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Abstract

With the rapidly increasing application of large
language models (LLMs), their abuse has caused
many undesirable societal problems such as fake
news, academic dishonesty, and information pollu-
tion. This makes AI-generated text (AIGT) detec-
tion of great importance. Among existing methods,
white-box methods are generally superior to black-
box methods in terms of performance and general-
izability, but they require access to LLMs’ internal
states and are not applicable to black-box settings.
In this paper, we propose to estimate word gen-
eration probabilities as pseudo white-box features
via multiple re-sampling to help improve AIGT de-
tection under the black-box setting. Specifically,
we design POGER, a proxy-guided efficient re-
sampling method, which selects a small subset of
representative words (e.g., 10 words) for perform-
ing multiple re-sampling in black-box AIGT detec-
tion. Experiments on datasets containing texts from
humans and seven LLMs show that POGER outper-
forms all baselines in macro F1 under black-box,
partial white-box, and out-of-distribution settings
and maintains lower re-sampling costs than its ex-
isting counterparts.

1 Introduction
Recent breakthroughs in large language models (LLMs)
have significantly improved the quality of AI-generated text
(AIGT) and further boosted applications in diverse scenar-
ios. People can easily instruct LLM-supported services like
ChatGPT [OpenAI, 2022] to generate texts that are almost
imperceptible to humans [Jakesch et al., 2023; Uchendu et
al., 2023]. Though LLMs bring much convenience, new so-
cietal threats caused by their abuses also emerged: Political
manipulators produce AI-generated fake news to risk democ-
racy [Lucas et al., 2023]; students cheat by submitting AI-
generated works without paying expected efforts [Bohacek,
2023]; and content farms accelerate information pollution
with AI-generated low-quality articles [Brewster et al., 2023].
To build the first barrier against such threats, developing tech-
niques for detecting AI-generated text is of urgent need.
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Figure 1: Paradigm comparison between our proposed POGER and
existing white-box/black-box methods. POGER does not require
LLMs’ internal states like output logits and performs better than
the other types of baselines under black-box and out-of-distribution
(OOD) settings.

AI-generated text detection is generally defined as a bi-
nary or multiclass classification task. The former is to dis-
tinguish human-written and AI-generated text, while the lat-
ter subsequently recognizes which LLM generates the given
text (usually for forensics needs). According to whether the
detector can access the source LLM’s internal states [Yang
et al., 2023b], existing methods can be categorized as white-
box and black-box methods. White-box methods [Mitchell
et al., 2023; Li et al., 2023a] distinguish LLMs using delicate
features reflected by internal states like output token probabil-
ities and usually achieve high detection performance, but its
applicability is limited due to the widely existing unavailabil-
ity of internal states in commercial LLM services. In con-
trast, black-box methods [Guo et al., 2023] require output
texts only for feature acquirement and in principle could be
applied to any LLM. However, they generally underperform
white-box methods and are more likely to suffer generaliza-
tion issues on texts from a new domain [Bhattacharjee et al.,
2023]. Such a dilemma poses a key challenge for effectively
detecting AI-generated text in reality.

To address this issue, a possible solution is to estimate
features that proved effective in white-box detection for
black-box scenarios (see Figure 1). Inspired by the recent
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study on inferring the decoding strategy of an LLM with the
multiple re-sampling [Ippolito et al., 2023], we suppose that
the statistics on re-sampling results on black-box LLMs could
serve as a good estimation of word output probabilities, which
reflects the nuance of internal states among different LLMs
and subsequently help improve black-box detection. In this
paper, we conduct the first empirical exploration along this
line. Preliminarily, we implement a naive but costly solution
that prompts the LLM with a continuation instruction mul-
tiple times on each position of the given text (i.e., full-text
re-sampling). Results show that even using estimated word
probabilities, the detector still outperforms the typical black-
box RoBERTa-based detector by 14.3%, validating the feasi-
bility of re-sampling-based black-box detection.

To reduce the sampling cost and improve the practical-
ity, we further design POGER, a proxy-guided efficient re-
sampling method for black-box AIGT detection. The core
idea of POGER is to select a subset of words possibly indica-
tive of the LLMs’ unique word use characteristics from the
given text. As LLMs are usually trained on large-scale human
language corpora, the word generated with high probability is
often similar across different LLMs under the same context,
reflecting human language preferences. Instead, words with
lower probabilities are more likely to expose LLMs’ unique-
ness. Therefore, we employ a proxy white-box LLM to nom-
inate words of relatively low probabilities across the text se-
quence and then preserve the words with low probability es-
timation error. By performing re-sampling only for the po-
sitions of these words, POGER largely reduces the required
sampling times while still maintaining the advantages over
existing methods in the challenging 8-class black-box setting.
Our contributions are as follows:

• We propose to use estimated word generation probabil-
ities to empower black-box AI-generated text detection
and empirically show its feasibility.

• We design POGER, a proxy-guided efficient re-
sampling method that largely reduces sampling cost and
maintains detection performance by recognizing words
that reflect LLMs’ uniqueness.

• Extensive experiments on texts from humans and seven
popular LLMs show the superiority of POGER over
existing methods for binary, multiclass, and out-of-
distribution detection scenarios.1

2 Background
2.1 Task Formulation
Given a text including n words x = (x1, x2, · · · , xn), AIGT
detection aims to obtain a classifier f : x → y, where y is the
source of x. The task can be further categorized into:

1) Binary AIGT Detection: Distinguish whether a text is
generated by AI, i.e., y ∈ {human,AI}.

2) Multiclass AIGT Detection: Distinguish where a
text is from human or a specific AI model, i.e., y ∈
{human, θ1, θ2, · · · , θM}, where θi is an AI model that can
generate text. Similar concepts include origin tracing [Li et
al., 2023a] and authorship attribution [Uchendu et al., 2020].

1Code, Dataset, and Extended version: https://github.com/
ICTMCG/POGER

2.2 Related Works
The detection of AIGT can be active or passive. Active
methods add pre-designed watermarks to LLM-generated text
for later identification [Kirchenbauer et al., 2023; Yoo et
al., 2023; Liu et al., 2023; Gu et al., 2023; Wang et al.,
2023a]. They show promising results but require extra ef-
forts from stakeholders like LLM providers, not applicable
to non-watermarked LLMs. We focus on passive detection,
which is more flexible as it operates without modifying LLM
workflow. They could be categorized as:
White-box detection methods exploit information from
probabilities, which reflects the essentials of language mod-
eling. Earlier works use overall probability [Solaiman et
al., 2019], perplexity [Beresneva, 2016; Tian, 2023], or en-
tropy [Lavergne et al., 2008] of the given text on LMs as fea-
tures. Subsequent works focus on finer-grained token-level
probabilities [Gehrmann et al., 2019; Verma et al., 2023].
For example, Sniffer [Li et al., 2023a] and SeqXGPT [Wang
et al., 2023b] utilize the probability lists of token sequences
on each candidate LLM for multiclass detection. To ob-
tain richer probability information, recent works also con-
sider perturbation of given text on candidate LLMs through
mask-filling [Mitchell et al., 2023] or re-generating [Yang
et al., 2023a]. White-box detection methods generally per-
form better and more robustly than black-box ones [Wang et
al., 2023b], but the required access to LLMs’ internal states
largely limits their application to black-box LLMs. Some
variants use other models as proxies but performances drop
significantly [Mitchell et al., 2023].
Black-box detection methods typically mine effective fea-
tures from the given text based on semantic representa-
tion [Guo et al., 2023; Chen et al., 2023; Zhan et al., 2023]
or stylistic expert knowledge [Fröhling and Zubiaga, 2021;
Aich et al., 2022]. Recent works [Yang et al., 2023a;
Yu et al., 2023] compute the distance between the given text
and re-generated texts to reflect the familiarity the candidate
LLM has with the given text. Black-box methods have better
applicability, but their performance and generalizability gen-
erally fall behind white-box ones, especially for multiclass
tasks [Li et al., 2023b]. Our POGER combines both their
advantages of applicability under the black-box setting and
effectiveness brought by (estimated) white-box features.

3 Preliminary Study on Re-Sampling-Based
Black-Box AIGT Detection

A recent study reveals that multiple re-sampling could be
used to infer the internal decoding strategy of LLMs [Ippolito
et al., 2023] under black-box access. Inspired by this, we pro-
pose a naive black-box solution that estimates word genera-
tion probabilities (proved effective for white-box detection)
using multiple re-sampling on the given text to preliminarily
validate the feasibility.

3.1 A Naive Solution
We implement the straightforward full-text re-sampling as the
naive solution, which samples multiple times at each position
of the given text to compute word probabilities on the black-
box LLM. For a given text x, to obtain the word xi’s proba-
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Domain Source # Human # Generated Avg. Words

QA Quora 437 3,059 151.32
Reddit ELI5 383 2,681 162.39

Writing IELTS Essay 218 1,526 232.28
BBC News 288 2,016 196.62

Total 1,326 9,282 177.67

Table 1: Statistics of our AIGT detection datasets.

bility p̂(xi|x<i), we instruct the black-box LLM for N times
using the following prompt:

Please continue writing the following text, starting
from the next word: {x<i}

For each prompting, we obtain the generated word at position
i by restricting the maximum output length. The estimated
probability of xi given {x<i} is computed as the frequency
of xi in the output word set {oj}Nj=1:

p̂(xi|x<i) =
1

N

N∑
j=1

I(oj = xi), (1)

where I(·) is the indicator function. By repeating the above
process for each word in x, we obtain an estimated prob-
ability list of x on this black-box LLM, denoted as p̂ =
{p̂(x1), p̂(x2|x1), · · · , p̂(xn|x<n)}. With p̂ as an alternative
input, we can now use white-box methods to validate the fea-
sibility of re-sampling-based detection.

3.2 Experimental Settings
Dataset. Our experiments are based on a dataset consisting
of 10,608 text items from humans and seven popular open-
sourced or API-based LLMs in two scenarios, covering real-
world threats such as low-quality content production, news
faking, and student cheating. Table 1 details the statistics.

We first obtain human-written samples from Quora and
ELI5 dataset [Fan et al., 2019] for the QA domain and IELTS
essay and BBC news dataset for the writing domain [Greene
and Cunningham, 2006], respectively (500 each source).
Subsequently, we prompt the seven LLMs with questions
or writing instructions from the original datasets, including
GPT-2 XL [Radford et al., 2019], GPT-J [Wang and Komat-
suzaki, 2021], LLaMA-2 13B [Touvron et al., 2023], Alpaca
7B [Taori et al., 2023], Vicuna 13B [Zheng et al., 2023],
GPT-3.5 Turbo [OpenAI, 2022], and GPT-4 Turbo [OpenAI,
2023] and collects their responses. We group human and AI
texts with the same prompts and remove the groups that con-
tain answers expressing rejection or exceeding 350 words.
All samples are split into the train/validation/test sets with
a 7:2:1 ratio at the group level.
Metrics. We compute F1 for each class and Macro F1
(MacF1) to evaluate overall performance.

3.3 Results & Analysis
We implement our naive solution combined with two pow-
erful white-box detectors, Sniffer [Li et al., 2023a] and Se-
qXGPT [Wang et al., 2023b]. To facilitate comparison be-
tween white-box and black-box settings, we only consider the
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Figure 2: Detection performance using estimated probabilities under
different (a) sampling times and (b) sampling temperatures.

five open-sourced LLMs to easily obtain the true probabilities
and set a 6-class task in this part.
Does Re-Sampling Work? As presented in Figure 2(a), de-
tection performance increases as the sampling times increase
for both Sniffer and SeqXGPT. At sampling times of 100, the
macro F1 exceeds that of black-box baseline RoBERTa by
14.3%. This result demonstrates the feasibility of estimating
word probabilities for black-box AIGT detection, though the
requirement of sampling times makes this solution costly.
How does Estimation Error Impact Detection Perfor-
mance? Inevitably, estimation errors exist with re-sampling
of limited times. Though having promising results in Fig-
ure 2(a), the detectors still underperform those using true
probabilities. To analyze the impact of estimated errors, we
adjust the sampling temperature, which changes the proba-
bility differences between words and indirectly influences the
error. In the resulting Figure 2(b), errors lead to low F1 scores
on both left and right sides. On the left, a lower temperature
indicates the situation that the target word might not be sam-
pled (estimation probability is 0), resulting in a performance
drop. On the right, a higher temperature makes the probabil-
ities of all tokens closer. Even slight sampling randomness
causes the ranking of probabilities to change and finally dis-
tort the unique characteristics of the LLM. This reveals the
importance of error control in probability estimation.

Through the preliminary study, we validated the feasibility
of estimated probabilities obtained by re-sampling for black-
box AIGT detection. We also identify two issues of the naive
solution: 1) the sampling cost on the full text is extremely
high; 2) the influence of estimation error is not well con-
trolled. Our improved method to be introduced POGER will
tackle these issues.

4 POGER: Proxy-Guided Efficient
Re-Sampling for Black-Box AIGT Detection

To tackle the cost and error control issues exposed in Sec-
tion 3 and design a more practical black-box detector, we
propose POGER. Figure 3 presents the overall architecture
of POGER. It operates with three steps: First, POGER forms
a small word subset from the given text by selecting words
of low probabilities and low estimation errors. Subsequently,
multiple re-sampling is applied to words in the subset only to
obtain a pseudo probabilistic feature. Finally, the feature is
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Figure 3: Architecture of POGER. Given a text piece, POGER operates with three steps: 1) Error-aware word selection, where a white-
box LLM as a proxy to nominate candidate low-probability words and the bottom-k word selector preserves the lowest k word the satisfied
estimation error bound; 2) Probability estimation, where multiple re-sampling is applied to candidate black-box LLMs for the selected k
word and a pseudo probabilistic feature L consisting of estimated probabilities is computed; 3) Classification, where contextual feature C is
introduced to compensate the context loss in L to obtain enhanced feature F for final binary or multiclass AI-generated text detection.

enhanced by compensating contextual information and then
fed into a classifier for final detection. Details are as follows.

4.1 Error-Aware Word Selection
Proxy-Based Candidate Nomination. To lower sampling
times, we aim to select a small subset of k words from x that
reflect the LLM’s unique word use characteristics. Here, we
use an easy-to-use LM (e.g., GPT-2) as the proxy for can-
didate nomination. The intuition is as follows: As LLMs
are usually trained on large-scale human language corpora,
they would learn well on common word use and even differ-
ent LLMs may output similar texts with high probabilities;
in contrast, other words with a lower probability in a text are
more likely to expose the unique word use shaped by nuances
of LLM training process. Specifically, we use a proxy LM θ
to infer on the given text x and obtain token probabilities on
it. We transform the list into word-level by computing joint
probabilities of corresponding tokens for multi-token words,
denoted as pθ = (pθ1, p

θ
2, · · · , pθn). A lower pθi would make

the xi more likely to be selected.

Error-aware bottom-k Word Selection. To mitigate the
negative impacts of estimated errors on feature effectiveness,
we adopt an error-aware bottom-k word selector. For a word
xi with true probability pi, if the estimated probability of xi

obtained by re-sampling N times is p̂i, the standard error (SE)
of p̂i is given by:

SE(p̂i) =

√
pi(1− pi)

N
. (2)

For low-probability words, we constrain a lower bound on
their true probability to ensure that the error in the estimated
probability does not exceed ∆ times itself:

SE(p̂i) ≤ ∆ · pi ⇒ pi ≥
1

1 +N∆2
. (3)

By controlling the relative error, we remove the items in pθ

that do not meet the error requirements and obtain pθ′. Words
which are with lowest k probabilities are selected from pθ′

using MINK(·) function and finally form the representative
word set S:

pθ′ =

{
pi

∣∣∣∣pi ≥ 1

1 +N∆2

}
, (4)

IDX =
{
i
∣∣pθi ∈ MINK(pθ′)

}
, S = {xi|i ∈ IDX} . (5)

4.2 Probability Estimation
We again use the sampling and probability calculation pro-
cess described in Section 3.1, but only for the selected k
words in S on the given M candidate black-box LLMs (de-
noted as {θi}Mi=1) by N times. For efficiency needs, we
constrain the maximum context length as b. We get the
pseudo log probabilistic feature matrix L = [li]

k
i=1 ∈ Rk×M ,

where the M -dimentional feature vector for the i-th word is
li =

[
p̂θj

(
xIDX[i]|xIDX[i]−b:IDX[i]−1

)]M
j=1

.

4.3 Context-Compensated Classification
In the final step, the source of the target text x is classi-
fied based on L. Following [Wang et al., 2023b], we first
transform the L into another L′ ∈ Rk×d using convolutional
neural network and Transformer to enrich the representation.
Furthermore, since we discontinuously select representative
words, the information about the local context around the
word and their relative positions in the original text is lost. As
context compensation, we introduce the contextual semantic
representation of the k words to bootstrap the probabilistic
representation L′.

Specifically, we input the given text x into RoBERTa [Liu
et al., 2019] and obtain the last-layer word representation as
E = {e1, e2, · · · , en}. The representations for the k repre-
sentative words are then mapped to d dimension through a
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Method Human GPT-2 GPT-J LLaMA-2 Vicuna Alpaca GPT-3.5 GPT-4 MacF1

Partial White-Box Setting

DNA-GPT White N/A 62.70 40.79 45.36 30.49 70.18 N/A N/A 49.91*
Sniffer 96.60 100.00 100.00 98.49 95.85 99.23 75.34 72.65 92.27
SeqXGPT 98.07 100.00 99.62 98.88 99.62 98.87 85.93 84.17 95.64
POGER-Mixture 97.32 98.88 99.23 98.11 97.71 98.86 97.36 97.38 98.11

w/o Context Compensation 96.97 99.62 99.23 96.68 94.94 98.48 95.42 95.13 97.06

Black-Box Setting

RoBERTa 88.24 78.03 86.55 55.47 58.70 59.91 70.63 84.13 72.71
T5-Sentinel 87.29 85.42 88.71 67.78 62.11 69.73 75.79 79.83 77.08
DNA-GPT Black N/A 38.58 21.56 48.80 33.85 47.15 53.99 39.82 40.53*
Sniffer 87.41 89.82 87.26 29.52 47.62 35.84 34.21 52.63 58.04
SeqXGPT 91.67 89.66 86.77 23.64 46.31 45.64 42.10 62.40 61.02
POGER 92.49 93.75 89.96 90.49 89.30 93.82 90.98 92.59 91.67

w/o Context Compensation 84.21 88.30 80.63 81.88 88.65 91.95 89.49 87.35 86.56

Table 2: F1 scores in two settings for multiclass AIGT detection. The best two scores in each setting are respectively bolded and underlined.
The shaded area denotes the performance on black-box LLMs. * Because of the nature of DNA-GPT, the macro F1 scores of DNA-GPT
White and Black are derived under a pure-white-box setting (5 classes) and a black-box setting without human class (7 classes).

multilayer perceptron (MLP), forming the contextual feature
matrix C ∈ Rk×d:

C = [MLP(ei)]i∈IDX . (6)

Then a bidirectional cross-attention is adopted to build in-
teraction between C and L′, outputting the enhance feature
F ∈ Rk×2d:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V, (7)

F = Attention (L′,C,C)⊕Attention (C,L′,L′) , (8)

where ⊕ is a concatenation operation. Since the representa-
tion of each position in C implies contextual information, this
interaction allows relative positional information to be fused
into the final enhanced feature.

Finally, F is fed into another MLP for final classification.
The network is optimized using cross-entropy loss.

5 Evaluation
5.1 Experimental Settings
Settings. We continue using the datasets and LLMs intro-
duced in Section 3. To simulate real-world situations, we
have two settings: 1) Partial White-Box Setting provides
true probabilities for the five open-sourced LLMs; and 2)
Black-box Setting treats all models as black-box LLMs. For
the former setting, we provide a variant POGER-Mixture,
which uses true probabilities from white-box LLMs and esti-
mated ones from black-box LLMs. The estimated probability
list is expanded to the same dimension as the true lists by
padding with 0. We evaluate for both binary and multiclass
detection tasks.

Baselines. 1) GPTZero [Tian, 2023]: Distinguish between
human and generated text using perplexity and burstiness of
text; 2) RoBERTa [Guo et al., 2023]: A widely used and
powerful pre-training-based detector; 3) T5-Sentinel [Chen

et al., 2023] Another pretraining-based method for refram-
ing the classification task as a next-token prediction task.
4) DNA-GPT [Yang et al., 2023a]: Determine the source
of text based on multiple re-generation, can works in two
forms under black-box and white-box settings. 5) Detect-
GPT [Mitchell et al., 2023]: Determine whether a text is
generated by comparing the probability of the original text
with a large number of perturbed texts. 6) Sniffer [Li et al.,
2023a]: Determine the source of the text using the contrastive
features of the probability lists on each candidate model. 7)
SeqXGPT [Wang et al., 2023b]: Also based on probability
lists of the text, but reframes the classification task as a se-
quence labeling task.

Implementation Details. For POGER and POGER-
Mixture, we use GPT-2 Large as the proxy for representative
word selection, with maximum error tolerance ∆ = 1.2,
representative word set size k = 10, re-sampling times
N = 100, and sampling temperature t = 1.0. For the five
open-source models, we perform re-sampling locally, and for
GPT-3.5 Turbo and GPT-4 Turbo, we call OpenAI API for re-
sampling and set max tokens = 2. We input b = 20 words
before the target word as context. For white-box detection
methods under the black-box setting, we employ GPT-Neo
2.7B and LLaMA 7B as proxy probability providers to
ensure their proper functionality (some methods require at
least two proxies). For zero-shot detection methods, we do
a grid search on classification thresholds and report their
optimal performance in the search interval.

5.2 Main Results
Multiclass AIGT Detection
Table 2 shows the performance comparison of POGER and
its variants with other baselines. Based on the result, we have
the following observations:

• POGER and POGER-Mixture outperform all baselines
in macro F1 in both the black-box and partial white-box
settings. In particular, POGER and POGER-Mixture
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Setting Method Human Generated MacF1

Partial
White-Box

DetectGPT 60.00 95.58 77.79
DNA-GPT White 77.05 97.00 87.03
SeqXGPT 96.60 99.51 98.06
POGER-Mixture 97.69 99.67 98.68

Black-Box

RoBERTa 92.06 98.92 95.49
T5-Sentinel 87.29 98.40 92.85
DNA-GPT Black 42.08 87.09 64.59
DetectGPT 44.81 92.89 68.85
SeqXGPT 92.07 98.86 95.47
GPTZero 68.42 95.45 81.94
POGER 93.89 99.14 96.51

Table 3: F1 scores in two settings of binary AIGT detection. The
best result under each setting is bolded.

outperform all black-box LLMs (shaded in the table) in
single-class F1. This demonstrates that POGER has su-
perior performance, especially for black-box detection.

• Compared with the partial white-box setting, all base-
line models experience significant performance degrada-
tion in the black-box setting. Among the baseline mod-
els, semantic-based RoBERTa and T5-Sentinel perform
the best, but they still fall behind POGER by more than
15.9% in macro F1, which indicates that POGER could
achieve a good balance between applicability and per-
formance.

• We evaluate the effectiveness of the Context Compen-
sation module in POGER and POGER-Mixture in both
settings. We can see that, on the one hand, w/o Con-
text Compensation brings a decrease of over 5 macro F1
scores in POGER performance, highlighting the signif-
icance of this module. On the other hand, even the w/o
Context Compensation variant of POGER still outper-
forms all baselines, demonstrating the effectiveness of
the resampling strategy we proposed.

Binary AIGT Detection
Table 3 shows the performance of each method in binary de-
tection. Among the baselines, RoBERTa, SeqXGPT, and T5-
Sentinel perform well (macro F1 of over 90) while others gain
unsatisfying performance. This might be influenced by the
method nature of focusing more on distinguishing different
LLMs. Still, POGER gains the best performance in both set-
tings, showing its wide applicability in different AIGT detec-
tion tasks.

5.3 Out-of-Distribution Results
Due to variations in semantic and stylistic features across dif-
ferent domains in AIGT, existing training-based black-box
detection methods often exhibit poor performance in Out-
Of-Distribution (OOD) scenarios. We conducted multi-class
AIGT detection experiments between two domains within our
dataset, where training samples were sourced from one do-
main and testing was performed on the other domain. The
results are presented in Table 4.

It can be seen that POGER still outperforms all base-
lines, both in terms of generalizing from QA to writing and
vice versa. Meanwhile, compared with their respective In-
Distribution performance, the relative performance degrada-

Method In-Dist.
Out-of-Distribution

QA→Writing Writing→QA

RoBERTa 72.71 54.23 (-25.42%) 46.73 (-35.73%)
T5-Sentinel 77.08 47.23 (-38.73%) 53.19 (-30.99%)
Sniffer 58.04 57.50 (-0.93%) 53.16 (-8.41%)
SeqXGPT 61.02 59.07 (-3.20%) 54.94 (-9.96%)
POGER 91.67 89.00 (-2.91%) 84.19 (-8.16%)

Table 4: F1 scores of the OOD experiment. The relative decrease
for OOD scenarios over the in-distribution F1 score is shown in the
brackets. In-Dist.: In-Distribution.
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Figure 4: Distribution of atten-
tion weight for words in differ-
ent probability ranking intervals.
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Figure 5: Overlapping Propor-
tion of low-probability words
between different LLMs.

tion of POGER in the OOD scenario is significantly smaller
than the two black-box baselines RoBERTa and T5-Sentinel,
and is comparable to the two white-box baselines Sniffer
and SeqXGPT. This indicates that, despite being a black-
box AIGT detector, POGER benefits from the excellent OOD
generalization capabilities inherited from white-box detection
methods through the pseudo probabilistic feature.

6 Analysis
6.1 Representativeness of Selected Words
We conduct empirical analysis to validate if our word selec-
tion methods will select representative words.

Are Low-Probability Words More Helpful in Detection?
We implement a simple white-box AIGT detector with an at-
tention layer that takes true probabilities on candidate LLMs
as inputs. Figure 4 shows the attention distribution on words
in different probability ranking intervals. We observe that the
10% lowest-probability words gain over 30% of the atten-
tion weights. As word probability increases, their attention
weights decline, indicating low-probability words play more
important roles in AIGT detection.

Are Low-Probability Word Sets Similar Between the
Proxy and Candidate LLMs? We use each LLM as a
proxy model and the other LLMs as target models and show
the proportion of words with the lowest 5% probability on
the proxy model whose probability on the target model was
in the lowest 20% in Figure 5. Even in the worst case, 72% of
low-probability words on the proxy model are also hit in the
set of the target model. This suggests that proxy model could
be used as a good indicator for word selection.
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6.2 Hyperparameter Senstivity
We conduct an analysis of four hyper-parameters on a subset
containing text from humans and the five open-sourced LLMs
for brevity:
Impact of Maximum Error Tolerance. Figure 6(a) shows
the performance impact of the maximum error tolerance ∆ in
the representative word selector. As ∆ increases, we find that
the performance curve shows a trend of rising first and then
falling. This is due to the fact that when ∆ takes a small value,
as the selector has a strict constraint on the error of empiri-
cal probability, the low-probability words that best reflect the
characteristics of the text source are filtered out, rendering the
words in set S insufficiently representative. Representative;
when ∆ takes a large value, the error of empirical probability
also increases, resulting in the weakening of the effectiveness
of probabilistic features. When ∆ is between 1.2 and 2.2, our
selector is able to strike a good balance between word repre-
sentativeness and estimation error.
Impact of Representative Word Set Size & Re-Sampling
Times. Intuitively, if the representative word set size k and
the re-sampling time N are increased at any cost, the perfor-
mance of the detector will also increase. However, in prac-
tice, we expect POGER to achieve the best possible detec-
tion performance while meeting certain cost and efficiency
requirements. Therefore, we examine the effect of k and N
on POGER performance at the same level of total sampling
number on the black-box LLM. Figure 6(b) shows the perfor-
mance of POGER under different (k,N) pairs when the total
sampling number k · N = 1000. It is observed that POGER
performs best when k is between 10 and 50 (i.e., N is be-
tween 20 and 100). When k is too small, the detector obtains
too little information about probability lists; and when N is
too small, the error-aware selector filters out a large num-
ber of words with excessive errors, resulting in the selected
words not being representative enough. Both situations result
in POGER failing to make accurate classifications.

We find that compared to the version without content com-
pensation, the full POGER has less variation in performance
in response to changes in either N , k, or ∆. We believe this
is due to the fact that the contextual semantic information is
able to compensate for a portion of the performance in cases
where the probabilistic features are not effective enough.
Proxy Model for Representative Words Selection. We
conduct small-scale experiments using GPT-2 Large, GPT-
Neo 2.7B, and LLaMA 7B as proxy models in representa-
tive word selection, and the Macro F1s are 85.77, 85.42, and
86.14, respectively, indicating that POGER is not sensitive to
the selection of proxy models. It also proves once again that
not using the probability value of the proxy model but deter-
mining the approximate range of the probability is a proper
way of using proxy models for AIGT detection.

6.3 Cost Comparison
With a well-designed re-sampling strategy, we achieve high-
performance black-box AIGT detection at a relatively low
cost. Although POGER requires re-sampling for each rep-
resentative word, we only infer for the next position to ob-
tain the generated word instead of repeatedly generating the
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Figure 6: Performance of POGER and its variant under (a) different
maximum error tolerances (b) different representative word set sizes
& re-sampling times, where the product of N and k is constrained
to be equal to 1,000.

Method
# Target LLM Inference Tokens

Expression Typical Value Ratio

DetectGPT n · l 30,000 × 21.43
DNA-GPT r · l + n · (1− r) · l 1,650 × 1.18

Full Sampling l · [lp + n(m− 1)] 42,000 × 30
POGER k · [lp + n(m− 1)] 1,400 × 1

Table 5: Comparison of the number of inference tokens needed for
detection, where n denotes the number of re-generated samples, l
denotes the text length, r denotes the truncation ratio in DNA-GPT,
k, lp, and m denote the size of the representative word set, the
prompt length, and the maximum number of generated tokens in
POGER, respectively. Full Sampling refers to the naive solution in
Section 3.1. In the calculation of typical values, l is taken as 300
tokens (about 200 words), and the values of other variables are re-
ferred to the original publication.

whole text sequence, thus requiring limited LLM inference
cost. If the maximum number of generated tokens is set
to 1, the inference length of LLM is even independent of
the re-sampling times, since no additional inference beyond
prompt is required. Table 5 shows a comparison of the num-
ber of inference tokens on a target LLM for POGER and other
regeneration-based AIGT detection methods, indicating that
POGER’s inference cost is similar to DNA-GPT and much
less than DetectGPT and Full Sampling.

7 Conclusion and Discussion
In this paper, we proposed to estimate features that proved
effective in the white-box setting to help improve black-
box AIGT detection. We first developed a naive solution
that leverages multiple re-sampling to estimate word gener-
ation probabilities for black-box detection. To further re-
duce the sampling cost, we designed POGER, which lever-
ages a proxy model to select a subset of representative words
with an awareness of sampling errors. Experiments on texts
from humans and seven LLMs demonstrated the superior-
ity of POGER for binary, multiclass, and OOD scenarios.
Further cost analysis indicates that POGER keeps lower re-
sampling costs than its counterparts. In the future, we plan to
further improve the efficiency by introducing result storage.
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Ethical Statement
Considering that white-box and black-box LLMs like
LLaMA-2 [Touvron et al., 2023] and GPT-4 [OpenAI, 2023]
have been widely used in daily lives, and the AI-generated
texts have posed real-world threats and are believed to bring
more serious societal harms, our research attempts to propose
a new method for AI-generated text detection to help defense
against the unknown threats in the future. Considering the
performance is not perfect for now, the text that is flagged as
AI-generated text by POGER and its counterparts should go
through extra checking before making an official accusation
regarding rule violations to a certain person in practice.
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