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Abstract

Causal discovery on event sequences holds a piv-
otal significance across domains such as health-
care, finance, and industrial systems. The crux
of this endeavor lies in unraveling causal struc-
tures among event types, typically portrayed as di-
rected acyclic graphs (DAGs). Nonetheless, pre-
vailing methodologies often grapple with unten-
able assumptions and intricate optimization hur-
dles. To address these challenges, we present a
novel model named CausalNET. At the heart of
CausalNET is a special prediction module based
on the Transformer architecture, which prognosti-
cates forthcoming events by leveraging historical
occurrences, with its predictive prowess amplified
by a trainable causal graph engineered to fathom
causal relationships among event types. Further-
more, to augment the predictive paradigm for real-
world scenarios, we devise a causal decay ma-
trix to encapsulate the influence of the underlying
topological network on causal dependencies among
events. During training, we alternatively refine the
prediction module and fine-tune the causal graph.
Comprehensive evaluation on a spectrum of real-
world and synthetic datasets underscores the su-
perior performance and scalability of CausalNET,
marking a promising step forward in the realm of
causal discovery. Code and Appendix are available
at https://github.com/CGCL-codes/CausalNET.

1 Introduction
Causal discovery within event sequence data stands as a
critical pursuit with far-reaching implications for a multi-
tude of real-world applications. Its fundamental objective
revolves around the discernment of causal relationships be-
tween events within sequences. Through this discernment,
valuable insights into the underlying generative mechanisms
of the data emerge, empowering us to make well-informed
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decisions. One illustrative context lies in Artificial Intelli-
gence for IT Operations (AIOps), where event sequences en-
capsulate a diverse array of system events, ranging from his-
torical alarm occurrences to user interactions. Grasping the
intricate causal connections within these sequences serves as
a linchpin for a host of advantages. For instance, by pinpoint-
ing the root cause of alarms, optimizing the allocation of re-
sources gains precision, and the ability to anticipate potential
system breakdowns becomes feasible [Gong et al., 2023].

Research on causal discovery within event sequences falls
into three main categories. Constraint-based methods iden-
tify causal graphs via conditional independence tests, e.g.,
[Spirtes and Glymour, 1991; Runge et al., 2019; Bhattachar-
jya et al., 2022]. Score-based methods search for an optimal
graph using a score tester, as demonstrated in [Bhattacharjya
et al., 2018; Zhu et al., 2019]. Granger-based methods [Xu
et al., 2016a; Zhang et al., 2020b; Idé et al., 2021] identify
causality by evaluating if one event type influences another’s
prediction. However, these methods usually operate under the
assumption that event sequences across topological nodes are
independent and identically distributed (i.i.d.), leading them
to address events on distinct topological nodes in isolation.
Contrarily, some real-world situations often present events
influenced not only by events on the same node but also by
those from neighboring nodes. Addressing this, Topological
Hawkes Process (THP) [Cai et al., 2022] is proposed to learn
causal relationships from non-i.i.d. event sequence data.

However, several challenges still exist for causal discov-
ery within event sequences in real-world scenarios. No-
tably, state-of-the-art methods like THP require manual ker-
nel specification for the Hawkes process [Hawkes, 1971],
limiting its flexibility in modeling intricate real-world events.
Moreover, many approaches aim to obtain an optimal causal
graph by searching for a Directed Acyclic Graph (DAG) with
the highest likelihood within the exponentially expanding
DAG space as the number of event types increases. This ex-
pansion raises scalability concerns for search-based methods,
often yielding suboptimal outcomes [Li et al., 2022]. In a
word, prevailing methods are entangled in unrealizable as-
sumptions, constrained model flexibility, and scalability is-
sues stemming from inefficient causal graph optimization.

In our pursuit to refine causal discovery for real-world
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applications, we have developed the innovative CausalNET
model. Positioned at the heart of CausalNET, we propose
a causal-attention-based Transformer that targets event pre-
diction. Instead of indiscriminately considering all histori-
cal events, it leverages a trainable causal graph among event
types to determine events that have a direct causal relation-
ship to the upcoming ones. Besides, we introduce a causal
decay matrix to characterize the influence of the underlying
topological network on causal dependencies among events,
to tackle the problem of causal discovery on non-i.i.d. event
sequences. Moving away from traditional search-based meth-
ods that grapple with scalability and efficiency concerns, our
approach involves a gradient-based causal graph optimization
via Gumbel Softmax. During training, we alternate between
fine-tuning the Transformer module and the duo of the causal
graph and decay matrix. Furthermore, considering causal dis-
covery tasks usually require the final graph to be acyclic, we
design a post-processing strategy to prune the causal graph
learned from the above training process to be an exact DAG.

Our main contributions are listed as follows:

• We propose CausalNET, a novel model for causal dis-
covery on event sequences with the topological network.
It supports flexible event sequence modeling and ad-
dresses the constraint of the i.i.d. assumption.

• We devise a causal-based self-attention mechanism,
which enables our model to gradually enhance its un-
derstanding of the causal relationships among different
event types while learning to predict future events.

• We conduct experiments on both real-world datasets and
synthetic datasets and demonstrate the superiority of the
proposed model. Notably, our model achieves remark-
able F1-score enhancements exceeding 10% over the
state-of-the-art methods across both real-world datasets.

2 Related Work
Causal Discovery. Causal discovery, i.e., causal structure
learning, has emerged as a crucial area of research due to
its applications in various domains. General approaches
for causal discovery can be grouped into three classes:
constraint-based, score-based, and functional causal model
(FCM)-based. Most constraint-based methods lie in the prin-
ciple that causal relationships between variables or events can
manifest as specific patterns of conditional independence, in-
cluding the widely used algorithms PC [Spirtes and Glymour,
1991] and PCMCI [Runge et al., 2019]. Score-based meth-
ods usually aim to search for a DAG with the best score as
the causal graph. However, the search for DAGs is an NP-
hard problem [Chickering, 1996] as the number of candi-
date DAGs increases exponentially with the number of causal
graph nodes. This motivates the following works such as
NOTEARS [Zheng et al., 2018], DAG-GNN [Zheng et al.,
2018] to cast the searching problem as a continuous opti-
mization problem. More recent works also try to solve this
problem from the perspective of reinforcement learning [Zhu
et al., 2019] and generative flow network [Deleu et al., 2022;
Li et al., 2022]. FCM-based methods model the data gener-
ation process using a functional causal model and identify

causal relationships in data based on it. While traditional
methods usually implement the FCMs as simple linear and
non-linear models with specific noise such as ICALiNGAM
[Shimizu et al., 2006] and DirectLiNGAM [Shimizu et al.,
2011], recent studies have begun to use more flexible neural
networks, e.g., [He et al., 2021; Cheng et al., 2022].

Causal Discovery on Event Sequence Data. While most
of the aforementioned methods assume well-structured data
such as variables or time series sampled with a regular time
interval [Gong et al., 2023], real-world events usually emerge
irregularly and asynchronously. Therefore, these methods
usually demonstrate inferior results on event sequence data.
To address these challenges, specific causal discovery meth-
ods have been developed for event sequences. Among them,
Granger causality-based methods are well-developed and can
be categorized into two main classes. On the one line, some
methods utilize the Hawkes process [Hawkes, 1971] to model
the event generation process and infer causal relationships
between events. Typical examples include ADM4 [Zhou et
al., 2013], MLE-SGL [Xu et al., 2016b], NPHC [Achab et
al., 2017], L0Hawkes [Idé et al., 2021], THP [Cai et al.,
2022], and SHP [Qiao et al., 2023]. The Hawkes process
is a stochastic process that aims to describe the mutual exci-
tation effects between events through a conditional intensity
function [Hawkes, 1971]. Benefiting from the Hawkes pro-
cess’s good interpretability and compatibility with Granger
causality, these methods can infer causal relationships be-
tween events from the conditional intensity function. On the
other line, with the advancement of deep learning, some stud-
ies have begun to employ neural point processes to model
event sequences and learn causalities [Zhang et al., 2020b].

However, most of these methods still run on the inde-
pendent and identically distributed assumption of event se-
quences. In particular, THP attempts to solve this problem by
introducing a graph convolution to handle the topological in-
formation, but it suffers from inherent flexibility issues due to
the manually specified kernel function and efficiency bottle-
neck due to the inefficient DAGs searching approach. In par-
allel work, [Liu et al., 2024] proposes the TNPAR model to
solve the issues of THP. TNPAR transforms continuous-time
event sequences into discrete-time sequences and leverages a
multi-layer perceptron (MLP) to model the event generation
process. However, in practice, this simple MLP-based archi-
tecture still exhibits limitations in flexibility and scalability.

3 Problem Definition
Consider a topological network denoted as GN = (N,EN ),
where N represents a collection of topological nodes, and EN

signifies the interconnections among these nodes. Addition-
ally, let D denote the discrete space of DAGs GV = (V,EV ),
where V denotes a set of event types and EV denotes the di-
rect edges between them. Specifically, vj → vi denotes a
direct edge from vj to vi, signifying that a type-vj event can
cause the occurrence of a type-vi event.

Given an event sequence with L events: S = {e1 =
(t1, v1, n1), ..., ei = (ti, vi, ni), ...}Li=1, where ti ∈ T in-
dicates the timestamp of the i-th event, vi ∈ V stands for
its event type, and ni ∈ N represents the topological node
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where it occurred. We assume that each event instance ei =
(ti, vi, ni) is generated from a latent process of the form:

ei = fi(parents(ei), ϵ) (1)
where parents(ei) denotes the historical events that are of
the types vj ∈ V with a direct edge vj → vi ∈ EV . The term
ϵ denotes jointly independent noise variables. fi is a function
generating ei from parents(ei) and ϵ. The goal of this paper
is to learn the causal structure GV among event types that
drive this event generation process from the observable event
sequence S and the underlying topological network GN .

4 CausalNET
In this paper, we propose CausalNET to uncover causal rela-
tionships among different event types from event sequences
and the underlying topological network (Figure 1). At first,
we present a causal-attention-based Transformer to model the
latent event generation process. To characterize how causal
dependencies among events of diverse types evolve under the
impact of the topological network, we introduce a causal de-
cay matrix. Then, we implement a continuous optimization
on the distribution of possible causal graphs via Gumbel Soft-
max. During training, we optimize two main modules alter-
natively in an iterative framework: the Transformer module,
and the causal graph together with the decay matrix.

4.1 Causal-attention-based Transformer
Event Embedding. Given an event sequence with L
events: S = {ei}Li=1, where ei = (ti, vi, ni). Let us denote
V̂ = [v⃗1, v⃗2, ..., v⃗L] ∈ R|V |×L where v⃗i is a one-hot vector of
the event type vi, and N̂ = [n⃗1, n⃗2, ..., n⃗L] ∈ R|N |×L where
n⃗i is a one-hot vector of the topological node ni. Embedding
representations for the events can be formulated as:

X = (Xt +Xv +Xn)
T (2)

where Xv = WvV̂ ∈ Rd×L, Xn = WnN̂ ∈ Rd×L. Specif-
ically, Wv ∈ Rd×|V | and Wn ∈ Rd×|N | are trainable em-
bedding matrix for event types and topological nodes respec-
tively. Xt = [t⃗1, t⃗2, ..., t⃗L] ∈ Rd×L is the temporal encoding
matrix which records the timestamp of each event. In prac-
tice, we adopt the temporal encoding procedure proposed by
[Zuo et al., 2020], and there are alternatives such as [Zhang
et al., 2020a]. Finally, X = [x⃗1, x⃗2, ..., x⃗L] ∈ RL×d, and x⃗i

represents the embedding of the i-th event in the sequence.
Self-Attention with Causal Graph. Consider a sequence
of historical events up to ei at timestamp ti, to infer the type-
vi+1 event’s intensity at the next timestamp ti+1, we need to
consider the cumulative influence of all types of events be-
fore ti+1. [Zuo et al., 2020; Zhang et al., 2020a] propose
to compute the pairwise influence of each historical event
on the next event via self-attention. However, none of them
takes into account the latent causalities that really drive the
generation process of the event sequence, and many unneces-
sary irrelevant events are introduced during prediction. Here,
we present a causal-based self-attention mechanism with a
causal graph (M = {mi,j}|V |

i,j=1) sampled from the Gumbel-
Softmax distribution [Jang et al., 2016] of a causal probability

graph (Figure 1). This generates a hidden vector that summa-
rizes the influence of relevant historical events up to ti:

h⃗ti =
i∑

j=s

f̂(x⃗i, x⃗j)× g(x⃗j) (3)

where ti is the timestamp of the i-th event, and x⃗i denotes
the corresponding event embedding. We consider historical
events starting from es instead of e1 because considering his-
torical events that occurred too long ago will not only intro-
duce unnecessary noise but also increase the length of the
sequence to be processed. This, in turn, would hurt the ef-
ficiency of the model. In practice, we set a hyper-parameter
ξ, which means that only the historical events that occurred
during [ti+1 − ξ, ti+1) are considered when predicting the
event at ti+1. Especially, the event es at ts and the event ei at
ti are the first and last ones respectively, during the interval.
g(·) = x⃗jWV ∈ Rdv is a linear transformation whose output
is the value(v) in the attention terminology [Vaswani et al.,
2017]. f̂(·, ·) is a similarity function between two events:

f(x⃗i, x⃗j) = exp(
q⃗i · k⃗j√

dk
)/

i∑
j=s

exp(
q⃗i · k⃗j√

dk
) (4)

f̂(x⃗i, x⃗j) = f(x⃗i, x⃗j)×mvj ,vi+1
(5)

where q⃗i = x⃗iWQ ∈ Rdk , k⃗j = x⃗jWK ∈ Rdk , and · denotes
dot product. f(·, ·) is the softmax function, whose output is
a normalized attention score/weight between events. In par-
ticular, mvj ,vi+1

is used to mask irrelevant historical events
for predicting the event at ti+1. Specifically, only the subset
of historical events that are of the types vj ∈ V with a direct
edge vj → vi+1, i.e., mvj ,vi+1

= 1, are considered.
The softmax function defined in Equation (4) fully adheres

to the philosophy of Transformer Decoder. Specifically, it
allocates attention weights to historical events solely based
on the pairwise similarity between the current event (ei) and
each historical event (ej≤i). However, experiments show that
such a softmax function may fail to help the model learn a
good causal structure from the event sequence data of com-
plicated real-world scenarios (Appendix B.3). Therefore, we
further reformulate the softmax function as follows:

f(x⃗i, x⃗j) = exp(
q⃗i · k⃗j√

dk
)/

 i∑
j=s

exp(
q⃗i · k⃗j√

dk
) + ∆i

 (6)

where ∆i = exp( q⃗i ·⃗ki+1√
dk

) + n̂, and n̂ is the number of the
padding events1. The first term of ∆i describes the similar-
ity between the event ei and ei+1. It plays a similar role as
the sampled causal graph, i.e., adjusting the attention weight
to each historical event (ej≤i) based on the relationship be-
tween each historical event and the forthcoming event ei+1.
The size of n̂ reflects the number of recent historical events
for ei+1. When there are few historical events for it, we pad

1The embedding representation of a padding event is set to be 0⃗.
Since exp(q⃗i · 0⃗/

√
dk) = 1, the sum for n̂ padding events will be n̂.
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Figure 1: Model framework of CausalNET

the sequence with meaningless events and n will be larger,
thus reducing the attention weight for each historical event to
prevent overestimating the influence of specific events.
Incorporating the Influence of Topological Network. So
far, we have incorporated a trainable causal graph among
event types into the attention mechanism via a causal mask
after softmax. However, in many real-world scenarios, the
structure of the underlying topological network will also in-
fluence the generation process of events. [Cai et al., 2022]
found that ignoring the topological structure may lead to un-
observable confounders and unstable results for causal dis-
covery. Intuitively, events occurring at two topological nodes
can only exert causal influence when there is at least one
path between the nodes, and the influence should wane as the
nodes’ distance increases. Therefore, to consider the influ-
ence of the underlying topological network, we further extend
such a causal attention mechanism to a topology-informed
causal attention mechanism via the adjacency matrix among
topological nodes and a trainable parameter matrix describing
node properties. Specifically, we extend Equation (5) to:

f̃(x⃗i, x⃗j) =

K∑
k=0

f̂(x⃗i, x⃗j)× Âk
nj ,ni+1

× sig(ϕk,nj ,ni+1,vj ,vi+1) (7)

and replace the similarity function f̂(·, ·) in Equation (3) with
f̃(·, ·). Âk is a binary matrix construted from the adjacency
matrix A ∈ R|N |×|N |, where Âk

nj ,ni+1
= 1 if and only if

there is at least one k-hop path between the topological node
nj and ni+1. Besides, to emphasize the influence between
events occurring on the same topological node, we set all the
diagonal elements of Âk to be 1. ϕ ∈ RK×|N |×|N |×|V |×|V |

is a trainable parameter matrix introduced to characterize the
property of the underlying topological network. In particular,
ϕk,nj ,ni+1,vj ,vi+1

describes the decay coefficient of the causal
influence from a type-vj event (on node nj) to a type-vi+1

event (on node ni+1) after propagating along a k-hop path
”nj → . . . → ni+1”. Given its special positioning, we refer
to this matrix as the causal decay matrix. sig(·) is a sigmoid
function used to normalize the value of ϕ to (0,1). Intuitively,

ϕ plays a similar role to the graph attention score [Veličković
et al., 2018] because both of them are used to aggregate the
information from the topological neighbors of each node.

In addition to the self-attention module, we pass the hid-
den vector h⃗ti through a position-wise feed-forward neural
network, which consists of two linear transformations with a
ReLU activation function in between. This generates a new
hidden vector as follows:

h⃗′
ti = max(0, h⃗tiW1 + b⃗1)W2 + b⃗2 (8)

Auxiliary Tasks for Transformer Optimization. In order
to optimize the causal-based Transformer, we employ two
event prediction tasks. The first task is predicting the like-
lihood of the next event based on historical events. Since we
have obtained the hidden representation of historical events,
the remaining question is how to map it to the likelihood of
the next event. To solve this, we adopt the continuous condi-
tional intensity function proposed by [Zuo et al., 2020]:

λv,n(t|Hti) = fv,n(αv,n
t− ti
ti

+ w⃗v,n · h⃗′
ti + bv,n) (9)

for t ∈ (ti, t], where fv,n(x) = βv,nlog(1 + exp(x/βv,n))
is a softplus function with the softness parameter βv,n > 0
to eusure a positive intensity. αv,n is used to control the im-
portance of the interpolation between the current timestamp
ti and the future timestamp t, and bv,n represents the oc-
currence probability of a type-v event at topological node-n
without the influence of history information. Given the inten-
sity function as λv,n(t|Hti), the probability density function
of a type-v event at topological node-n can be expressed as:

pv,n(t|Hti) = λv,n(t|Hti)× exp(−
∫ t

ti

λv,n(t|Hti) dt) (10)

and the log-likelihood for the whole event sequence S =
{(t1, v1, n1), ..., (ti, vi, ni), ...}Li=1 can be formulated as:

L =

L−1∑
i=1

{log λvi+1,ni+1
(ti+1|Hti)−

∫ ti+1

ti

λvi+1,ni+1
(t|Hti) dt} (11)

The logarithm term should be increased to explain why a
type-vi+1 event actually occurred on topological node-ni+1
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at ti+1, and the integral term should be decreased to account
for the absence of any event between (ti, ti+1). [Rasmussen,
2018; Idé et al., 2021] provide detailed mathematical deriva-
tions of the probability density and log-likelihood functions.

The second task is to predict the attributes of the next event,
including its timestamp, event type, and topological node. In
practice, we pass the hidden vector of the i-th event through
three independent linear layers to predict the (i+1)-th event.
This involves regression (timestamp) with squared error loss
and classification (type and node) with cross-entropy losses.

4.2 Continuous Optimization of Causal Graph
Due to the large search space of DAGs and complex acyclicity
constraints, most search-based methods cannot handle large-
scale settings and are prone to getting stuck in local optima.
Therefore, recent studies begin to recast the combinatoric
search problem of DAGs into continuous optimization prob-
lems [Zheng et al., 2018; Ng et al., 2022]. Here, we imple-
ment a continuous optimization of the causal graph via Gum-
bel Softmax [Jang et al., 2016], which provides a differen-
tiable way to draw samples from a discrete distribution. This
procedure includes two steps in turn. At first, we leverage the
sigmoid function to transform a trainable parameter matrix
ϑ into the causal probability graph P = {pi,j}|V |

i,j=1, which
characterizes a discrete categorical distribution. Specifically,
pi,j represents the probability of the causal edge vi → vj to
be true. Then, we draw a sample of the causal graph from the
distribution using Gumbel Softmax as follows:

mi,j =
exp((log(pi,j) + gi,j)/τ)

exp((log(pi,j) + gi,j)/τ) + exp((log(1− pi,j) + gi,j)/τ)
(12)

where τ is the temperature parameter that controls the
smoothness of the Gumbel Softmax. Especially, as τ ap-
proaches 0, the Gumbel Softmax distribution will be equiv-
alent to the original categorical distribution. In addition,
{gi,j}|V |

i,j=1 are i.i.d. samples from the Gumbel(0,1) distri-
bution, where u ∼ Uniform(0,1) and g = −log(−log(u)).

4.3 Training Procedure
So far, we have introduced a causal-based Transformer and a
Gumbel Softmax-based causal graph together with the causal
decay matrix. Next, we will describe how these two modules
interact with each other during the training process.

As shown in Figure 1, we implement an EM-style training
framework like [Idé et al., 2021] and [Cheng et al., 2022] via
plugging these two modules into a two-stage iterative frame-
work, and optimize them alternatively. In the first stage, given
a causal graph sampled from the distribution of the causal
probability graph (P = σ(ϑ)) together with the causal decay
matrix between topological nodes (ϕ), we train the causal-
based Transformer module (f (θ)) to fit the event sequence
(S) by minimizing the following loss function:

Lpred(θ;GN , ϑ, ϕ) = −λ1L+ (Lt + Lv + Ln) (13)
where L is the log-likelihood function defined in Equation
(11), and λ1 a hyper-parameter. Lt, Lv , and Ln are loss func-
tions for predicting the timestamp, event type, and topological
node of the next event based on historical events.

In the second stage, given a causal-based Transformer
model (f (θ)), we optimize the causal graph (ϑ) together with
the causal decay matrix (ϕ) by minimizing the loss function:

Lgraph(ϑ, ϕ;GN , θ) = Lpred + λ2||σ(ϑ)||1 + λ3h(σ(ϑ))
(14)

where || · ||1 is the L1-norm to enforce sparse connections for
the learned causal graph. h(·) is a differentiable characteriza-
tion of graph acyclicity called DAG-ness [Zheng et al., 2018],
which is defined as follows:

h(A) = tr(eA◦A − |V |) (15)
where ◦ denotes Hadamard product, and h(A) ≥ 0. The
matrix A ∈ R|V |×|V | denotes a DAG if and only if h(A) = 0.

The discovered causal graph Ô is identified based on the
causal probability graph P and the causal decay matrix ϕ:

ôi,j = I(max{pi,j × ϕk,m,n,i,j} > ε) (16)
Specifically, if max{pi,j × ϕk,m,n,i,j} is penalized to a

value below the threshold ε, we deduce that there does not
exist a causal relationship vi → vj , and set ôi,j to be 0.

4.4 Post-processing with Rollback Mechanism
While gradient-based causal graph optimization is more effi-
cient than directly searching DAGs and evaluating them, the
downside is that we cannot ensure the acyclicity of the causal
graph. To solve this, GOLEM [Ng et al., 2020] proposes to
gradually increase a threshold ω and remove all the edges
with absolute weights smaller than ω until the pruned graph
is acyclic. However, in real-world datasets, significant noise
may lead to some negative edges having higher weights than
true causal edges. Experimental results show that this prun-
ing strategy might mistakenly remove many edges that should
be predicted as positive (Appendix B.2).

Therefore, we design a more flexible pruning strategy. At
first, we sort the edges in Ô according to their weights (i.e.,
max{pi,j × ϕk,m,n,i,j}). Then, we remove an edge with
the lowest weight and compare the DAG-ness of the pruned
graph with the original graph. If removing this edge reduces
the graph’s DAG-ness, we will keep the deletion and update
the graph. Otherwise, we will roll back the operation, i.e.,
recover the deleted edge. One by one, we will attempt to
remove each edge of Ô in ascending order of weight until
the pruned graph’s DAG-ness decreases to zero, which means
that the pruned graph has become an exact DAG.

5 Experimental Setup
Real-world Datasets. We adopt two challenging real-
world datasets from telecommunication networks 2. The first
is 24V 439N Microwave (Micro-24), which has 24 alarm
types, 439 topological network elements, and 64,599 alarm
events in total. The second is 25V 474N Microwave (Micro-
25), which contains 25 alarm types, 474 topological network
elements, and 48,573 alarm events in total. Causal discovery

2https://competition.huaweicloud.com/information/1000041487/
dataset
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on such datasets aims to uncover causal relationships among
alarm types. To explore the applicability of our model in
other domains (potentially those without topological network
underlying event sequences), we further include the IPTV
dataset [Luo et al., 2015], which records the history of TV
watching behavior of each user and each TV program cat-
egory denotes an event type. Since the ground-truth causal
graph between TV program categories is not available, we
conducted qualitative analysis on this dataset (Appendix B.1).

Synthetic Datasets. In addition, we also generate a range
of synthetic datasets via gcatle’s API [Zhang et al., 2021],
which simulates event sequences based on the topological
Hawkes process [Cai et al., 2022] engineered with a classi-
cal exponential decay kernel function. In the experiments, to
generate datasets with different event interactions and tempo-
ral effects, we reformulate the original topological Hawkes
process by replacing the default kernel function with some
other kernel functions from the field of point process and
event modeling. The distinctions among these synthetic
datasets lie in the kernel function, the number of event types,
the number of topological nodes, and the event sequence
length (total number of events). Without further specification,
each synthetic dataset utilizes an exponential decay func-
tion as the kernel, comprising 30 event types, 60 topologi-
cal nodes, and an event sequence length of 30,000. Detailed
statistics of the datasets are shown in Appendix B.4.

Baseline Models. We compare our model against the fol-
lowing 10 baselines: constraint-based methods: PC [Spirtes
and Glymour, 1991] and PCMCI [Runge et al., 2019]; score-
based method: RL-BIC [Zhu et al., 2019]; FCM-based
method: ICALiNGAM [Shimizu et al., 2006]; Granger-based
methods: ADM4 [Zhou et al., 2013], NPHC [Achab et al.,
2017], CAUSE [Zhang et al., 2020b], SHP [Qiao et al.,
2023], THP [Cai et al., 2022], and TNPAR [Liu et al., 2024].

Evaluation Metrics. We adopt 4 widely used evaluation
metrics of causal discovery as follows: F1 Score (F1), True
Positive Rate (TPR), False Positive Rate (FPR), and Area Un-
der the Receiver Operating Characteristic Curve (AUROC).

6 Experimental Results
Results on Telecommunication Network Alarm Datasets.
Here we compare the performance of our proposed model
CausalNET and its pruned version CausalNET* with all base-
line models. Table 1 presents the experimental results for
each model on the two real-world datasets. Notably, Causal-
NET exhibits significant advantages over all baseline algo-
rithms across multiple metrics, with an improvement of over
10% in F1 score compared to the state-of-the-art methods.
Moreover, CausalNET demonstrates a remarkable improve-
ment in AUROC. This suggests that CausalNET excels in
distinguishing between causally related and non-causally re-
lated event types. While some baselines excel in control-
ling FPR, they present low TPR. NPHC and CAUSE achieve
high TPRs, but their FPRs are also extremely high, thus in-
effective in discerning real causal relationships. Compared
to other baselines, CausalNET, THP, and TNPAR outperform
due to their inclusion of the underlying topological network

(a)   Model Flexibility Evaluation (b)   Model Scalability Evaluation

(c)   Model Scalability Evaluation (d)   Data Efficiency Evaluation

Figure 2: Results on a range of synthetic datasets

structure, while other baselines run on the i.i.d. assump-
tion of event sequences. This demonstrates the importance
of considering topology in causal discovery tasks. Both neu-
ral network-based methods CausalNET and TNPAR achieve
much higher TPR than the parametric method THP, indicat-
ing that neural networks are more effective in capturing in-
tricate event dependencies in real-world scenarios. In addi-
tion, while TNPAR uses a simple MLP to model event depen-
dencies, CausalNET employs a causal-attention-based Trans-
former architecture. The significantly superior performance
of CausalNET on both datasets demonstrates the advantages
of its causal-attention-based Transformer architecture.

Results on Synthetic Datasets. Then, based on the syn-
thetic datasets, we further evaluate the performance of
CausalNET and six baseline models across three dimensions
(Figure 2). (I) Flexibility: Figure 2(a) illustrates the per-
formance of each model as the kernel function varies. In
this experiment, we introduce Weibull distribution [Rinne,
2008] and modify its shape parameter to alter the kernel func-
tion (Appendix B.4). CausalNET and THP, while achiev-
ing comparable performance, significantly outperform other
baselines. (II) Scalability3 : As shown in Figure 2(b)4 and
Figure 2(c), across all event type number and topological
node number settings, CausalNET exhibits excellent perfor-
mance and outperforms all baselines except THP. Notably,
THP performs well when there are fewer event types, but
experiences a notable decline as the number of event types
increases to 100. This is because THP needs to search for
a DAG with the highest likelihood from the discrete DAGs
space, whose size increases exponentially with the growth
of event types. In contrast, CausalNET demonstrates out-
standing performance on all datasets, as it has converted the
NP-hard DAGs searching problem into a much more efficient
gradient-based continuous optimization problem in the real-
valued space. (III) Data Efficiency: Figure 2(d) indicates that

3When the number of events reaches 100, some algorithms fail
to complete training within a reasonable timeframe. Therefore, we
impose a maximum runtime of 72 hours for each algorithm.

4TNPAR encounters out-of-memory (OOM) issues on datasets
with 100 and 150 event types on Tesla V100 GPUs (32 GB).
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Dataset Metric PC ICALiNGAM RL-BIC PCMCI ADM4 NPHC CAUSE SHP THP TNPAR CausalNET CausalNET∗

Micro-24

F1 ↑ 0.2478 0.0940 0.2802 0.2524 0.2782 0.3282 0.3474 0.2870 0.3818 0.3459 0.5016 0.4883
TPR ↑ 0.2044 0.0803 0.2628 0.1898 0.2130 0.3139 0.5109 0.2189 0.3066 0.5240 0.5839 0.5328
FPR ↓ 0.1340 0.1959 0.1913 0.0979 0.0994 0.1868 0.4465 0.0956 0.0934 0.4696 0.2323 0.2027

AUROC ↑ 0.5327 0.4422 0.5357 0.5459 0.5555 0.5635 0.5322 0.5608 0.6066 0.5272 0.6758 0.6651

Micro-25

F1 ↑ 0.2143 0.1024 0.2254 0.1576 0.2723 0.3125 0.3226 0.3035 0.3043 0.3413 0.4742 0.4679
TPR ↑ 0.1419 0.0878 0.2162 0.1081 0.2116 0.4392 0.4730 0.2297 0.2365 0.4423 0.5270 0.4932
FPR ↓ 0.0566 0.0566 0.2180 0.0818 0.1063 0.4256 0.4528 0.0880 0.0985 0.3564 0.2159 0.1908

AUROC ↑ 0.5426 0.4464 0.4991 0.5132 0.5523 0.5068 0.5101 0.5689 0.5690 0.5429 0.6555 0.6512

Table 1: Performance comparison on two real-world datasets

CausalNET and THP demonstrate outstanding performance
right from the start. Meanwhile, some models (e.g., SHP)
are sensitive to the number of events, with their performance
improvement relying on an increase in the event number.
Influence of Historical Events. In this section, we
study the influence of different receptive fields on his-
torical events. Specifically, we set ξ (max time lag) to
{30s, 60s, 120s, 180s}, and only allow CausalNET to use the
most recent historical events within ξ to predict the next fu-
ture event. As shown in Figure 3(a), on both datasets, Causal-
NET excels with a 120s time lag, followed by 60s and 180s,
while 30s leads to the worst performance. These results em-
phasize the significance of dataset-specific time lag setting
for optimal model performance. On the one hand, a too-short
time lag limits the receptive field of self-attention, making it
unable to capture long-term dependencies or causal relation-
ships between events. On the other hand, a too-long time lag
could introduce additional noise, since usually, only events
occurring within a certain time interval will affect each other.
Influence of Topological Neighbors Similarly, we inves-
tigate the influence of considering different-order topologi-
cal neighbors. We set the hyper-parameter k (max hop) to
{0, 1, 2, 3}, where k = 0 corresponds to not considering any
topological information. As shown in Figure 3(b), on the first
real-world dataset, CausalNET performs best when k = 1,
and closely followed by k = 2 and k = 3. In particular,
k = 0 leads to an obvious decline in model performance.
On the second dataset, CausalNET gets the best performance
when k = 2. k = 1 and k = 3 lead to comparable worse
performance. And again, k = 0 results in the worst results.
This experiment confirms the significance of considering the
appropriate topological information in causal discovery tasks.
Influence of Causal Graph Initialization. In this section,
we evaluate the effects of different causal graph initialization
strategies on the performance of CausalNET. Specifically, for
the parameter matrix ϑ, we test four common initialization
strategies. Random Initialization (RI) sets all parameters with
random values within [-1, +1]. Zero Initialization (ZI) sets all
parameters to be 0. This is a setting without prior assumption,
where all edges are initialized to have an equal probability of
being true or false. Negative Initialization (NI) sets all param-
eters to -1. This is a setting with explicit assumption, where
all edges are initially predicted to have a very small proba-
bility of being true. Positive Initialization (PI) is opposite to
NI. We repeat the experiment of each initialization strategy
three times using different random seeds. As shown in Figure
3(c), ZI and NI achieve the best results across both datasets.
RI exhibits slightly worse results. Besides, PI demonstrates
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Figure 3: Results of intrinsic evaluation

notably inferior performance, a shortcoming ascribed to its
imposition of an excessively strong prior. Specifically, an ex-
cessive number of edges in the causal graph are initialized as
true, whereas real-world causal graphs are usually sparse.

Distribution of Causal Probability Values. We display
the distribution of the learned probability value of each edge
being true (i.e., max{pi,j × ϕk,m,n,i,j}) for two real-world
datasets in Figure 3(d). The results from both datasets indi-
cate that the vast majority of values are concentrated around
either 0 or 1. Therefore, by simply setting an appropriate
threshold as indicated in Equation (16), we can exclude a ma-
jority of edges and thus obtain a sparse causal structure.

7 Conclusion
Uncovering causal relationships within event sequences in the
real world plays a ubiquitous role. In this paper, we propose
CausalNET, a novel approach for learning causal structure
from event sequences. The core of CausalNET is a causal-
attention-based Transformer that predicts future events via
attention to historical events under the guidance of a causal
graph. The causal graph describes causal relationships among
different event types and is trained alternately with the Trans-
former module in an iterative framework. Extensive experi-
ments on both real-world and synthetic datasets demonstrate
that CausalNET achieves superior performance and scalabil-
ity over a range of existing methods. In the future, we plan to
expand this work to handle massive-scale event sequences.
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