.75% 4.61% 4.28% 3.90% 4.16% 4.02% 4.11% 3.37%
Avrg. MAE 1.36 1.34 1.24 1.22 1.26 1.32 1.38 1.15
Aggr. MAE 10.98 9.88 9.27 8.47 9.15 8.76 9.48 7.57

CO

Avrg. MAPE 7.80% 7.74% 7.83% 7.28% 8.87% 10.14% 8.93% 6.72%
Aggr. MAPE 4.66% 3.88% 4.77% 3.90% 3.95% 4.37% 4.86% 3.19%
Avrg. MAE 1.52 1.52 1.52 1.39 1.57 1.70 1.74 1.37
Aggr. MAE 11.00 9.32 11.14 9.00 9.72 10.34 11.55 8.01

WI

Avrg. MAPE 4.08% 5.15% 4.23% 3.83% 5.22% 5.89% 4.79% 3.84%
Aggr. MAPE 2.55% 3.26% 2.71% 2.13% 3.01% 3.27% 2.32% 2.02%
Avrg. MAE 1.34 1.61 1.36 1.25 1.58 1.78 1.54 1.26
Aggr. MAE 9.01 11.12 9.38 7.38 10.48 11.30 8.20 7.14

AZ

Avrg. MAPE 15.13% 16.46% 15.30% 13.98% 15.44% 14.54% 9.89% 9.57%
Aggr. MAPE 8.93% 9.63% 9.42% 7.31% 9.22% 8.58% 5.76% 5.24%
Avrg. MAE 1.32 1.23 1.24 1.12 1.22 1.22 1.13 0.97
Aggr. MAE 10.93 9.31 10.49 8.04 9.71 9.10 7.42 6.52

Table 2: The performance of 6 source models, the base model and the complete model on four target areas (VA, CO, WI and AZ).

Area Metric FNN LSTM Regr SVR

VA

Avrg. MAPE 9.17% 12.61% 7.37% 6.70%
Aggr. MAPE 4.88% 9.06% 4.15% 4.05%
Avrg. MAE 1.95 3.23 1.48 1.32
Aggr. MAE 11.49 22.06 9.48 9.19

CO

Avrg. MAPE 11.99% 13.88% 8.33% 8.16%
Aggr. MAPE 5.31% 6.10% 4.42% 4.62%
Avrg. MAE 2.24 2.83 1.73 1.66
Aggr. MAE 12.77 14.89 11.02 11.38

WI

Avrg. MAPE 7.16% 6.95% 4.63% 4.95%
Aggr. MAPE 3.84% 3.67% 2.99% 3.36%
Avrg. MAE 2.13 2.39 1.55 1.65
Aggr. MAE 13.07 13.03 10.53 11.74

AZ

Avrg. MAPE 10.82% 12.07% 12.04% 11.69%
Aggr. MAPE 5.63% 5.92% 6.56% 6.26%
Avrg. MAE 1.17 1.30 1.16 1.14
Aggr. MAE 7.25 7.84 8.07 7.97

Table 3: The performance of baselines on four target areas.

the weight pattern varies evidently in different target test sets.
In target areas of VA, CO, and WI, most of the weights are
assigned to source model 4. However, in AZ, besides source
model 4, source model 2 and 6 also demonstrate more evident
and frequent participation during the ensemble, compared to
the other target areas.

To unveil the relation between electric load profiles and
the weight pattern, Figure 6 demonstrates the real aggregated
load profile in the test set of CO, the predicted value by the
complete model, and the corresponding weight pattern when
calculating the predicted value. It is noticed that the attention
network assigns most of the weight to the source model 4
along with the ascending parts of the load profile. During
the descending parts of the load profile, the source model 4
has less weight assigned. In the meanwhile, the source model
1, 3, 6 and the base model increase their participation in the
ensemble process.

In summary, the experimental results show that the pro-
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Figure 6: Aggregated load profile in the test set of target area CO,
and corresponding weight pattern. Black solid line is the real value
and the red solid line is the predicted value of the complete model.

posed framework successfully achieves transfer knowledge
from source GNN networks. The attention network also
solves the problem of negative transfer by generically assign-
ing weights to source models and the base model.

5 Conclusion
In conclusion, this paper proposes an attentive ensemble
framework to solve the problem of insufficient training data in
STLF via transfer learning. By learning an attention network
to assign weights to source models and the base model, the
proposed framework successfully integrates knowledge from
source GNN networks as well as the base model. The con-
cern on negative transfer has also been released generically
by the attention network. Experiments have been conducted
in four different areas. The experimental results show that the
proposed method can outperform the baselines significantly
and perform robustly in different areas. Furthermore, though
Graph WaveNet is used as the GNN network in the exper-
iments, the proposed framework can also integrate various
kinds of GNN models. In the future, we plan to validate this
framework on more problems with different GNN networks.
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