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Abstract

Rank aggregation (RA), the technique of combin-
ing multiple basic rankings into a consensus one,
plays an important role in social choice, bioinfor-
matics, information retrieval, metasearch, and rec-
ommendation systems. Although recent years have
witnessed remarkable progress in RA, the absence
of a systematic overview motivates us to conduct
a comprehensive survey that includes both classic
algorithms and the latest advances in RA study.
Specifically, we first discuss the challenges of RA
research, then present a systematic review with a
fine-grained taxonomy to introduce representative
algorithms in unsupervised RA, supervised RA, as
well as the previously overlooked semi-supervised
RA. Within each category, we not only summarize
the common ideas of similar methods, but also dis-
cuss their strengths and weaknesses. Particularly,
to investigate the performance difference between
different types of RA methods, we conduct the
largest scale of comparative evaluation to date of 27
RA methods on 7 public datasets from person re-
identification, recommendation systems, bioinfor-
matics and social choice. Finally, we raise two open
questions in the current RA research and make our
comments about future trends in the context of the
latest research progress.

1 Introduction
Rank aggregation (RA), a fundamental technique to combine
multiple basic rankings from various rankers into a single
consensus one, has wide applications in society, economy,
and science [Akritidis et al., 2022]. RA was originally de-
signed to solve the problem of inconsistent voting for po-
litical candidates [Borda, 1781]. Since then, numerous re-
search efforts have been devoted to addressing issues related
to world university rankings in social choice [Zhang et al.,
2021] [Feng et al., 2023], gene sequences combination in
bioinformatics [Li et al., 2019] [Wang et al., 2022], detection
results aggregation in spam filtering [Liu et al., 2007], and
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search results fusion in document retrieval [Farah and Van-
derpooten, 2007] [Wu, 2013], person re-identification (re-ID)
[Yu et al., 2020] [Huang et al., 2022], metasearch [Renda and
Straccia, 2003] [Desarkar et al., 2016] and recommendation
systems [Oliveira et al., 2020].

Because of the broad interests and fundamental importance
of the RA technique, several inspiring review articles [Lin,
2010] [Li et al., 2019] [Oliveira et al., 2020] [Wang et al.,
2022] have been published in this field. As the earliest review,
[Lin, 2010] provides a systematic overview of unsupervised
RA literature at the time with a special focus on biological
applications. To investigate the performance, the author con-
ducts an experimental evaluation of 9 unsupervised RA meth-
ods on a cancer gene dataset. Thereafter, [Li et al., 2019] and
[Wang et al., 2022] further summarize the latest unsupervised
RA methods in bioinformatics, and evaluate methods’ perfor-
mance in a series of larger genomic experiments. Meanwhile,
[Oliveira et al., 2020] exclusively focuses on RA studies in
the field of recommendation systems, and conducts compar-
ative experiments of RA methods in movie recommendation.
In general, existing surveys tend to review RA works in a
specific field, and primarily concentrate on unsupervised RA
methods. However, recent RA studies have achieved signif-
icant progress in novel approaches and applications, which
have not been thoroughly reviewed in time. Therefore, we
argue that conducting a systematic review of classical algo-
rithms and recent advances is urgently necessary to provide
up-to-date guidance for future research.

Compared to previous RA surveys, our work makes the
following differences and contributions:

• A systematic and up-to-date overview. We provide the
first comprehensive review of existing RA techniques,
including classic methods in not only unsupervised and
supervised RA but also semi-supervised RA which is ig-
nored by previous RA surveys. Moreover, we discuss
state-of-the-art progress in research and applications.

• A fine-grained taxonomy. Based on the types of stud-
ied relationships, we further subdivide unsupervised RA
into item-item, item-ranking, and ranking-ranking meth-
ods. Based on the levels of data granularities, we further
subdivide supervised RA into point-wise, pair-wise, and
list-wise methods.

• The largest evaluations across multiple fields. We
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conduct, for the first time as far as we know, the largest
scale of experimental evaluation, including 27 RA meth-
ods on 7 public datasets from person re-ID, recommen-
dation systems, bioinformatics, and social choice.

• Open questions and future perspectives. We discuss
two open questions in the current RA research and ap-
plication, and share our perspective about future trends,
i.e., active learning in interactive RA and RA-based ad-
versarial defense, in the context of the state-of-the-art
research progress.

• Open-source algorithm RA-Lib toolkit with public
benchmarks. We integrate all RA algorithm code ex-
perimentally evaluated in this paper together with rel-
evant benchmark datasets into a toolbox, which is re-
leased open-source on GitHub1 for researchers.

2 Preliminary
In this section, we first discuss key challenges in RA study.
On this basis, we give a comprehensive and fine-grained tax-
onomy of RA methods. Then, we define the problem of RA
and explain the basic notation used throughout this article.

2.1 Challenges
RA aims to combine basic rankings from multiple rankers.
Early RA strategies, like average fusion or heuristic-based fu-
sion [Borda, 1781] [Reilly, 2002] are unsupervised methods;
their core challenge is to effectively determine the quality of
different basic rankings without external supervision, in order
to produce an optimal fusion result. Although unsupervised
methods are easy to implement and prevalent in RA research,
their performance is difficult to improve due to the lack of
supervision [Liu et al., 2007].

To address this drawback, researchers turn to introduce
external supervision to guide the RA process [Pujari and
Kanawati, 2012] [Wang et al., 2013]. Provided with high-
quality training data, supervised RA methods can generally
achieve better results than their unsupervised counterparts;
however, the challenge posed by the high cost of data collec-
tion and labeling also limits the performance of supervised
RA methods.

Similar to general machine learning problems, the trade-
off between low-cost and high-performance persists in RA
research. Unsupervised and supervised methods essentially
make an either-or choice, where the former prioritizes low-
cost while the latter prioritizes high-performance, each with
inherent drawbacks in practice. To overcome this dilemma, a
more realistic approach and also a more difficult challenge is
to find a well-proportioned balance between cost and perfor-
mance.

2.2 Taxonomy
Based on the above discussion, we propose a systematic and
fine-grained taxonomy that reflects the overall landscape of
RA study in Figure 1. We generally divide the existing RA
methods into unsupervised, supervised, and semi-supervised
methods.

1https://github.com/nercms-mmap/RankAggregation-Lib

Unsupervised RA has evolved into the majority of RA
methods during the development of RA. Numerous unsuper-
vised RA methods have their special fusion strategies. Based
on the types of studied relationships, unsupervised RA meth-
ods are subdivided into item-item, item-ranking and ranking-
ranking methods. Moreover, item-ranking methods, based on
the differences in the underlying mathematical models, can
be subdivided into probabilistic model and statistics-based
methods.

In supervised RA, we categorize supervised RA methods
into three classes: point-wise, pair-wise, and list-wise meth-
ods, based on the levels of data granularities. The exist-
ing list-wise methods can be further subdivided into metric-
driven, evolutionary, neural network-based, and interactive
methods, according to their methodological principles or
characteristics.

Semi-supervised RA methods are not further subdivided
because of the limited amount of related work.

2.3 Problem Formulation
Given a set of M items to be sorted U = {u1, u2, ..., uM},
we define a basic ranking R = {ui ≥ uj ≥ . . . ≥ uh}
as an ordered list of items, where i, j, h ∈ {1, . . . ,M} and
i ̸= j ̸= h. Note that R does not necessarily rank all items
in U . We denote by Rt(ui) the position (or rank) of item
ui under ranking Rt. If Rt(ui) < Rt(uj), we say ui is
more relevant than uj in Rt. For a set of N basic rankings
R = {R1, R2, ..., RN}, the objective of RA is to find a func-
tion f to combine these basic rankings in R into a consensus
ranking R∗, i.e., R∗ = f(R). For RA methods that aim to
calculate the final score of items, we define S as the scoring
function and S(ui) as the score of item ui.

3 Unsupervised RA Methods
3.1 Item-Item Methods
The item-item methods investigate the preference relation-
ship between items to produce the final result. Condorcet [de
Condorcet, 1785] proposes a Condorcet procedure based on
pairwise comparisons of items, where one item beats, ties,
or loses to the other item. The score of an item ui in the
Condorcet procedure is determined by the number of its “vic-
tories” against all the other items in basic rankings. A vic-
tory for ui is achieved if the majority of the basic rankings
rank ui higher than any other item uj ̸=i. For example, for a
set of items {u1, u2, u3}, the Condorcet procedure conducts
pairwise comparisons among these items: if u1 beats u2, u1

beats u3 and u3 beats u2, then the score is {2, 0, 1}, so we get
the preference among these items and fuse these preference
into a ranking R = {u1 ≥ u3 ≥ u2}.

[Saari and Merlin, 1996] computes Copeland scores of
items based on the disparity between the count of items they
surpass and the count of items they are surpassed by:

SCopeland(ui) =
∑

Rt∈R

∣∣{uj ∈ Rt : Rt(ui)<Rt(uj)
}∣∣

−
∣∣{us ∈ Rt : Rt(us)<Rt(ui)

}∣∣ . (1)

where | · | returns the set cardinality. The consensus ranking is
generated by arranging the items according to their Copeland
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RA

Semi-Supervised [Chen et al., 2008], [Hoi and Jin, 2008]

Supervised

List-wise

Interactive [Huang et al., 2022], [Hu et al., 2024]

Neural
Network-based

[Yu et al., 2020], [Qi et al., 2020]

Evolutionary
[Vargas Muñoz et al., 2015],

[Bałchanowski and Boryczka, 2022]

Metric-Driven
[Pujari and Kanawati, 2012], [Subbian

and Melville, 2011], [Wang et al., 2013]

Pair-wise [Xu et al., 2021], [Wu, 2013]

Point-wise [Liu et al., 2007], [Volkovs and Zemel, 2014]

Unsupervised

Ranking-Ranking
[Chatterjee et al., 2018], [Mohammadi and Rezaei,
2020], [Fujita et al., 2020], [Akritidis et al., 2022]

Item-Ranking

Statistics-based
[Fox and Shaw, 1994], [Borda, 1781],
[Reilly, 2002], [Cormack et al., 2009]

Probabilistic
Model

[Dwork et al., 2001]

Item-Item
[de Condorcet, 1785], [Saari and Merlin, 1996],

[Desarkar et al., 2016], [Xiao et al., 2021]

Figure 1: Taxonomy of RA methods.

scores, and items with identical scores are considered ties.
Similarly, Outranking [Farah and Vanderpooten, 2007] pro-
poses a comparison method to generate the consensus ranking
based on majority opinions, where an item in a higher posi-
tion in the consensus ranking must have a majority of prefer-
ences and, meanwhile, a minority of objections.

Besides, there are several graph-based comparison meth-
ods. [Desarkar et al., 2016] treats basic rankings as prefer-
ence graphs and items as nodes. They calculate node weights
through pairwise comparisons of items and then sort the ag-
gregated graphs based on node weights. [Xiao et al., 2021]
proposes a competitive graph (CG) method, which ranks a
node in the graph to the consensus ranking by calculating its
ratio between out- and in-degrees, representing the number of
items above and below the node, respectively.

3.2 Item-Ranking Methods
As the most popular class of methods in RA, item-ranking
methods utilize positional information of items in basic rank-
ings to produce the consensus ranking. Relevant works can
be further subdivided into probabilistic model methods and
statistics-based methods.

Probabilistic Model Methods. Probabilistic model methods
condense the positional information of items across all basic
rankings into a probability model. [Dwork et al., 2001] in-
troduces the Markov chain (MC) to model items’ positional
information, where each item is modeled as a state. Then a
(homogeneous) MC for a basic ranking consists of a set of
states S = {u1, u2, ..., uM} and a transition probability ma-

trix P ∈ RM×M . In general, the start state of the system
is chosen according to some initial distribution, e.g., the uni-
form distribution on S . The core idea of [Dwork et al., 2001]
is to use the stationary distribution of MC to define the final
consensus ranking. Depending on different ways to construct
P, there are 4 different RA implementations:

• MC1: if the current state is item ui, then the next state is
chosen uniformly from the multiset of all items uj that
were ranked higher than or equal to ui by some ranking
that ranked ui, i.e., chose the next state uniformly from
the multiset QMC1

i = ∪N
t=1{uj : R

t(uj) ≤ Rt(ui)};
• MC2: if the current state is item ui, then the next state is

chosen by first picking a ranking Rt uniformly from R
containing ui, then picking an uj uniformly from the set
QMC2

Rt,i = {uj : R
t(uj) ≤ Rt(ui)};

• MC3: if the current state is item ui, then the next state
is chosen as follows: first pick a ranking Rt uniformly
from all the R containing ui, then uniformly pick an uj

that was ranked by Rt. if Rt(uj)<Rt(ui) then go to uj ,
else stay in ui;

• MC4: if the current state is item ui, then the next state is
chosen as follows: first, pick an item uj uniformly from
S . If Rt(uj)<Rt(ui) for the majority of the rankings
Rt ∈ R that ranked both ui and uj , then go to uj , else
stay in ui.

Statistics-based Methods. In general, statistics-based meth-
ods utilize a certain statistic to measure the position of the
item and use this to get the consensus ranking. [Fox and
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CombMIN min
Rt∈R

St
Comb(ui)

CombMAX max
Rt∈R

St
Comb(ui)

CombSUM
∑

Rt∈R St
Comb(ui)

CombANZ 1
|{Rt |Rt∈R:ui∈Rt}| ∗ CombSUM

CombMNZ CombSUM∗ |{Rt |Rt ∈ R : ui ∈ Rt}|

Table 1: Methods of Comb* family [Fox and Shaw, 1994].

Shaw, 1994] proposes Comb* family to aggregate all basic
rankings to a consensus one. In the Comb* family, the item
ui in the basic ranking Rt is scored by:

St
Comb(ui) = 1− Rt(ui)− 1

Len(Rt)
(2)

where the Len(·) returns the number of items in Rt. After
computing the scores, the Comb* family traverses all basic
rankings and assigns to each item ui its lowest score (Comb-
MIN), highest score (CombMAX), or arithmetic sum (Comb-
SUM) across all basic rankings as its S(ui) in the consensus
ranking. CombANZ and CombMNZ are CombSUM’s vari-
ants, in which CombANZ is obtained by dividing CombSUM
by the number of rankings that include ui, while CombMNZ
multiplies CombSUM by the number of rankings that include
ui. The Comb* family fusion methods are shown in Table 1.

Fagin [Fagin et al., 2003] proposes the Median method.
For each item, they calculate the median position of all ba-
sic rankings, and sort all items in descending order based on
their median position. BordaCount [Borda, 1781] is the most
widely used statistics-based RA method. BordaCount uses
the length of ranking to linearly calculate the Borda score of
item ui in basic rankings:

SBorda(ui) =
∑

Rt∈R

Len(Rt)−Rt(ui) + 1 (3)

The items are then sorted in descending order of their scores
to generate the consensus ranking.

Dowdall [Reilly, 2002] designs a reciprocal form score
function for RA, which is able to reduce the differences be-
tween items when aggregated in the case of a large number of
items. The score function of Dowdall is as follows:

SDowdall (ui) =
∑

Rt∈R

1

Rt(ui)
(4)

after scoring items, it arranges the items ui in descending
order based on their scores to generate the consensus rank-
ing. RRF [Cormack et al., 2009] introduces an algorithm
that adds a constant k to the denominator of the score func-
tion of Dowdall and is able to perform stably with fewer item
aggregations. The score function of RRF is as follows:

SRRF(ui) =
∑

Rt∈R

1

Rt(ui) + k
(5)

3.3 Ranking-Ranking Methods
The ranking-ranking methods are based on the relationship
among various rankings for aggregation. In general, ranking-
ranking methods obtain the consensus ranking by a user-
defined ranking objective function. iRANK [Wei et al.,
2010] propose an unsupervised learning framework that al-
lows two basic rankings to “teach” each other before being
combined, to boost the performance of the consensus ranking
R∗. ER [Mohammadi and Rezaei, 2020] proposes a method
that iteratively solves the consensus ranking based on half-
quadratic theory such that the consensus ranking R∗ mini-
mizes the distance to each basic ranking. [Chatterjee et al.,
2018] introduces a method based on similarity, which com-
putes the similarity matrix between the basic rankings and
selects the two rankings with the closest similarity in each
round for weighted aggregation, ultimately producing R∗.

HPA [Fujita et al., 2020] proposes a similarity-based
method, which firstly generates a pseudo-answer R̄ by the
simplest mean RA of basic rankings. It then calculates the
similarity score between the basic ranking and the pseudo-
answer R̄. Finally, HPA selects the top-K most similar basic
rankings RK for aggregation.

R∗ =
∑

Rt∈RK

sim(Rt, R̄)Rt (6)

where sim(·) computes the similarity score as the fusion
weight. Besides, [Fujita et al., 2020] further introduces a
similarity-based method named PostNDCG, which compares
the similarity between basis rankings and selects the ranking
with the highest similarity to all other rankings as the consen-
sus ranking. Recently, DIBRA [Akritidis et al., 2022] utilizes
an innovative approach based on the cosine distance metric to
iteratively update weights in basic rankings. It assigns scores
to items in each ranking, creating M-dimensional score vec-
tors. DIBRA involves calculating the cosine distance between
pairs of basic rankings to identify relevant items, with higher
scores indicating greater relevance. By iterating through all
rankings, DIBRA determines a consensus ranking.

4 Supervised RA Methods
Given high-quality training data, supervised RA methods
generally deliver superior performance. Note that many su-
pervised RA methods generate the consensus ranking R∗

through a weighted fusion, thereby aiming to find an opti-
mal fusing weight for R. We define the weight vector as
www = [w1, w2, ..., wN ]⊤, where weight wt is assigned to Rt.
Thus, R∗ =

∑
Rt∈R wtR

t.

4.1 Point-wise Methods
[Liu et al., 2007] sets up a general framework for super-
vised RA, in which learning is formalized as an optimiza-
tion, which minimizes the disagreements between the con-
sensus ranking R∗ and the ground truth that is transferred to
a pairwise comparison matrix. Based on this framework, the
authors develop supervised versions of BordaCount and MC
methods. [Volkovs and Zemel, 2014] incorporates Normal-
ized Discounted Cumulative Gain (NDCG) [Ye et al., 2021]
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to construct a loss function and combine it with the Condi-
tional Random Field (CRF) framework. They employ the
gradient descent optimization method to train the parameter
θ = {αt, β

p
t , β

n
t }

N
t=1 for each basic ranking, which is used to

calculate the ranking score of item:

SCRF(ui) =−
N∑
t=1

αtφt(ui)− βp
t

∑
j ̸=i

ϕt(ui, uj)

+ βn
t

∑
j ̸=i

ϕt(uj , ui)

(7)

where the binary unary potentials φt(ui) takes the value 1
only when item ui is not ranked by Rt and 0 in all other cases.
For pairwise potentials ϕt, if Rt(ui) < Rt(uj), ϕt(ui, uj) is
non-zero. Otherwise, ϕt(uj , ui) is non-zero. The weights βp

t
and βn

t control how much emphasis is given to positive and
negative preferences, respectively.

4.2 Pair-wise Methods
[Xu et al., 2021] proposes a deep framework to predict the
preference of each item pair while improving the consistency
with overall basic rankings as much as possible. [Wu, 2013]
proposes a supervised variant of [de Condorcet, 1785], re-
ferred to as the weighted Condorcet method, which incorpo-
rates a training approach based on Linear Discriminant Anal-
ysis (LDA) to optimize the fusing weights www for R. For each
item pair (ui, uj), according to whether ui is better than uj

in the ground truth, we can classify all item pairs into two
classes. At the same time, each item pair has a feature vector
[h1, h2, ..., hN ]⊤. If Rt(ui) < Rt(uj), ht = 1, otherwise ht

= -1. We want to distinguish the item pairs of the two classes
by a linear combination of n features:

g(h1, h2, . . . , hN ) =

N∑
i=1

wihi + w0 (8)

where www is learned by LDA.

4.3 List-wise Methods
List-wise methods focus on the characteristics or attributes of
the basic rankings, currently dominating over supervised RA.

Metric-Driven Methods. Using metrics like NDCG, mAP
[Ye et al., 2021], and so on, metric-driven methods aim to
find the optimal fusing weightswww for R. The implementation
has two ways: either by using the metric to assess the qual-
ity of basic rankings, thereby assigning greater weights to the
better ones like wBorda [Pujari and Kanawati, 2012], or by
directly optimizing a specific metric to enhance the effective-
ness of consensus ranking [Wang et al., 2013].

Evolutionary Methods. Evolutionary algorithms simulate
the natural selection, crossover, and mutation process of indi-
viduals in the population to find the best individual, which
represents the optimal scheme. In [Vargas Muñoz et al.,
2015], the individual is represented by a binary tree that de-
fines the aggregate function f(R) with the FFP1 function

proposed in [Fan et al., 2004] as the fitness function. Ag-
grankDE [Bałchanowski and Boryczka, 2022] uses the differ-
ential evolution algorithm to address the RA problem. It rep-
resents an individual as fusing weightswww for R, with Average
Precision (AP) as the fitness function. Mutation generates a
new individual www′ by combining three randomly selected in-
dividuals wwwj , wwwh, and wwwk: www′ = wwwj + λ(wwwh − wwwk), where
the parameter λ controls the amplification of the differential
variation (wwwh −wwwk).

Neural Network-based Methods. This type of method uses
neural networks to optimize aggregation. [Qi et al., 2020]
utilizes the Lovasz Bregman (LB) divergence to create a lin-
ear structured convex function and a nested structured con-
cave function to aggregate outputs of distributed deep neu-
ral network-based models. CSRA [Yu et al., 2020] consid-
ers both the quality of basic rankings and the difficulty of
each query, and combines the two to train a neural network
to predict the fusing weights www for R. At the same time, this
method uses the simplest mean fusion [Burges et al., 2011] to
construct ground truth without priori information, which, to
some extent, overcomes the dependence of supervised meth-
ods on labeled data.

Interactive Methods. In the real world, pre-labeled datasets
are hardly available, prohibiting fully-supervised RA meth-
ods from practical applications. To address this problem,
[Huang et al., 2022] utilizes a small amount of supervisory in-
formation from users’ feedback to supervise the RA method
to produce better results. Based on positive (relevant) sam-
ples labeled by users, [Huang et al., 2022] proposes two im-
plementations to adjust the fusing weight www for R: IRAR and
IRAS. IRAR denotes that the samples are selected based on
the position of the item in the ranking, while the IRAS is the
item’s score. IRAR increases weights for rankings that rank
positive samples higher, while IRAS modifies www according to
the variance in scores of positive samples, utilizing the stan-
dard deviation to reflect the consistency of users’ feedback.

5 Semi-supervised RA Methods

As the challenges in the RA field discussed above, semi-
supervised methods aim to find a better balance between
high-performance and low-cost. [Chen et al., 2008] and [Hoi
and Jin, 2008] propose two semi-supervised RA methods,
both aim to find an appropriate fusing weight www for R by
using a small amount of available labeled data. [Hoi and Jin,
2008] develops a novel query-dependent solution, in which
thewww is different based on different characteristics of queries.
They use the graph Laplacian matrix to represent the similar-
ity relationships between objects and combine it with a rank-
ing loss function to optimize the www.

[Chen et al., 2008] proposes SSRA to learn www by minimiz-
ing disagreement between consensus ranking and basic rank-
ings while satisfying preference constraints. The scores given
by basic rankings to each item are stored in a M ×N matrix
MMM. Let Σ be the limited set of labeled preference pairs, serv-
ing as the constraints. If (ui, uj) ∈ Σ, then item ui is ranked
higher than item uj . So, the preference constraints can be
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Datasets

Market1501 DukeMTMC- CUHK03 CUHK03 MovieLens 1M NSCLC WUR 2022
reID (detected) (labeled)

Method Venue R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP’ r@400 r@800 Nor ↓ Im-p ↓
Unsupervised RA

CombMIN NIST SP’94 96.08 94.26 91.83 88.88 79.86 80.33 81.71 82.62 38.44 13.04 01.45 07.25 199.66 1.41
CombMAX NIST SP’94 95.64 91.29 89.45 82.62 81.29 78.79 83.79 81.68 38.03 08.86 04.35 11.59 181.72 4.07
CombSUM NIST SP’94 96.67 92.88 92.06 85.68 83.00 81.06 86.36 84.35 22.50 08.01 08.70 17.39 098.78 1.95
CombANZ NIST SP’94 94.33 86.40 85.77 76.74 75.50 74.80 81.21 79.21 22.37 07.98 08.70 17.39 098.95 1.96
CombMNZ NIST SP’94 96.67 89.14 92.15 81.66 83.07 81.78 86.36 84.87 22.40 07.98 08.70 17.39 098.95 1.96

MC1 (top-500) WWW’01 96.59 93.07 90.80 85.63 83.50 81.30 85.86 84.21 08.73 02.06 04.35 10.14 101.26 2.60
MC2 (top-500) WWW’01 96.62 93.31 90.93 86.02 83.57 81.65 86.50 84.50 08.63 05.32 05.80 14.49 113.67 2.70
MC3 (top-500) WWW’01 96.79 93.05 92.24 85.96 83.21 81.23 86.43 84.46 09.35 04.68 05.80 07.25 088.13 2.42
MC4 (top-500) WWW’01 96.82 93.81 92.46 87.13 84.86 82.75 88.00 85.58 09.44 04.52 02.90 08.70 079.74 2.79

BordaCount SIGIR’01 96.67 92.88 92.06 85.68 83.00 81.06 86.36 84.35 40.20 12.77 10.14 20.29 098.95 1.84
Dowdall IPSR’02 96.65 93.50 91.20 86.79 84.50 82.30 87.21 85.13 21.18 08.02 10.14 21.74 078.97 1.98
Median SIGMOD’03 96.62 93.37 91.92 85.93 85.29 82.84 87.07 85.09 22.35 06.23 18.84 30.43 083.01 2.08

RRF SIGIR’09 96.88 93.41 92.46 86.74 83.64 81.89 86.64 84.85 21.77 08.00 10.14 20.29 090.54 1.98
iRANK JIST’10 96.50 94.35 92.32 88.17 84.86 83.85 87.00 86.38 22.95 08.14 17.39 24.64 094.86 2.80
Mean PMLR’11 96.44 94.55 92.24 88.57 84.71 84.40 86.93 86.91 22.50 08.01 17.39 24.64 094.37 2.79
HPA ECIR’20 96.44 94.74 92.10 89.09 81.64 82.23 83.57 84.52 32.68 10.98 15.94 20.29 095.74 2.82

PostNDCG ECIR’20 96.47 92.09 91.47 84.47 82.50 79.72 83.71 81.92 17.17 06.70 14.49 15.94 149.83 4.29
ER OMEGA’20 96.64 92.89 92.15 85.68 83.14 81.09 86.36 84.42 39.80 12.70 10.14 20.29 098.82 1.84
CG JORS’21 96.67 92.88 92.06 85.68 83.00 81.06 86.36 84.35 40.22 12.77 10.14 20.29 098.94 1.84

DIBRA LSA’22 96.44 94.58 92.37 88.69 84.64 84.39 86.86 86.91 23.54 08.47 17.39 24.64 095.11 2.85
Supervised RA

wBorda WWW’12 96.64 92.87 92.15 85.66 83.21 81.17 86.36 84.41 22.50 07.87 - - - -
CRF CIKM’13 96.64 92.89 92.19 85.67 82.93 81.08 86.36 84.42 50.86 16.51 - - - -

CSRA ICASSP’20 96.44 94.55 92.24 88.81 84.71 84.40 86.93 86.91 - - - - - -
AggRankDE Electronics’22 95.55 93.82 90.44 88.33 75.21 76.98 77.71 79.71 25.68 08.53 - - - -

IRAR(1,1) BMVC’22 94.86 92.85 90.66 86.52 83.36 82.77 85.14 84.67 22.09 05.84 - - - -
IRAR(3,1) BMVC’22 97.54 94.70 93.36 88.73 85.50 84.84 87.79 87.27 44.88 11.89 - - - -
IRAS(1,1) BMVC’22 96.44 94.56 92.32 88.59 84.79 84.42 86.93 86.91 34.83 09.74 - - - -
IRAS(3,1) BMVC’22 97.71 94.84 93.63 88.68 85.00 84.39 87.57 87.46 53.53 13.20 - - - -

QI-IRA(1,1) AAAI’24 96.44 94.55 92.37 88.63 84.79 84.41 87.07 86.93 35.15 10.53 - - - -
QI-IRA(3,1) AAAI’24 97.83 95.00 93.31 88.92 85.50 84.86 88.00 87.54 54.37 16.10 - - - -

Semi-supervised RA
SSRA CIKM’08 96.73 92.89 92.10 85.67 83.07 81.14 86.36 84.41 39.55 12.68 - - - -

Table 2: Performance comparison on different datasets. The bold indicates the best and the underline indicates the second best.

given by the inequality:

∀(ui, uj) ∈ Σ, MMM(i)www −MMM(j)www ≥ 1. (9)

where MMM(i) is the i-th row of the matrix MMM. Then, [Chen et
al., 2008] measures the similarity of each basic ranking to all
other rankings in R. A ranking that is agreed with more other
rankings has higher quality. Let ppp = [p1, p2, ..., pN ]⊤ denote
the quality vector for R. The optimal www should minimize the
distance to ppp with constraints defined by Eq.(9):

min
www

∥www − ppp∥2 + λwww (10)

where λwww is a regularizer about www.

6 Experiments
6.1 Datasets
We conduct benchmarking experiments on 4 popular re-ID
datasets, i.e., Market1501 [Zheng et al., 2015], DukeMTMC-
reID [Ristani et al., 2016] and CUHK03 detected and la-
beled [Li et al., 2014], 1 recommendation system dataset, i.e.,
MovieLens 1M [Harper and Konstan, 2015], 1 bioinformatics
dataset, i.e., NSCLC [Wang et al., 2022] and 1 social choice
dataset, i.e., World University Ranking in 2022 (WUR 2022)
[Feng et al., 2023]. For the quantitative evaluation, we utilize

the ranking metrics Rank@1 (R@1 for short) and mAP [Ye et
al., 2021] on re-ID datasets, Rank@1 and mAP@10 (mAP’
for short) in recommendation system [Oliveira et al., 2020],
Recall@400 (r@400 for short) and Recall@800 (r@800 for
short) [Wang et al., 2022] in bioinformatics, and Normal-
ity (Nor for short) and Impartiality (Im-p for short) in social
choice [Feng et al., 2023]. The smaller normality and im-
partiality are, the better. For all other metrics, the larger the
value, the better. All these metrics are in the form of percent-
ages (%), except for normality and impartiality.

6.2 Experiment Setup
All experiments are conducted on a server equipped with 2
Intel Xeon Silver 4215 (2.50GHz) and 4 Nvidia RTX A6000.
Specifically, the MC1-4 methods are difficult to test on the
full Market1501 and DukeMTMC-reID datasets, so we cut
off top-K items from basic rankings and aggregate to be the
new MC1-4 (top-K). Besides, there is no labeled data in the
NSCLC and the WUR 2022 dataset, so we do not measure
supervised and semi-supervised RA methods on them.

Considering the practical situation, we fixed n = 1 and
only examined the cases m = 1 and 3 in interactive methods
during the experiment. Due to limitations of space, readers
are referred to the project’s homepage on GitHub for more
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detailed experimental setups, including the generation of ba-
sic rankings and the setting of the model parameters.

6.3 Result and Discussion

The result of these RA methods on 7 datasets is shown in
Table 2, from which we have the following observations.
Overall, unsupervised RA methods can be better applied to
datasets in different fields because they do not require super-
visory information, and the performance of some unsuper-
vised methods is very close to supervised methods. For su-
pervised methods, there exists at least one that outperforms
all other unsupervised methods on the MovieLens 1M and 4
re-ID datasets. The semi-supervised method ranks among the
top on the MovieLens 1M and 4 re-ID datasets; despite not
being the best, it shows better robustness.

It is remarkable that some unsupervised methods show
good performance and robustness on 7 different source
datasets, such as Borda, ER, CG, RRF, iRANK, and Mean.
The ranking-ranking methods usually achieve a good perfor-
mance in our experiments, especially for HPA and DIBRA.
The HPA method even ranks in the top three of all methods in
terms of mAP metrics on both Market1501 and DukeMTMC-
reID datasets, with 94.74% and 89.09%, respectively. How-
ever, when considering the WUR 2022 dataset, statistics-
based methods are superior. Moreover, MC4 obtains the
top-2 performance among all unsupervised RA methods on
all re-ID datasets for the R@1, especially ranks first on
DukeMTMC-reID and CUHK03 (labeled) with 92.46% and
88%, respectively. However, there has been a dramatic de-
cline in the performance of all MC methods on MovieLens
1M. This can be attributed to a lot of noise among basic rank-
ings on MovieLens 1M, and MC methods are not a good
choice in such environments.

In supervised RA, QI-IRA(3,1) [Hu et al., 2024] ranks
first in the performance of R@1 and mAP for almost all re-
ID datasets and MovieLens 1M, except for the mAP@10 in
MovieLens 1M, which lost out to the CRF by 0.41% and the
R@1 in DukeMTMC-reID, which lost out to the IRAS(3,1)
by 0.32%. This can be attributed to the flexible interaction
with a small amount of user feedback, which enhances the
performance and robustness of the IRA method. Notice that
CRF shows very high performance in the MovieLens 1M
(R@1: 50.86%, mAP’: 16.51%), which can be mainly at-
tributed to the CRF framework’s ability to utilize low-quality
basic rankings, meaning it can offer a certain level of reverse
support for the preference relations they endorse.

Furthermore, we can observe that the semi-supervised
method consistently ranks at the top among all RA methods,
exhibits good robustness on 4 re-ID datasets, and achieves
39.55% R@1 on MovieLens 1M. This suggests that super-
vised RA methods are a preferable choice when there is a sig-
nificant performance difference among basic rankings and la-
beled data is available. However, the semi-supervised method
can be considered as an alternative when the cost budget is in-
sufficient.

7 Open Questions
7.1 Dilemma of High-Performance and Low-Cost
The earliest exploration to address the dilemma of high-
performance and low-cost is semi-supervised RA [Hoi and
Jin, 2008] [Chen et al., 2008]. While these methods signif-
icantly reduce data labeling costs, they still incur consider-
able data collection costs. Moreover, static training data are
not flexible enough to adapt to changing real-world scenar-
ios. To address this problem, [Huang et al., 2022] proposes
the interactive RA. It utilizes a small amount of users’ online
feedback to guide the RA process and achieves the dual ad-
vantages of higher performance than unsupervised RA at a
low cost. On this basis, [Hu et al., 2024] introduces quan-
tum theory to provide a theoretical explanation for the gener-
ation and aggregation of multiple rankings, and raises a new
quantum-inspired interactive RA method QI-IRA. However,
the current IRA method selects samples solely depending on
users’ subjective judgment, which may result in low-efficient
interactions for inexperienced users. The active learning (AL)
technique has the ability to objectively recommend valuable
feedback candidates, which can effectively address the above
defects. Therefore, how to introduce AL into interactive RA
is a promising research direction for interactive RA.

7.2 New Application of RA Technique
With the widespread applications of Deep Neural Networks
(DNNs), adversarial defense for DNNs has become increas-
ingly important. Most successful defense strategies adopt ad-
versarial training or random input transformations that typi-
cally require retraining or finetuning the model to achieve rea-
sonable performance. [Tiwari et al., 2022] finds that employ-
ing the RA technique to combine the network hidden layer
outputs shows unexpected robustness to adversarial attacks.
However, when evaluating the robustness of the model, the
above work always assumes that attacks only target fixed out-
put ports, which results in an overestimation of the robust-
ness of the model. To address the above problem, if we can
effectively eliminate the interference of structural mismatch
between attack and defense, we may better utilize the RA
technique to defend DNN so as to produce more robust and
trusted prediction results.

8 Conclusion
In this paper, we present a comprehensive review of clas-
sical methods and recent advances in RA study. Specifi-
cally, we first elaborate on three key challenges facing RA
research, i.e., improving performance, reducing cost, and
striking a balance between them. On this basis, we analyze
and discuss representative algorithms in unsupervised, super-
vised and semi-supervised RA. For each category, we sum-
marize their common ideas and comment on their strengths
and weaknesses. To compare the performance of different
RA methods, we conduct the largest scale of comparative
evaluation to date for 27 RA methods on 7 public datasets
from re-ID, recommendation system, bioinformatics and so-
cial choice. Ultimately, we discuss open questions in the RA
study and give our suggestions for future prospects.
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