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Abstract

This paper investigates the model-based methods
in multi-agent reinforcement learning (MARL). We
specify the dynamics sample complexity and the op-
ponent sample complexity in MARL, and conduct a
theoretic analysis of return discrepancy upper bound.
To reduce the upper bound with the intention of low
sample complexity during the whole learning pro-
cess, we propose a novel decentralized model-based
MARL method, named Adaptive Opponent-wise
Rollout Policy Optimization (AORPO). In AORPO,
each agent builds its multi-agent environment model,
consisting of a dynamics model and multiple oppo-
nent models, and trains its policy with the adaptive
opponent-wise rollout. We further prove the theo-
retic convergence of AORPO under reasonable as-
sumptions. Empirical experiments on competitive
and cooperative tasks demonstrate that AORPO can
achieve improved sample efficiency with compa-
rable asymptotic performance over the compared
MARL methods.

1 Introduction

Multi-agent reinforcement learning (MARL) has been recently
paid much attention and preliminarily applied to various con-
trol scenarios including robot system, autonomous driving,
resource utilization etc. [Du and Ding, 2020]. One main
technical challenge MARL brings over single-agent reinforce-
ment learning (SARL) is that the agents need to interact with
other agents, and their returns depend on the behavior of all
the agents, which usually requires a considerable amount of
samples, i.e., high sample complexity.

In a general MARL setting, one agent can access the ac-
tions taken by other agents in any state through some com-
munication protocol, without any knowledge of their specific
policies [Tian et al., 2020]. In such a situation, we claim
that the sample complexity in MARL comes from two parts:
dynamics sample complexity and opponent sample complex-
ity. To achieve some policy performance, dynamics sample
complexity represents the number of interactions made with
the environment dynamics while collecting the samples. On
the other hand, opponent sample complexity, which is unique
in MARL, represents the times of communications to access
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one opponent’s action. Thus one goal of MARL is to find an
effective policy with the two sample complexities being low.

In SARL scenarios, it is well known that model-based re-
inforcement learning (MBRL) can achieve lower dynamics
sample complexity than model-free reinforcement learning
(MFRL) empirically [Wang et al., 2019] or achieve at least
competitive complexity theoretically [Jin et al., 2018]. Specif-
ically, by building a dynamics model, the agent can also be
trained with the model simulation samples and the ones col-
lected from the environment, which can reduce the need for
the environment samples [Luo ef al., 2019]. In multi-agent
scenarios, however, to utilize the dynamics model for data
simulation, we need to ask for the opponents’ actions through
a communication protocol, which will count as the opponent
sample complexity. Via building opponent models [He et al.,
20161, we can replace the real opponents in the data simulation
stage to reduce the opponent sample complexity.

In this paper, we investigate model-based methods for
MARL and propose a novel method called Adaptive Opponent-
wise Rollout Policy Optimization (AORPO). Specifically,
from the perspective of each ego agent', we build a multi-agent
environment model, which consists of a dynamics model and
opponent models for each opponent agent. The multi-agent
environment model can then be used to perform simulation
rollout for MARL training to reduce both sample complexities.
To our knowledge, however, in literature, there is no theoretical
guidance regarding how to perform the multi-agent simulated
rollouts. We provide a theoretical analysis about the upper
bound of the return discrepancy w.r.t. policy distribution shift
and the generalization errors of the environment dynamics and
each opponent model. The upper bound reveals that when the
environment dynamics model performs rollout with multiple
opponents models, different magnitudes of opponent model
errors may lead to different contributions to the compounding
error of the multi-step simulated rollouts. Based on the theo-
retic analysis, we design the adaptive opponent-wise rollout
scheme for our policy optimization algorithm, called AORPO,
and prove its convergence under reasonable assumptions.

Experiments show that AORPO outperforms several state-
of-the-art MARL methods in terms of sample efficiency in
both cooperative tasks and competitive tasks.

'In this paper, each studied agent is called ego agent while the
other agents are called opponent agents. See Figure 2 for illustrations.
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2 Related Work

There are two important training paradigms in MARL, i.e.,
centralized training with decentralized execution (CTDE) and
fully decentralized training. Typical algorithms using CTDE
paradigm are value function decomposition algorithms [White-
son, 2018], which deal with the non-stationarity and credit-
assignment challenges by a centralized value function. Fully
decentralized MARL algorithms include consensus learning
over networked agents and communicating agents [Zhang
et al., 2018; Qu et al., 2019]. In decentralized scenarios,
where the agents can communicate with each other, Igbal and
Sha [2019] proposed a method that integrates the received
messages to learn a value function and a policy. In this pa-
per, we propose a fully decentralized training method with a
communication protocol.

Opponent modeling [He ef al., 2016] is a feasible solution to
the non-stationarity problem in MARL, which models others’
policies with interaction experience. Behavior cloning is a
straightforward method to learn opponents’ policies [Lowe et
al., 2017]. More advances include recursive reasoning with
variational inference [Wen et al., 2019], maximum-entropy
objective [Tian et al., 2019], and modeling the learning process
of opponents [Foerster et al., 2018] etc.

There are generally two major problems for model-based
RL methods, i.e., model learning and model usage. For model
learning, the most common solution is supervised learning
[Nagabandi ef al., 2018], or non-parametric methods such
as Gaussian processes [Kamthe and Deisenroth, 2018]. For
model usage, a policy can be derived by exploiting the model
with different algorithms such as Dyna [Sutton, 1990], shoot-
ing methods [Chua et al., 2018] and policy search with back-
propagation through paths [Clavera et al., 2020]. We refer to
Wang et al. [2019] for details of model-based RL. Theoreti-
cal analysis of model-based RL in single-agent scenarios has
been investigated in recent literature. To name a few, Luo et
al. [2019] provided a monotonic improvement guarantee by
enforcing a distance constraint between the learning policy
and the data-collecting policy. Janner et al. [2019] derived
a return discrepancy bound with the branched rollout, which
studies how the model generalization affects the model usage.

For model-based MARL, there are relatively limited works
of literature, to our knowledge. Park er al. [2019] proposed to
use a centralized auxiliary prediction network to model the en-
vironment dynamics to alleviate the non-stationary dynamics
problem. Kamra er al. [2020] and Li er al. [2020] proposed
interaction graph-based trajectory prediction methods, without
considering policies. Krupnik et al. [2019] built a centralized
multi-step generative model with a disentangled variational
auto-encoder to predict the environment dynamics and the op-
ponent actions and then performed trajectory planning. Unlike
previous work, in our proposed AORPO each agent builds its
environment model consisting of a dynamics model and op-
ponent models, then learns its policy using the model rollouts.
To our knowledge, AORPO is the first Dyna-style method
in MARL. More importantly, AORPO is supported by the
theoretical bound of return discrepancy and convergence guar-
antee, which provides a principle to design further Dyna-style
model-based MARL methods.
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3 Problem Definition and Sample Complexity

3.1 Problem Definition

We formulate the MARL problem as a stochastic game [Shap-
ley, 1953]. An n-agent stochastic game can be defined as
a tuple (S, AL,..., A", R',...,R™,T,v), where S is the
state space of the stochastic game, A® is the action space of
agenti € {1,...,n}, A =TI, A’ is the joint action space,
R : S x A+ R is the reward function of agent ¢, and y
is the discount factor. State transition proceeds according to
the dynamics function 7 : S x A +— S. For agent ¢, denote
its policy as 7 : S — A(A?), which is a probability distri-
bution over its action space, and 7 (a;|s;) is the probability
of taking action a; at state s;. By denoting other agents’ ac-
tions as a~* = {a’},;, we can formulate the joint policy of
other agents’ as 7" (a; ‘|s;) = Iljc(_i 7 (al|s;). Ateach
timestep, actions are taken simultaneously. Each agent ¢ aims
at finding its optimal policy to maximize the expected return
(cumulative reward), defined as

oo
n}gx nlrt, ] = E(st,af,aﬁ)NT,ﬂi,ﬁﬂ [Z ¥R (s¢, ar, at_z)] .
t=1
We consider a general scenario that each ego agent ¢ has
no knowledge of other agents’ policies, but can observe the
histories of other agents, i.e., {$1.4—1, a;ifl} at timestep t.
This scenario is common in decentralized MARL, such as in
Zhang et al. [2018] and Qu et al. [2019].

3.2 Two Parts of Sample Complexity

From the perspective of the ego agent i, the state transition
in MARL involves sub-processes, i.e., the action sampling
process m~*(a~%|s) of opponent agents given the current state
s, and the transition process to the next state 7 (s'|s, a’, a~?)
given the current state s and the joint action (a*,a™?).

As such, for an ego agent to achieve some policy perfor-
mance in a multi-agent environment, the sample complexity
is specified in two parts: (i) dynamics sample complexity,
i.e., the number of state transition interactions between the
agent group and the dynamics environment, and (ii) opponent
sample complexity, i.e., the total number of opponent action
sampling given the conditioned state. Figure 1 illustrates such
two parts of sample complexity.

We argue that it is necessary to study such two parts of
sample complexity explicitly since the two sub-processes’
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Figure 1: Two parts of the sample complexity in MARL.
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approximations meet different challenges. Environment dy-
namics modeling is usually computationally expensive as the
state representation and the joint actions are usually of high
dimensions. Opponent modeling usually aims at approximat-
ing the opponents’ policies and eases MARL training in a
decentralized manner [Tian ef al., 2020].

Opponent Sample Complexity as Communication. If we
leverage model-based techniques derived from SARL in multi-
agent cases with decentralized setting, we may need to call
real opponents for the action given the current state, which
can be formulated as a communication protocol. For example,
the agents communicate via calling for the opponent actions
[Tian et al., 2020]: the ego agent sends a state (no matter real
or simulated) to an opponent agent and receives the action
sampled from the opponent’s policy. As such, we can regard
the opponent sample complexity as communication load. To
lower the opponent sample complexity, we replace the real
opponents with learned opponent models in data simulation,
which is analogous to selectively call some (or none) of oppo-
nents for useful information to reduce the communication load
(or bandwidth) in multi-agent interactions [Ryu et al., 2020].

4 Return Discrepancy Bounds

In this section, we conduct theoretical analysis to better under-
stand model-based MARL in the decentralized setting, where
each ego agent learns a dynamics model and opponent models
based on observed data. For a comprehensive analysis, we
also discuss the bound in centralized model-based MARL in
Appendix A
Usually, the dynamics model and opponent models have pre-
diction errors, known as generalization errors. We investigate
the influence of the learned models over the agent’s perfor-
mance. From the perspective of agent ¢, we aim to bound
the discrepancy between the expected return n;[7?, 7] of
running the agent’s policy 7 in the real dynamics 7~ with real
opponents 7~ and the expected return 7;[*, 7# ~%] on a learned
dynamics model 7 (s’ |s, a’,a~*) with opponent models 7"
The return discrepancy upper bound C' can be expressed as
i, ) =i, 7T < O (1)
Once the upper bound C' is derived, it may indicate the key
influence from the dynamics model and the opponent models,
and thus helps design model-based algorithms accordingly.
In MARL with iterative policy optimization, we denote
data-collecting policies in the previous iterations as (7%, 75").
Then we measure the distribution shift between the current
policies and the data-collecting policies with the total vari-
ation distance €;. = maxs Dy (7' (+|s)||7% (+|s)), and sim-
ilarly for the opponent agent j € {—i}. Besides, inter-
acting with (7%, 75"), we denote the generalization error
of the learned dynamics model T compared to the real en-
vironment dynamics 7 as €, = max; ]E(St atar )
%))] and the error of the

[Drv (T (lse iy ap T (lses af, ap
opponent model for agent j as 63} = max, Dry (77 (:|s)||
77 (-|s)). Now we are ready to provide an upper bound.

~rh gt

The full version of this paper with a detailed appendix can be
found at https://arxiv.org/abs/2105.03363.

Theorem 1. Assume that the error of the learned dynamics
model is bounded at each timestep by €m, and the distance
of the policies are bounded by €7, €7, and the errors of the

opponent models are bounded by €% for j € {—i}. The return
discrepancy upper bound can be expressed as

|l ™" = gl 2|
em+26ﬁ+2 P 63;.-% e i ef;r
§2rmax[V( Zoetn T H seia ) )
L=~
+26;.+2 Z efr—l— Z €Zr:|
N
Proof. The proof is provided in Appendix B.2. (]

This upper bound can be minimized by improving models’
accuracy, which is the standard objective in previous literature.
We investigate the model usage instead, and a more instructive
and practical upper bound is needed.

Here we first investigate a k-step rollout scheme, which is a
natural extension of MBPO [Janner et al., 2019] to multi-agent
scenario. This rollout scheme begins from a state collected by
the previous data-collecting policies, and then run the current
policy for k steps under the learned dynamics model and the
opponent models. Denoting the return of using multi-agent
branched rollouts as 7", and the bound of the generaliza-
tion error of the learned dynamics model with the current
policies (7%, 77") as €, = max; E (s af artymmi i [Drv
(T (-|se, al, a7 T (|51, al, a7 )] , we derive the following
return discrepancy upper bound
Theorem 2. Assume the generalization error is bounded by
€/ and the distance of the policies are bounded as €&, € and
el for j € {—i}. The bound of the discrepancy between the

return in real environment 7;[7¢, 7 ~¢] and the return using the
dynamics model and opponent models with branched rollouts

n?raneh[( D frl)v ’ (ﬂ'iD’ Wi)? (TFDv )i 1S
i’h‘[ﬂi» ﬂ—iii - n?ranChi(ﬂ—le 7}1)’ ] (ﬂ—iDv ﬂi)’ ) (7‘—%7 frn)ii
< 2 e+ (1) D €
je{—i}
model generalization error
k+1
- L CEDY )
k+1 é je{— 1}
w Z ) 1—x i
Jje{-
policy distribution shift
= Clemser 665, k) (©)

where e =3 nel et =3 }e and the pair

(7r D #7) means that the policy o » and opponent model 79 are
used before and after the branch point respectively for agent j.

Proof. The proof is provided in Appendix B.2. ]

The upper bound C(€/,,, €., 5%, €. ", k) in Eq. (3) consists
of the generalization errors of both dynamics model and oppo-
nent models as well as the policy distribution shift Intuitively,

choosing the optimal k* = arg ming~ C(€, e ter' k)

77L7 71'7 T 7
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with sufficiently low €], and 3~ ., €, minimizes the dis-
crepancy, which, however, cannot directly achieve a low dis-
crepancy if any opponent model has relatively large error.
So we need to reduce the upper bound such that the policy
trained with the model rollouts will still perform well in real
environment, leading to improved sample efficiency. To be
more specific, we can optimize the target 7; through optimiz-
ing nPanh if the bound is tight. And improving n®*! by
C(el,, e ext e; ", k) guarantees to improve the target 7;. It
means that the policy improved under the environment model
and the opponent models will get improved performance in
the real environment.

Remark. As the policy is trained using mainly the samples
from the model rollouts, which do not contribute to the sam-
ple complexity. A reduced return discrepancy upper bound
indicates that the policy will get more improvement in the real
environment given that the policy is improved to the same
degree using the models. In other words, the policy will obtain
the same performance improvement in the real environment
with fewer samples with a reduced discrepancy upper bound.

Now the problem becomes how to reduce the bound in or-
der to achieve low sample complexity. Considering that €.
may be different across different opponent models, and some-
times the ego agent can call the real opponent agents for real
actions, the rollout length k needs not to be the same across
different opponents. Thus, in Section 5 we propose a method
called Adaptive Opponent-wise Rollout Policy Optimization
(AORPO) to reduce the upper bound.

S The AORPO Method

Based on the bound analysis in Theorem 2, now we present
the detailed AORPO algorithm and prove its convergence.

5.1 Algorithm Details of AORPO

We propose a model-based MARL algorithm named Multi-
Agent Branched-Rollout Policy Optimization (AORPO). The
overall algorithm of AORPO is shown in Algorithm 1. For
simplicity, the detailed algorithm is described in the perspec-
tive of agent 2. AORPO includes some key components, and
the implementation of them is based on previous work, which
serve as the preliminaries and are described in Appendix E.

In AORPO, the agent ¢ learns a dynamics model and an
opponent model for each of other agents and learns a policy
based on the data collected from the model rollouts.

Agent Learning
For the dynamics model, in line 3 of Algorithm 1, a bootstrap
ensemble of probabilistic dynamics models is trained to predict
the environment dynamics as in Chua et al. [2018], and we
select one of the models randomly from a uniform distribution
when generating a prediction. For the opponent model, in
line 6 of Algorithm 1, the policy of one opponent agent j
can be modeled as a Gaussian distribution of the action. We
further use the opponent models to encourage the coordination
behaviors. Agent ¢ makes a decision based on both the current
state and the inferred opponent actions &%,

For the policy learning, AORPO is implemented based
on the Multi-Agent Soft Actor-Critic (MASAC) algorithm,

Algorithm 1: AORPO Algorithm
1 Initialize policy 7¢, Q value function @Q.,, predictive

model Tp, opponent models my; for j € {—i},
environment dataset D.py, model dataset Dpoqel-
2 for N epochs do

3 Train model 7@ on Deyy.
4 for E steps do
5 Take actions in environment via ¢ with real
opponents, add the transitions to Depy.
6 Train all opponent models ;.
7 Compute the errors for each opponent model €.
; in e
8 For each opponent, compute n/ = |k mmg%j .
9 for M model rollouts do
10 Sample s; uniformly from De,,.
11 Perform k-step rollouts from s;:
12 forp=1,...,kdo
i @iy = Te(Strp-1)
14 For each opponent j:
15 if p < n? then
16 L Gty pg =T (St4p-1)
17 else
18 L ag+p_1 = Comm (St+p_1, ])
1 | St+p = To(st+p-1, ai+p—17 a’t_-‘,zp—l)
20 B Add the transitions to Dyodel.
21 Train the Q function and the policy using data
from Dpyodel With the loss in Eq. (5) and
Eq. (4).
22 Function Comm (s, j) :
23 Send state s to agent j.
2 | return the received a’

which is a multi-agent version of Soft Actor-Critic algorithm
[Haarnoja et al., 2018]. In line 21 of Algorithm 1, agent
1 alternates between optimizing its policy and updating the
value function. With the reparameterization function f and a
Gaussian /N, the policy optimization objective is

J(m) = E%at_chD’qNN[a log 7(f(ee; s¢)|s¢, a7 *) 4)
— Q(st, f(er; se),a: )],
where D is the replay buffer, ¢, is the input noise and a; * ~

w7 Clse). o
The loss function of the Q function is

1 i —i
JQ) =E,, i |5 (Qstsatar ) 5)

. . . 2
— (re +YQ(st41, at41,ar41) — alog W(a§+1|5z+1))) ] )
where « is the temperature hyperparameter.

Adaptive Opponent-wise Rollout
In this work, a k-step model rollout begins from a real state
collected in the real environment. We design the adaptive
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Figure 2: Illustration of the adaptive opponent-wise rollout policy optimization (AORPO) method from the perspective of the ego agent. The
ego agent begins the rollouts from the states collected from the real environment interacting with real opponents, then runs & steps under the
learned dynamics model. For each opponent agent, the ego agent interacts with it directly or with the opponent model for it in the k-step

rollout, according to the prediction performance of its opponent model.

opponent-wise rollout scheme to reduce the bound. The op-
ponent model generalization error term (k + 1) -, o,y el
of the bound in Eq. (3) reveals that different magnitudes of
opponent model errors may lead to different contributions to
the compounding error of the multi-step simulated rollouts.
Intuitively, if too short rollouts are performed, the relatively
accurate opponent models are not fully utilized, leading to low
sample efficiency. In contrast, if the rollout is too long, the
relatively inaccurate opponent models may cause the rollouts
to depart from the real trajectory distribution heavily, leading
to degraded performance in the environment and thereby low
sample efficiency. Thus our proposed adaptive opponent-wise
rollout scheme lowers the rollout length of the relatively in-
accurate opponent models but keeps long rollout length for
relatively accurate opponent models, as shown in Figure 2.

We can achieve this since the agent i can play with either
the learned opponent model 77 or the real policy 7/ of each
opponent j. In detail, for the opponent 7, 77 is used for the

el

first nd = |k

real opponent 77 in the rest k — n? steps. The compounding
error contribution of each opponent model is thus bounded

H J
mlnj/ 67»‘_

| steps, then the agent ¢ interacts with the

by £ min;/ ezﬁr . Note that the adaptive opponent-wise rollouﬁ

scheme requires the ego agent i can obtain the actions a]

from the real policy in the last k — n’ steps. In line 18 of
Algorithm 1, the ego agent ¢ sends the simulated states to the
opponent j and requires the response, following the prede-
fined communication protocol. One may argue that it will
introduce extra opponent sample complexity since we need
to communicate with the real opponent in the model rollouts.
However, if we only use the opponent models, more errors
are exploited, and it will lead to a poor policy and, finally, the
sample complexity to achieve some good performance will be
high. Our experiments in Section 6 will justify this claim.

With such n’’s, the generalization error caused by the
opponent models becomes Zje{_i}(nj + 1)el ~ (n —
1)k min;/ eZ;, which is remarkably reduced and makes a good

balance of the contribution to overall generalization error from
different opponent models. According to the remark of The-
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orem 2, improving the surrogate return 7™ with a tighter
discrepancy bound will improve the target return 7; more
efficiently. Note that the comparison of different model us-
age schemes is provided in Appendix G.6, where the above
scheme yields the highest asymptotic performance and sample

efficiency.

5.2 Convergence Guarantee

According to Wei er al. [2018], the optimal policy learned
by MASQL is WR‘,[ASQL = exp (éQ* (st,) = V*(sy)) =
exp (2Q*(sy,))/ exp (V*(sy)), where Q* and V* are the
optimal Q function and state value function respectively. As
Haarnoja er al. [2018] showed, the optimal policy learned by
MASAC should be 73 s5ac = €xp (2Q*(s¢,-))/Z(s,). Since
the partition function is Z(s;) = exp (V*(s;)), with given the
same optimal @* and V*, MASQL is equivalent to MASAC
from the perspective of policy learning. With this fact, we
prove that (1) using the learned dynamics model and the op-
ponent models in AORPO still guarantees the convergence
of MASQL; (2) MASQL still guarantees the convergence of
Nash Q-learning [Hu and Wellman, 2003]. Thus we prove
that AORPO achieves the convergence solution of Nash Q-
learning. The theorems and proofs can be found in Appendix
D, Theorem 6 and Theorem 7.

The theorems guarantee AORPO’s convergence under sev-
eral assumptions. However, we show that the assumptions
are not necessary conditions for the learning algorithm to con-
verges by the following experimental results in Figure 4, in
which the convergence is still guaranteed when the assump-
tions are not strictly satisfied. More empirical findings can be
found in Yang et al. [2018].

6 Experiments

We evaluate the performance of AORPO in both competi-
tive and cooperative tasks. We demonstrate that AORPO can
converge to the Nash equilibrium and that AORPO is more
sample-efficient than a series of baselines in both competitive
and cooperative tasks. See Appendix G for task details.

Compared Methods. We compare our method AORPO
with the strong model-free MARL algorithms, MADDPG
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Figure 4: Climb task convergence.

[Lowe et al., 2017] and MASAC. To show that our multi-
agent models approach is generally helpful and to have fair
comparisons, we also implement AORPO on top of MADDPG,
named as AORDPG, for more comprehensive analysis.

Implementation. As for the practical implementation of
AORPO, we first collect real experience data using model-free
algorithms and use them to pre-train the dynamics model and
the opponent models. Other implementation details, includ-
ing network architectures and important hyperparameters, are
provided in Appendix F.

6.1 Competitive Tasks

Climb is a modified Battle of Sex game. Agent 1 picks a num-
ber a € [—1, 1], and agent 2 picks a number b € [—1, 1]. Their
actions form a position (a, b). There are 2 states and 2 cor-
responding landmarks located in the lower-left (—0.5, —0.5)
and in the upper right (0.5, 0.5) respectively. The only Nash
equilibrium is that the agents go to the lower-left landmark at
state 1 and go to the upper right landmark at state 2.

The reward surfaces of converged MASAC and AORPO
for the two agents in the two states are shown in Figure 4.
The result verifies that AORPO will converge to the Nash
equilibrium. In Appendix G.3 and G.4, we further provide
more detailed results of comparing model-based and model-
free methods conducted in several competitive environments
of the Multi-Agent Particle Environment [Lowe et al., 2017]
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and the results of comparing AORPO with another model-
based MARL, i.e., MAMSGM [Krupnik et al., 2019].

6.2 Cooperative Tasks

Based on a multi-agent particle environment, we evaluate our
method in two types of cooperative tasks: CESO tasks for
complex environment dynamics and simple opponents, while
SECO tasks for simple environment dynamics and complex
opponents. CESO tasks include Cooperative communication
with two agents and three landmarks and Cooperative navi-
gation with three agents and three landmarks. The studied
SECO task is Cooperative scheduling with three agents and
three landmarks, as detailed in Appendix G.

The laws of mechanics and the collisions’ stochastic out-
comes make difficulties for the dynamics model prediction,
so we mainly consider the efficiency of interacting with the
environment in the CESO tasks. In the left and middle sub-
figures of Figure 3, both AORPO and AORDPG can reach
the asymptotic performance of the state-of-the-art model-free
baselines with fewer interactions with the environment, i.e.,
achieving lower dynamics sample complexity.

The Cooperative scheduling task is configured as a SECO
task, with two kinds of agents and two kinds of action spaces.
We consider the efficiency of interacting with the other agents
in the SECO tasks. As shown in the right subfigure of Figure 3,
our methods AORPO and AORDPG reach the asymptotic
performance with fewer agents’ interactions, which means the
opponent sample complexity is lower. One may think using
opponent models will indeed introduce extra agent interactions
when running rollouts, but interestingly, AORPO uses fewer
agent interactions to achieve some performance since it helps
policy learn faster. More detailed experiments are presented
in Appendix G.

6.3 Analysis on Model Usage

We further discuss the effect of the opponent model usage.
Although the generalization errors caused by the opponent
models in the return discrepancy are hard to estimate, the
opponent models affect the performance through the model
compounding errors. We investigate the model compounding
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errors when using adaptive opponent-wise rollout or using
the opponent models in a whole rollout. Specifically, for a
real trajectory (so,ao,.- .., Sn), a branched rollout from the
start state sg under learned dynamics model and opponent
models is denoted as (so, ao, - - -, §,). Following Nagabandi

et al. [2018], the model compounding error is defined as ¢, =

1
h

h a2

i1 llsi = 8ill3.

Using opponent models reduces interactions among agents
but causes extra compounding errors compared with real op-
ponents. We show the trade-off between model errors and
interaction times in Figure 5, where the left and right y-axes
are for the solid lines and the dotted lines, respectively. We
observe the adaptive opponent-wise rollout achieves lower
model compounding error than rollout with all opponent mod-
els while reducing the number of interactions compared to
rollout with real opponents.

Moreover, we investigate how different rollout schemes
affect the sample efficiency. In Figure 6, we compare three
kinds of usages in a Cooperative navigation scenario using two
settings of rollout length k. We notice that using the adaptive
opponent-wise rollout achieves the same performance with
fewer interactions among the agents than interacting with all
real opponents, verifying that although we introduce some
sample complexity while simulating data, the reduced dis-
crepancy bound ensures the model-based methods to improve
the sample efficiency. It can also avoid performance drop
caused by compounding error compared with using all oppo-
nent models, which means that the adaptive opponent-wise
rollout scheme mitigates some bad opponent models’ nega-
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tive effect by leveraging different rollout lengths of opponent
models.

7 Conclusion

In this paper, we investigated model-based MARL problems
with both theoretical and empirical analyses. We specified two
parts of sample complexity in MARL and derived an upper
bound of the return discrepancy in model-based MARL w.r.t.
the policy distribution shift and the generalization errors of the
learned dynamics model and opponent models. Inspired by
the theoretical analysis, we designed the AORPO algorithm
framework, in which the return discrepancy can be reduced by
adaptive opponent-wise rollout controlling and the two parts
of sample complexity are strategically reduced by the learned
dynamics and opponent models. We then proved that AORPO
can converge to Nash Q-values with reasonable assumptions.
In experiments, AORPO has shown highly comparable asymp-
totic performance with the model-free MARL baselines while
achieving higher sample efficiency. For future work, we plan
to look deeper into various adaptive opponent-wise rollout
schemes for different settings of model-based MARL. We will
also investigate theoretical and empirical results of multi-agent
dynamics model learning to further ease model-based MARL
and improve its sample efficiency.
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