The Calculus of Communicating Systems

Jesper Bengtson

May 26, 2024

Abstract

We formalise a large portion of CCS as described in Milner’s book
’Communication and Concurrency’ using the nominal datatype pack-
age in Isabelle. Our results include many of the standard theorems
of bisimulation equivalence and congruence, for both weak and strong
versions. One main goal of this formalisation is to keep the machine-
checked proofs as close to their pen-and-paper counterpart as possible.

Contents
1 Overview 1
2 Formalisation 2

1 Overview

These theories formalise the following results from Milner’s book Commu-
nication and Concurrency.

e strong bisimilarity is a congruence

e strong bisimilarity respects the laws of structural congruence
o weak bisimilarity is preserved by all operators except sum

e weak congruence is a congruence

o all strongly bisimilar agents are also weakly congruent which in turn
are weakly bisimilar. As a corollary, weak bisimilarity and weak con-
gruence respect the laws of structural congruence.

The file naming convention is hopefully self explanatory, where the pre-
fixes Strong and Weak denote that the file covers theories required to for-
malise properties of strong and weak bisimilarity respectively; if the file
name contains Sim the theories cover simulation, file names containing Bisim



cover bisimulation, and file names containing C'ong cover weak congruence;
files with the suffix Pres deal with theories that reason about preservation
properties of operators such as a certain simulation or bisimulation being
preserved by a certain operator; files with the suffix SC reason about struc-
tural congruence.

For a complete exposition of all theories, please consult Bengtson’s Ph.
D. thesis [1].

2 Formalisation

theory Agent
imports HOL— Nominal. Nominal
begin

atom-decl name

nominal-datatype act = actAction name ((-) 100)
| actCoAction name  ({-) 100)
| actTau (r 100)

nominal-datatype ccs = CCSNil (0 115)
| Action act ces (-.- [120, 110] 110)
| Sum ccs ccs (infix]l @ 90)
| Par ccs ccs (infix] || 85)
| Res «name» ccs ((v-|)- [105, 100] 100)

| Bang ccs (I- 195))
nominal-primrec coAction :: act = act
where

coAction ((a)) = ({a))
| coAction ({a))= ((a])
| coAction (1) =7

by (rule Truel)+

lemma coActionEqut[equt]:
fixes p :: name prm
and a : act

shows (p - coAction a) = coAction(p - a)
by (nominal-induct a rule: act.strong-induct) (auto simp add: equts)

lemma coActionSimps|simp]:
fixes a :: act

shows coAction(coAction a) = a
and (coActiona =71)=(a=7)
by auto (nominal-induct rule: act.strong-induct, auto)+



lemma coActSimp[simp]: shows coAction o # 7 = (a # 7) and (coAction a =
)= (a=r1)
by(nominal-induct o rule: act.strong-induct) auto

lemma coActFresh[simp]:
fixes z :: name
and a :: act

shows z f coAction a =z § a
by (nominal-induct a rule: act.strong-induct) (auto)

lemma alphaRes:
fixes y :: name
and P :: ccs
and =z :: name

assumes y f P

shows (vz)P = (vy)([(z, v)] - P)
using assms
by (auto simp add: ccs.inject alpha fresh-left calc-atm pt-swap-bij|OF pt-name-inst,
OF at-name-inst|pt3[OF pt-name-inst, OF at-ds1[OF at-name-inst]])

inductive semantics :: ccs = act = ccs = bool (- —- < - [80, 80, 80] 80)
where
Action: «.(P) —a < P
| Sumi: Pr—a <P = P® Q+—a <P’
| Sum?2: RQ—a<Q' = P& Qr—a=<Q
| Parl: Pr—a <P = P| Qr—a <P | Q
| Par2: Qr—a<Q = P || Q+—a <P | Q'
| Comm: [P+——a < P Q —(coAction a) < Qs a #7] = P | Q —7 <
P Q
| Res: [P—a < Pszta] = (vz)P —a < (vz) P’
| Bang: P | !P+—a < P' = |P —a < P’

equivariance semantics

nominal-inductive semantics
by (auto simp add: abs-fresh)

lemma semanticsInduct:

[R—pB < R Na P C. Prop C (a.(P)) a P;

AP a P'QC.[P+—a=<P’; NC. PropC P a P'| = Prop C (ccs.Sum P Q) «
P’

ANQa Q' PC.[Q+—a=< Q5 A\C. PropC Q o Q] = Prop C (ccs.Sum P Q)
a Q)

AP aP QC.[P+—a <P NC. PropC PaP]|= PropC (P| Q) a (P
Q)



ANQa Q PC.[Q+—a=<Q; NC. PropC Qa Q] = PropC (P | Q) o (P |
Q");
APaP' QQ'C.

[P+——a < P'; NC. Prop C P a P’; Q —(coAction a) < Q;

NC. Prop C @Q (coAction a) Q' a # 7]

= Prop C (P || @) (7) (P"| Q);
AP o P’z C.

[z4C, P—a < P; NC. Prop C P o P’; 2 4 a] = Prop C ((vz)P) «
((vz)P);
AP a P C.[P|'P+—a <P AC. PropC (P ||'P) a P| = Prop C!P « P]

= Prop (C::'a::fs-name) R 8 R’
by (erule-tac z=C in semantics.strong-induct) auto

lemma NilTrans|dest]:
shows 0 —a < P’ = False

and ((b))).P —(c) < P’ = False
and ((b))).P —7 < P’ = False
and ((b)).P —(c) < P’ = False
and ((b)).P —7 < P’ = Fulse
apply(ind-cases 0 —a < P’)

(
apply (ind-cases ((b)).P —(c) < P’, auto simp add: ccs.inject)
apply (ind-cases ((b)).P —7 < P’, auto simp add: ccs.inject)
apply(ind-cases ((b)).P —(c) < P’, auto simp add: ccs.inject)
apply(ind-cases ((b)).P —7 < P’, auto simp add: ccs.inject)
done

lemma freshDerivative:
fixes P :: ccs
and a : act
and P’:: ccs
and 1z :: name

assumes P —a < P’
and z 4P

shows z f « and z § P’

using assms

by (nominal-induct rule: semantics.strong-induct)
(auto simp add: ccs.fresh abs-fresh)

lemma actCases[consumes 1, case-names cAct]:
fixes o :: act
and P : ccs
and (8 : act
and P’:: ces

assumes a.(P) — 3 < P’
and Prop o P



shows Prop 8 P’
using assms
by — (ind-cases a.(P) —f < P’, auto simp add: ccs.inject)

lemma sumCases[consumes 1, case-names cSuml cSum2]:
fixes P :: ccs
and Q@ : ccs
and « : act
and R : ccs

assumes P& Q —a < R
and AP.Pvr—a~< P = Prop P’
and AQ. Q+—a < Q = Prop Q'

shows Prop R
using assms
by — (ind-cases P & @ —«a < R, auto simp add: ccs.inject)

lemma parCases[consumes 1, case-names cParl cPar2 cComml]:
fixes P :: ccs
and @ :: ccs
and a : act
and R : ccs

assumes P | Q —ra < R

and AP.P+—a <P = Propa (P'| Q)

and AQ. Qr—a<Q = Propa (P Q)

and AP’ Q' a. [P+——a =< P Q+—(coActiona) < Q5 a# 1,0 =7 =
Prop () (P"| @)

shows Prop o R
using assms
by — (ind-cases P || @ —a < R, auto simp add: ccs.inject)

lemma resCases[consumes 1, case-names cRes):
fixes z :: name
and P : ccs
and « : act
and P’:: ccs

assumes (vz))P —a < P’
and AP [P+—a«a < P;zta] = Prop ((vz)P’)

shows Prop P’
proof —
from «(vz)P —a < P have z f o« and z § P’
by (auto intro: freshDerivative simp add: abs-fresh)+
with assms show ?thesis



by (cases rule: semantics.strong-cases[of - - - - x])
(auto simp add: abs-fresh ccs.inject alpha)
qed

inductive bangPred :: ccs = ccs = bool
where

auxl: bangPred P (!P)
| auz2: bangPred P (P || !P)

lemma bangInduct[consumes 1, case-names cParl cPar2 cComm cBang]:
fixes P :: ccs
and o« : act
and P’:: ces
and C :: a:fs-name

assumes !P —a < P’

and rParl: Na P'C. [P+—a < P] = Prop C (P ||!P) a (P’ | !P)

and  rPar2: Aa P'C. [!P —a < P'; AC. Prop C (!P) a P'| = Prop C (P
|1P)a (P P

and rComm: Na P' P" C. [P —a < P’; |P ——(coAction a) < P"; N\C.
Prop C (IP) (coAction a) P"; a # 7] = Prop C (P || \P) (7) (P’ || P")

and rBang: Na P’ C. [P || !P ——a < P'; NC. Prop C (P || !P) a P =
Prop C (I1P) o P’

shows Prop C (!P) a P’
proof —

fix X a P’
assume X —a < P’ and bangPred P X
hence Prop C X a P’
proof (nominal-induct avoiding: C rule: semantics.strong-induct)
case(Action o Pa)
thus ?Zcase
by — (ind-cases bangPred P (a.(Pa)))
next
case(Suml! Pa o P’ Q)
thus ?Zcase
by — (ind-cases bangPred P (Pa ® Q))
next
case(Sum2 Q a Q' Pa)
thus ?case
by — (ind-cases bangPred P (Pa ® Q))
next
case(Parl Pa o P’ Q)
thus Zcase
apply —
by (ind-cases bangPred P (Pa || Q), auto intro: rParl simp add: ccs.inject)
next



case(Par2 Q o P’ Pa)
thus ?Zcase
apply —
by(ind-cases bangPred P (Pa || @), auto intro: rPar2 auzl simp add:
ces.inject)
next
case(Comm Pa a P' Q Q' C)
thus ?Zcase
apply —
by(ind-cases bangPred P (Pa || Q), auto intro: rComm auzl simp add:
ces.inject)
next
case(Res Pa o P’ z)
thus Zcase
by — (ind-cases bangPred P ((vz|Pa))
next
case(Bang Pa o P’)
thus ?Zcase
apply —
by (ind-cases bangPred P (!Pa), auto intro: rBang auz2 simp add: ccs.inject)
qed
}
with <!P —a < P’y show ?%thesis by(force intro: bangPred.auzl)
qed

inductive-set bangRel :: (ccs X ccs) set = (ccs X ces) set
for Rel :: (ccs x ccs) set
where
BRBang: (P, @) € Rel = (1P, Q) € bangRel Rel
| BRPar: (R, T) € Rel = (P, Q) € (bangRel Rel) => (R || P, T || Q) € (bangRel
Rel)

lemma BRBangCases[consumes 1, case-names BRBang|:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set
and F : ces = bool

assumes (P, !Q) € bangRel Rel
and AP. (P, Q) € Rel = F (IP)

shows F' P
using assms
by — (ind-cases (P, Q) € bangRel Rel, auto simp add: ccs.inject)

lemma BRParCases|[consumes 1, case-names BRPar]:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set



and F :: ccs = bool

assumes (P, @ || !Q) € bangRel Rel
and APR.[(P, Q) € Rel; (R,!Q) € bangRel Rel] = F (P || R)

shows F' P
using assms
by — (ind-cases (P, Q || 'Q) € bangRel Rel, auto simp add: ccs.inject)

lemma bangRelSubset:
fixes Rel :: (ces x ccs) set
and Rel’:: (ces x ces) set

assumes (P, Q) € bangRel Rel
and AP Q. (P, Q) € Rel = (P, Q) € Rel’

shows (P, @) € bangRel Rel’
using assms
by (induct rule: bangRel.induct) (auto intro: BRBang BRPar)

end

theory Tau-Chain
imports Agent
begin

definition tauChain :: ccs = ccs = bool (- =, - [80, 80] 80)
where P —, P'= (P, P') € {(P, P') | P P. P —37 < P} %

lemma tauChainInduct[consumes 1, case-names Base Step):
assumes P —, P’
and Prop P
and AP'P".[P=, P’; P'+——71 < P"; Prop P]| = Prop P"

shows Prop P’
using assms
by (auto simp add: tauChain-def elim: rtrancl-induct)

lemma tauChainRefl[simp]:
fixes P :: ccs

shows P —, P
by (auto simp add: tauChain-def)

lemma tauChainCons|dest]:
fixes P :: ccs
and P’ :: ccs
and P’ :: ccs



assumes P —>, P’
and P'+——71 < P

shows P —. P
using assms
by (auto simp add: tauChain-def) (blast dest: rtrancl-trans)

lemma tauChainCons2[dest):
fixes P :: ccs
and P’ ::ces
and P :: ces

assumes P’ ——71 < P!
and P =, P

shows P —. P
using assms
by (auto simp add: tauChain-def) (blast dest: rtrancl-trans)

lemma tauChainAppend|dest]:
fixes P :: ccs
and P’ ::ces
and P :: ccs

assumes P =, P’
and P'—=_ P

shows P —>, P’
using <P’ =, P’y <P =, P’
by (induct rule: tauChainInduct) auto

lemma tauChainSuml:
fixes P :: ccs
and P’:: ccs
and @ :: ccs

assumes P —, P’
and P # P’

shows P ® Q =, P’
using assms
proof (induct rule: tauChainInduct)
case Base
thus ?case by simp
next
case(Step P’ P')
thus ?Zcase
by(case-tac P=P’) (auto intro: Suml simp add: tauChain-def)



qed

lemma tauChainSum2:
fixes P :: ccs
and P’:: ccs
and @ :: ccs

assumes Q =, Q'

and  Q# Q'

shows P & Q —, Q'
using assms
proof (induct rule: tauChainlnduct)

case Base

thus “case by simp
next

case(Step Q' Q")

thus ?case

by (case-tac Q=Q") (auto intro: Sum2 simp add: tauChain-def)

qed

lemma tauChainParl:
fixes P :: ccs
and P’:: ccs
and @ :: ccs

assumes P —, P’

shows P | Q =, P'|| Q
using assms
by (induct rule: tauChainInduct) (auto intro: Parl)

lemma tauChainPar2:
fixes Q) :: ccs
and Q':: ccs
and P :: ccs

assumes Q =, Q'

shows P | Q =, P | Q'
using assms
by (induct rule: tauChainInduct) (auto intro: Par2)

lemma tauChainRes:
fixes P :: ccs
and P’:: ces

and <z :: name

assumes P —, P’

10



shows (vz)P =, (vz|)P’
using assms
by (induct rule: tauChainInduct) (auto dest: Res)

lemma tauChainRepl:
fixes P :: ccs

assumes P || |P =, P’
P 4P| P

and

shows |P =, P’
using assms
apply (induct rule: tauChainlnduct)
apply auto
apply(case-tac P’ # P || |P)
apply auto
apply(drule Bang)
apply(simp add: tauChain-def)

by auto

end

theory Weak-Cong-Semantics
imports Tau-Chain

begin

definition weakCongTrans :: ccs = act = ccs = bool (- =- < - [80, 80, 80]

80)

where P —a < P'=3P"P". P =, P"ANP"+—a < P"NP" =, P’

lemma weakCongTransk:

fixes P ::

and

CCS

a ::act
and P’:: ces

assumes P —=a < P’

obtains P’ P'"" where P —>, P" and P" +—«a < P'" and P =, P’
using assms
by(auto simp add: weakCongTrans-def)

lemma weakCongTransl:

fixes P
and P :
and «
and P :
and P’

LCcCs

Cccs

;o act

CCS

LCces

11



assumes P —_ P’/
and P’ +—a < P
and P —_ P’

shows P =—a < P’
using assms
by (auto simp add: weakCongTrans-def)

lemma transition WeakCong Transition:
fixes P :: ccs
and «a : act
and P’:: ccs

assumes P —a < P’

shows P =—-a < P’
using assms
by (force simp add: weakCongTrans-def)

lemma weakCongAction:
fixes a :: name
and P :: ces

shows a.(P) =a < P
by (auto simp add: weakCongTrans-def)
(blast intro: Action tauChainRefl)

lemma weakCongSum1:
fixes P :: ccs
and « :: act
and P’:: ccs
and @ :: ccs

assumes P =—=qa < P’

shows P & Q =« < P’
using assms
apply(auto simp add: weakCongTrans-def)
apply(case-tac P=P"")
apply(force simp add: tauChain-def dest: Sum1)
by (force intro: tauChainSuml)

lemma weakCongSum2:
fixes Q) :: ccs
and « : act
and Q':: ccs
and P :: ccs

assumes Q =a < Q'

12



shows P & Q —=a < Q'
using assms
apply (auto simp add: weakCongTrans-def)
apply(case-tac Q=P"")
apply(force simp add: tauChain-def dest: Sum2)
by (force intro: tauChainSum2)

lemma weakCongParl :
fixes P :: ccs
and « :: act
and P’:: ces
and @ :: ccs

assumes P —=a < P’

shows P | Q =a < P'| @

using assms

by (auto simp add: weakCongTrans-def)
(blast dest: tauChainParl Parl)

lemma weakCongPar2:
fixes Q) :: ccs
and « : act
and Q' :: ccs
and P :: ccs

assumes Q =a < Q'

shows P | Q =a < P || Q'

using assms

by (auto simp add: weakCongTrans-def)
(blast dest: tauChainPar2 Par2)

lemma weakCongSync:
fixes P :: ccs
and «a : act
and P’:: ccs
and @ :: ccs

assumes P —a < P’
and @ =>(coAction a) < Q'
and a#7T

shows P | Q =7 < P'|| Q'
using assms
apply (auto simp add: weakCongTrans-def)
apply(rule-tac z= P" || P"a in exI)
apply auto

13



apply(blast dest: tauChainParl tauChainPar2)
apply(rule-tac z=P"" || P""a in exl)

apply auto

apply(rule Comm)

apply auto

apply(rule-tac P'=P' || P'"a in tauChainAppend)
by (blast dest: tauChainParl tauChainPar2)+

lemma weakCongRes:
fixes P :: ccs
and « :: act
and P’:: ces
and <z : name

assumes P —=a < P’
and T fa

shows (vz)P —a < (vz)P’

using assms

by (auto simp add: weakCongTrans-def)
(blast dest: tauChainRes Res)

lemma weakCongRepl:
fixes P :: ccs
and « :: act
and P’:: ccs

assumes P || |P =« < P’

shows |P =—a < P’
using assms
apply(auto simp add: weakCongTrans-def)
apply(case-tac P = P || |P)
apply auto
apply (force intro: Bang simp add: tauChain-def)
by (force intro: tauChainRepl)

end
theory Weak-Semantics
imports Weak-Cong-Semantics

begin

definition weakTrans :: ccs = act = ccs = bool (- = - < - [80, 80, 80] 80)
where P = a < P'=P=a<P'V(a=17AP=P)

lemma weakEmpty Trans|simp]:
fixes P :: ccs

14



shows P — 7 < P
by (auto simp add: weakTrans-def)

lemma weakTransCases[consumes 1, case-names Base Step:
fixes P :: ccs
and o : act
and P’: ccs

assumes P = a < P’
and [a=r71;P=P]= Prop(r)P
and P —a < P = Propa P’

shows Prop o P’
using assms
by (auto simp add: weakTrans-def)

lemma weakCongTransition Weak Transition:
fixes P :: ccs
and o : act
and P’:: ccs

assumes P —a < P’

shows P = o < P’
using assms
by (auto simp add: weakTrans-def)

lemma transition Weak Transition:
fixes P :: ccs
and « :: act
and P’:: ccs

assumes P —a < P’

shows P = o < P’
using assms
by (auto dest: transition WeakCong Transition weakCongTransition Weak Transition)

lemma weakAction:
fixes a :: name
and P :: ccs

shows a.(P) = a < P
by (auto simp add: weakTrans-def intro: weakCongAction)

lemma weakSum1 :
fixes P :: ccs
and « :: act
and P’:: ces

15



and @ :: ccs

assumes P — « < P’
and P # P’

shows P @ Q = a < P’
using assms
by (auto simp add: weakTrans-def intro: weakCongSum1)

lemma weakSum?2:
fixes @ :: ccs
and « :: act
and Q' :: ccs
and P : ccs

assumes Q = a < Q’

and  Q# Q'

shows P ® Q = a < Q'
using assms
by (auto simp add: weakTrans-def intro: weakCongSum2)

lemma weakParl:
fixes P :: ccs
and « :: act
and P’:: ccs
and @ :: ccs

assumes P — « < P’

shows P || Q = a < P'| Q
using assms
by (auto simp add: weakTrans-def intro: weakCongParl)

lemma weakPar2:
fixes Q@ :: ccs
and « :: act
and Q':: ccs
and P : ccs

assumes Q — o < Q’

shows P || Q = a <P | Q'
using assms
by (auto simp add: weakTrans-def intro: weakCongPar2)
lemma weakSync:

fixes P :: ccs
and « :: act

16



and P’:: ces
and @ :: ccs

assumes P — a < P’
and Q = (coAction o) < Q'
and a#7T

shows P || Q = 7 < P'| Q'
using assms
by (auto simp add: weakTrans-def intro: weakCongSync)

lemma weakRes:
fixes P :: ccs
and « :: act
and P’:: ces
and 1z : name

assumes P — « < P’
and zfa

shows (vz)P =« < (vz)P’
using assms
by (auto simp add: weakTrans-def intro: weakCongRes)

lemma weakRepl:
fixes P :: ccs
and « :: act
and P’:: ces

assumes P || |P = o < P’
and P'#P|!P

shows |P —a < P’
using assms
by (auto simp add: weakTrans-def intro: weakCongRepl)

end
theory Strong-Sim

imports Agent
begin

(- ~1[] - [80, 80,

definition simulation :: ccs = (ccs X ccs) set = ccs = bool

80] 80)
where

P~[Rell Q=Va Q. Qr—a<Q — (3P P+——a < P' AN (P, Q) € Rel)

lemma simlI|[case-names Sim]:
fixes P :: ccs

17



and Rel :: (ccs x ces) set
and @ :: ccs

assumes Aa Q. Q —a < Q' = IP". Pr—a < P'A (P, Q') € Rel
shows P ~~[Rel] @
using assms

by (auto simp add: simulation-def)

lemma simkE:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs
and « : act

and Q' :: ccs

assumes P ~~[Rel] Q
and Qr—a =< Q'

obtains P’ where P —a < P’ and (P’, Q') € Rel
using assms
by (auto simp add: simulation-def)

lemma refiexive:
fixes P :: ccs
and Rel :: (ces x ces) set

assumes Id C Rel

shows P ~~[Rel] P
using assms
by (auto simp add: simulation-def)

lemma transitive:

fixes P :: ccs
and Rel : (ces x ccs) set
and (@ :ccs
and Rel’ :: (ces x ccs) set
and R i ces

and Rel” i (ces x ces) set

assumes P ~~[Rel] Q
and @ ~[Rel| R
and Rel O Rel’ C Rel”

shows P ~[Rel”] R

using assms
by (force simp add: simulation-def)

18



end

theory Weak-Sim
imports Weak-Semantics Strong-Sim

begin

definition weakSimulation :: ccs = (ccs x ccs) set = ccs = bool (- ~ <-> -
(80, 80, 80] 80)

where

P~ <Rel> Q=Va Q. Qr—a<Q — (AP. P = a < P’ A (P, Q') e
Rel)

lemma weakSimlI[case-names Sim]:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs

assumes \a Q. Q ——a < Q"= IP. P = a < P'A (P, Q') € Rel
shows P ~ <Rel> Q
using assms

by (auto simp add: weakSimulation-def)

lemma weakSimE:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs
and « :act

and Q' :: ccs

assumes P ~ <Rel> Q
and Qr—a < Q'

obtains P’ where P = o < P’ and (P’, Q') € Rel
using assms

by (auto simp add: weakSimulation-def)

lemma simTauChain:

fixes P :: ccs
and Rel :: (ccs x ces) set
and @ :: ccs

and Q' :: ccs

assumes Q =, Q'

and (P, Q) € Rel

and  Sim: AR S. (R, S) € Rel = R ~ <Rel> S

obtains P’ where P —>, P’ and (P’, Q') € Rel
using «Q =, Q" «(P, Q) € Rel

19



proof (induct arbitrary: thesis rule: tauChainInduct)
case Base
from «(P, ()) € Rel> show ?case
by (force intro: Base)
next
case(Step Q" Q)
from «(P, )) € Rel> obtain P” where P =, P""and (P", Q') € Rel
by (blast intro: Step)
from «(P", Q") € Rel> have P" ~» <Rel> Q" by(rule Sim)
then obtain P’ where P =7 < P’and (P’, Q') € Rel using «Q" 7 <
Q" by(rule weakSimFE)
with <P =, P’y show thesis
by (force simp add: weakTrans-def weakCongTrans-def intro: Step)
qed

lemma simE2:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs
and « : act

and Q' :: ccs

assumes (P, Q) € Rel
and Q= a < Q'
and  Sim: AR S. (R, S) € Rel = R ~ <Rel> S

obtains P’ where P = a < P’and (P’, Q') € Rel
proof —
assume Goal: A\P'. [P = o < P’; (P', Q') € Rel] = thesis
moreover from «(Q = a < Q" have 3P. P = a < P’ A (P, Q) € Rel
proof (induct rule: weakTransCases)
case Base
from ¢(P, Q) € Rel> show Zcase by force
next
case Step
from «Q =« < Q" obtain Q"' Q"
where QChain: Q =, Q""" and Q'"'Trans: Q" —a < Q" and Q''Chain:
Q" =, Q'
by (rule weakCongTransE)
from QChain «(P, Q) € Rel> Sim obtain P’ where PChain: P —>, P'"
and (P, Q") € Rel
by (rule simTauChain)
from «(P'""’, Q") € Rel> have P ~ <Rel> Q' by(rule Sim)
then obtain P where P'''Trans: P""' = o < P' and (P", Q") € Rel
using Q'"'Trans by(rule weakSimE)
from Q'"'Chain «(P'", Q') € Rel> Sim obtain P’ where P''Chain: P =,
P’ and (P’, Q) € Rel
by (rule simTauChain)
from P'"'Trans P''Chain Step show ?thesis

20



proof (induct rule: weakTransCases)
case Base
from PChain (P""' =, P’ have P = 7 < P’
proof (induct rule: tauChainInduct)
case Base
from <P —. P’y show ?case
proof (induct rule: tauChainlnduct)

case Base
show ?case by simp
next

case(Step P’ P")
thus ?case by(fastforce simp add: weakTrans-def weakCongTrans-def)
qged
next
case(Step P'"" P
thus ?case by(fastforce simp add: weakTrans-def weakCongTrans-def)

qed

with «(P’, Q') € Rel> show ?case by blast
next

case Step

thus ?case using «(P’, Q') € Rel» PChain
by (rule-tac x=P" in exI) (force simp add: weakTrans-def weakCongTrans-def)
qed
qed
ultimately show ?thesis
by blast
qged

lemma reflexive:
fixes P :: ccs
and Rel :: (ces x ces) set

assumes Id C Rel
shows P ~ <Rel> P
using assms
by (auto simp add: weakSimulation-def intro: transition WeakCongTransition weak-

Cong Transition Weak Transition)

lemma transitive:

fixes P :: ccs
and Rel :: (ces x ccs) set
and @ ccs
and Rel’ :: (cecs x ces) set
and R ioces

and Rel” :: (ces x ces) set

assumes (P, Q) € Rel
and Q ~ <Rel> R

21



and Rel O Rel’ C Rel”
and AST.(S,T)€ Rel= S ~ <Rel> T

shows P ~ <Rel'”> R
proof (induct rule: weakSimlI)
case(Sim a R
thus ?case using assms
apply(drule-tac Q=R in weakSimE, auto)
by (drule-tac Q=Q in simE2, auto)
qed

lemma weakMonotonic:
fixes P :: ccs
and A : (ces x ces) set
and @ :: ccs
and B :: (ces x ces) set

assumes P ~ <A> Q
and ACRB

shows P ~» <B> @
using assms

by (fastforce simp add: weakSimulation-def)

lemma sim WeakSim:

fixes P :: ccs
and Rel :: (ccs X ces) set
and @ :: ccs

assumes P ~~[Rel] Q

shows P ~» <Rel> Q
using assms
by (rule-tac weakSiml, auto)
(blast dest: simFE transition Weak Transition)

end

theory Weak-Cong-Sim
imports Weak-Cong-Semantics Weak-Sim Strong-Sim
begin

definition weakCongSimulation :: ccs = (ces X ces) set = ccs = bool (- ~><->
- 180, 80, 80] 80)
where

P~s<Rel> Q=VaQ. Qr—a<Q — (3P. P=a~<P' A (P, Q) € Rel)

lemma weakSimlI[case-names Sim]:
fixes P :: ccs

22



and Rel :: (ccs x ces) set
and @ :: ccs

assumes A\a Q. Q —a < Q'= IP". P =a < P' A (P, Q') € Rel
shows P ~»<Rel> @
using assms

by (auto simp add: weakCongSimulation-def)

lemma weakSimE:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs
and « : act

and Q' :: ccs

assumes P ~~<Rel> @
and Qr—a =< Q'

obtains P’ where P —-« < P’ and (P’, Q') € Rel
using assms

by (auto simp add: weakCongSimulation-def)

lemma sim WeakSim:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs

assumes P ~~[Rel] Q

shows P ~»<Rel> @
using assms
by (rule-tac weakSiml, auto)
(blast dest: simFE transition WeakCong Transition)

lemma weakCongSim WeakSim:

fixes P :: ccs
and Rel :: (cecs X ces) set
and @ :: ccs

assumes P ~»<Rel> @

shows P ~» <Rel> Q
using assms
by (rule-tac Weak-Sim.weakSimlI, auto)
(blast dest: weakSimE weakCongTransition Weak Transition)

lemma test:
assumes P —, P’

23



shows P = P’V (3P". P+—1 < P" AN P =, P
using assms
by (induct rule: tauChainInduct) auto

lemma tauChainCasesSym[consumes 1, case-names cTauNil ¢ TauStep]:
assumes P —, P’
and Prop P
and AP".[P+—7 < P"; P’ =, P'| = Prop P’

shows Prop P’
using assms

by (blast dest: test)

lemma simFE2:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs
and « : act

and Q' :: ccs

assumes P ~»<Rel> @
and Q —a =< Q'
and  Sim: AR S. (R, S) € Rel = R ~ <Rel> S

obtains P’ where P —-« < P’ and (P’, Q') € Rel
proof —
assume Goal: AP'. [P =a < P’; (P’, Q') € Rel] = thesis
from (Q =—a < Q" obtain Q" Q"'
where QChain: Q =, Q""" and Q""'Trans: Q" ——a < Q" and Q''Chain:
Q" =, Q'
by (rule weakCongTransE)
from QChain Q'"'Trans show ?thesis
proof (induct rule: tauChainCasesSym)
case cTauNil
from (P ~<Rel> Q> «Q —a < Q"> obtain P""' where PTrans: P —a <
P'"and (P", Q") € Rel
by (blast dest: weakSimFE)
moreover from Q''Chain «(P'’, Q") € Rely Sim obtain P’ where P’ Chain:
P""'—_ P"and (P’, Q') € Rel
by (rule simTauChain)
with PTrans P"Chain show ?thesis
by (force intro: Goal simp add: weakCongTrans-def weak Trans-def)
next
case(cTauStep Q""")
from (P ~<Rel> Q> «Q —71 < Q""" obtain P""" where PChain: P =1
_< P//// and (P////7 Q////) E Rel
by (drule-tac weakSimE) auto
from «Q"" =, Q" «(P"", Q"") € Rel> Sim obtain P’ where P'""'Chain:

24



P//// ér P/// and (P///7 Q///) 6 Rel
by (rule simTauChain)
from «(P""’, Q") € Rel> have P""" ~ <Rel> Q' by(rule Sim)
then obtain P’ where P''Trans: P""' = a < P' and (P", Q") € Rel
using Q"'Trans by (rule Weak-Sim.weakSimE)
from Q"'Chain «(P", Q") € Rel> Sim obtain P’ where P’ Chain: P" =,
P’ and (P’, Q') € Rel
by (rule simTauChain)
from PChain P"""'Chain P""'Trans P’ Chain
have P —=«a < P’
apply(auto simp add: weakCongTrans-def weak Trans-def)
apply(rule-tac z=P"aa in exI)
apply auto
defer
apply blast
by (auto simp add: tauChain-def)

with «(P’, Q') € Rel> show ?thesis
by (force intro: Goal simp add: weakCongTrans-def weakTrans-def)
qed
qed

lemma reflexive:
fixes P :: ccs
and Rel :: (ces x ces) set

assumes Id C Rel

shows P ~»<Rel> P
using assms
by (auto simp add: weakCongSimulation-def intro: transition WeakCong Transition)

lemma transitive:
fixes P :: ccs
and Rel :: (ccs x ces) set
and @  :ccs
and Rel’ :: (ces x ces) set
and R i ces
and Rel” :: (ccs x ces) set

assumes P ~»<Rel> @

and Q ~~<Rel”> R

and Rel O Rel’ C Rel”

and AST.(S,T)€ Rel = S ~ <Rel> T

shows P ~»<Rel""> R
proof (induct rule: weakSimI)

case(Sim a R

thus ?case using assms

25



apply(drule-tac Q=R in weakSimE, auto)
by (drule-tac Q=@ in simE2) auto
qed

lemma weakMonotonic:
fixes P :: ccs
and A :: (ces x ces) set
and Q@ : ccs
and B :: (ces X ces) set

assumes P ~<A> @
and ACB

shows P ~~<B> @
using assms
by (fastforce simp add: weakCongSimulation-def)

end

theory Strong-Sim-SC
imports Strong-Sim
begin

lemma resNilLeft:
fixes z :: name

shows (vz))0 ~~[Rel] O
by (auto simp add: simulation-def)

lemma resNilRight:
fixes z :: name

shows 0 ~~[Rel] (vz))0
by (auto simp add: simulation-def elim: resCases)

lemma test[simp]:
fixes z :: name
and P :: ccs

shows z f [z].P
by (auto simp add: abs-fresh)

lemma scopeExtSumlLeft:
fixes x :: name
and P :: ccs
and @ :: ccs

assumes z f P
and CI: Ay R. .yt R= ((vy)R, R) € Rel

26



and Id C Rel

shows (vz)(P @ Q) ~[Rel] P & (vz)Q
using assms
apply(auto simp add: simulation-def)
by (elim sumCases resCases) (blast intro: Res Suml Sum2 C1 dest: freshDeriva-
tive)+

lemma scopeExtSumRight:
fixes z :: name
and P :: ccs
and (@ :: ccs

assumes z ff P
and C1: AyR. .yt R = (R, (vyDR) € Rel
and Id C Rel

shows P @ (vz) Q ~~[Rel] (vz)(P & Q)
using assms
apply(auto simp add: simulation-def)
by (elim sumCases resCases) (blast intro: Res Suml Sum2 C1 dest: freshDeriva-
tive)+

lemma scopeExtLeft:
fixes z :: name
and P :: ccs
and @ :: ccs

assumes z f P
and CI:AyRT. .yt R= ((vyp(R|| T), R (vy)T) € Rel

shows (vz)(P || Q) ~[Rel] P || (vz) @
using assms
by (fastforce elim: parCases resCases intro: Res C1 Parl Par2 Comm dest: freshDeriva-
tive simp add: simulation-def)

lemma scopeFxtRight:
fixes z :: name
and P :: ccs
and @ : ccs

assumes z f P
and CI:AyRT.ytR= (R| (vy)T, (vy)(R || T)) € Rel

shows P || () Q ~[Rel] (va)(P || Q)

using assms

by (fastforce elim: parCases resCases intro: Res C1 Parl Par2 Comm dest: freshDeriva-
tive simp add: simulation-def)

27



lemma sumComm:
fixes P :: ccs
and @ : ccs

assumes Id C Rel

shows P @& @ ~»[Rel] Q & P
using assms
by (force simp add: simulation-def elim: sumCases intro: Sum1 Sum2)

lemma sumAssocLeft:
fixes P :: ccs
and Q@ : ccs
and R :: ccs

assumes Id C Rel

shows (P & Q) & R ~[Rel] P & (Q & R)
using assms
by (force simp add: simulation-def elim: sumCases intro: Sum1 Sum2)

lemma sumAssocRight:
fixes P :: ccs
and @ : ccs
and R :: ccs

assumes Id C Rel

shows P @ (Q @ R) ~[Rel] (P ® Q) & R
using assms
by (intro siml, elim sumCases) (blast intro: Suml Sum2)+

lemma sumldLeft:
fixes P :: ccs
and Rel :: (ces x ces) set
assumes Id C Rel
shows P @ 0 ~»[Rel] P
using assms
by (auto simp add: simulation-def intro: Sum1)
lemma sumlIdRight:
fixes P :: ccs
and Rel :: (ces x ces) set

assumes Id C Rel

shows P ~~[Rel] P & 0

28



using assms
by (fastforce simp add: simulation-def elim: sumCases)

lemma parComm:
fixes P :: ccs
and @ :: ccs

assumes CI: AR T. (R|| T, T || R) € Rel

shows P || @ ~[Rel] Q || P
by (fastforce simp add: simulation-def elim: parCases intro: Parl Par2 Comm C1)

lemma parAssocLeft:
fixes P :: ccs
and @ :: ccs
and R : ccs

assumes CI: ASTU. (S| T)|| U, S| (T | U)) € Rel

shows (P | Q) || R ~[Rel] P || (Q || R)
by (fastforce simp add: simulation-def elim: parCases intro: Parl Par2 Comm C1)

lemma parAssocRight:
fixes P :: ccs
and @ : ccs
and R : ccs

assumes CI: ASTU. (S| (T || U), (S| T)| U) € Rel

shows P || (@ || R) ~[Rel] (P || Q) || R
by (fastforce simp add: simulation-def elim: parCases intro: Parl Par2 Comm C1)

lemma parldLeft:
fixes P :: ccs
and Rel :: (ces x ces) set

assumes A Q. (Q || 0, Q) € Rel

shows P || 0 ~~[Rel] P
using assms
by (auto simp add: simulation-def intro: Parl)
lemma parldRight:

fixes P :: ccs

and Rel :: (ces x ces) set

assumes A\ Q. (@, @ || 0) € Rel

shows P ~~[Rel] P | O

29



using assms
by (fastforce simp add: simulation-def elim: parCases)

declare fresh-atm[simp]

lemma resActLeft:
fixes z :: name
and « : act
and P :: ccs

assumes z f «
and Id C Rel

shows (vz))(a.(P)) ~[Rel] (a.((vz)P))
using assms
by (fastforce simp add: simulation-def elim: actCases intro: Res Action)

lemma resActRight:
fixes z :: name
and « : act
and P :: ccs

assumes z f «
and Id C Rel

shows a.((vz) P) ~[Rel] (vz))(a.(P))
using assms
by (fastforce simp add: simulation-def elim: resCases actCases intro: Action)

lemma resComm:
fixes z :: name
and y : name
and P :: ccs

assumes A Q. ((vz)((vy) @), (vy)((vz)Q)) € Rel
shows (va)((vy)P) ~[Rel] (vy)((vz)P)
using assms
by (fastforce simp add: simulation-def elim: resCases intro: Res)

inductive-cases bangCases|simplified ccs.distinct act.distinct]: |P —a < P’

lemma bangUnfoldLeft:
fixes P :: ccs

assumes Id C Rel

shows P || |P ~~[Rel] |P
using assms

30



by (fastforce simp add: simulation-def ccs.inject elim: bangCases)

lemma bangUnfoldRight:
fixes P :: ccs

assumes Id C Rel

shows |P ~»[Rel] P || |P
using assms
by (fastforce simp add: simulation-def ccs.inject intro: Bang)

end

theory Strong-Bisim
imports Strong-Sim
begin

lemma monotonic:
fixes P :: ccs
and A :: (ces x ces) set
and @ :: ccs
and B :: (ces x ces) set

assumes P ~[A] Q
and ACB

shows P ~~[B] @
using assms
by (fastforce simp add: simulation-def)

lemma monoCoinduct: Az y za xb P Q.
< y—
(Q ~[{(zb, za). x zb za}] P) —
(Q ~[{(ab, za). y zb za}] P)
apply auto
apply(rule monotonic)
by (auto dest: le-funkE)

coinductive-set bisim :: (ccs X ccs) set
where

[P ~[bisim] Q; (Q, P) € bisim] = (P, Q) € bisim
monos monoCoinduct

abbreviation
bisimJudge (- ~ - [70, 70] 65) where P ~ @ = (P, Q) € bisim

lemma bisimCoinductAuz[consumes 1]:

fixes P :: ccs
and @ :: ccs

31



and X :: (ces x ces) set

assumes (P, Q) € X
and APQ.(P,Q) € X = P~[(XUbdisim)] QA (Q, P)e X

shows P ~ (@)
proof —
have X U bisim = {(P, Q). (P, Q) € X V (P, Q) € bisim} by auto
with assms show ?thesis
by coinduct simp
qged

lemma bisimCoinduct[consumes 1, case-names cSim cSym]:
fixes P :: ccs
and @ :: ccs
and X :: (ces X ces) set

assumes (P, Q) € X
and ARS. (R, S) € X = R ~[(X U bisim)] S
and ARS. (R S)eX = (S,R)eX

shows P ~ (@)
proof —
have X U bisim = {(P, Q). (P, Q) € X V (P, Q) € bisim} by auto
with assms show ?thesis
by coinduct simp
qged

lemma bisim WeakCoinductAuz|consumes 1]:
fixes P :: ccs
and Q@ :: ccs
and X :: (ces X ces) set

assumes (P, Q) € X
and ARS. (R, S)eX= R~[X|SA(S,R)eX

shows P ~ @)
using assms
by (coinduct rule: bisimCoinductAuz) (blast intro: monotonic)

lemma bisim WeakCoinduct[consumes 1, case-names cSim cSym|:
fixes P :: ccs
and @ :: ccs
and X :: (ces x ces) set

assumes (P, Q) € X

and APQ.(P,Q) e X = P~[X]Q
and APQ. (P,Q) eX = (Q,P)eX

32



shows P ~ (@
proof —
have X U bisim = {(P, Q). (P, Q) € X V (P, Q) € bisim} by auto
with assms show ?thesis
by (coinduct rule: bisimCoinduct) (blast intro: monotonic)+
qed

lemma bisimFE:
fixes P :: ccs
and @ :: ccs

assumes P ~ (@

shows P ~>[bisim] Q
and Q@ ~ P
using assms
by (auto simp add: intro: bisim.cases)

lemma bisiml:
fixes P :: ccs
and @ :: ccs

assumes P ~~[bisim| Q
and Q~P

shows P ~ ()
using assms
by (auto intro: bisim.intros)

lemma refiexive:
fixes P :: ccs

shows P ~ P
proof —
have (P, P) € Id by blast
thus %thesis
by (coinduct rule: bisimCoinduct) (auto intro: reflexive)
qed

lemma symmetric:
fixes P :: ccs
and @ :: ccs
assumes P ~ (@
shows Q ~ P

using assms
by (rule bisimFE)

33



lemma transitive:
fixes P :: ccs
and @ : ccs
and R :: ccs

assumes P ~ (@

and Q~R
shows P ~ R
proof —

from assms have (P, R) € bisim O bisim by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: transitive dest: bisimE)
qed

lemma bisim TransCoinduct[consumes 1, case-names c¢Sim c¢Sym]:
fixes P :: ccs
and (@ :: ccs

assumes (P, Q) € X
and rSim: AR S. (R, S) € X = R ~~[(bisim O X O bisim)] S
and rSym: ARS. (R, S)e X = (S,R) e X

shows P ~ @)
proof —
from «(P, Q) € X» have (P, Q) € bisim O X O bisim
by (auto intro: reflexive)
thus ?thesis
proof(coinduct rule: bisim WeakCoinduct)
case(cSim P Q)
from (P, Q) € bisim O X O bisim»
obtain R S where P ~ Rand (R, S) € X and S ~ @
by auto
from <P ~ R) have P ~»[bisim] R by(rule bisimE)
moreover from (R, S) € X)> have R ~[(bisim O X O bisim)] S
by (rule rSim)
moreover have bisim O (bisim O X O bisim) C bisim O X O bisim
by (auto intro: transitive)
ultimately have P ~~[(bisim O X O bisim)] S
by (rule Strong-Sim.transitive)
moreover from «S ~ @» have S ~~[bisim] Q by(rule bisimFE)
moreover have (bisim O X O bisim) O bisim C bisim O X O bisim
by (auto intro: transitive)
ultimately show ?case by(rule Strong-Sim.transitive)
next
case(cSym P Q)
thus ?case by(auto dest: symmetric rSym)
qged
qed

34



end
theory Strong-Sim-Pres
imports Strong-Sim

begin

lemma actPres:

fixes P :: ccs

and @ :: ccs

and Rel :: (ccs X ces) set
and a : name

and Rel’ :: (ces x ces) set
assumes (P, Q) € Rel

shows «a.(P) ~~[Rel] a.(Q)
using assms
by (fastforce simp add: simulation-def elim: actCases intro: Action)

lemma sumPres:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set

assumes P ~~[Rel] Q
and Rel C Rel’
and Id C Rel’

shows P @& R ~~[Rell Q & R
using assms
by (force simp add: simulation-def elim: sumCases intro: Suml Sum2)

lemma parPresAuz:
fixes P :: ccs
and @ :: ccs
and Rel :: (ccs x ces) set

assumes P ~~[Rel] Q

and (P, Q) € Rel

and R ~[Rell T

and (R, T) € Rel’

and CI: AP’ Q' R' T". [(P', Q') € Rel; (R', T') € Rel] = (P" | R, Q' |
T') € Rel”

shows P || R ~[Rel”] Q| T
proof (induct rule: simlI)

case(Sim a QT)

from «Q || T —a < QT»

35



show Zcase
proof (induct rule: parCases)
case(cParl Q)
from (P ~~[Rel] @) <Q —a < Q"> obtain P’ where P —a < P’ and (P,
Q') € Rel
by (rule simFE)
from <P —a < P’y have P || R —a < P’ || R by(rule Parl)
moreover from «((P’, Q') € Rel» «(R, T) € Rel» have (P'|| R, Q" || T) €
Rel” by(rule C1)
ultimately show ?case by blast
next
case(cPar2 T')
from <R ~[Rel] T> «<T —a < T obtain R’ where R —a < R’ and (R’,
T € Rel'
by (rule simFE)
from <R —a < R"» have P || R —a < P || R' by(rule Par2)
moreover from (P, Q) € Rel> <«(R’, T') € Rel’» have (P || R, Q || T') €
Rel” by (rule C1)
ultimately show ?case by blast
next
case(cComm Q' T’ a)
from <P ~~[Rel] @ <Q —a < Q' obtain P’ where P —a < P’ and (P’,
Q") € Rel
by (rule simFE)
from <R ~~[Rel’] T» «T —(coAction a) < T'> obtain R’ where R —(coAction
a) < R"and (R’, T') € Rel’
by (rule simFE)
from <P ——a < P’ (R —>(coAction a) < R <a # 7> have P || R —7 <
P’ || R' by(rule Comm)
moreover from «(P’, Q') € Rel> «((R’, T') € Rel"» have (P’ || R/, Q' || T') €
Rel” by(rule C1)
ultimately show ?case by blast

qed

qed

lemma parPres:
fixes P :: ccs
and @ :: ccs

and Rel :: (ces x ces) set
assumes P ~~[Rel] Q
and (P, Q) € Rel
and CI:ANSTU.(S, T)e Rl= (S| U, T| U) € Rel'
shows P | R ~[Rel] Q | R
using assms

by (rule-tac parPresAuz[where Rel”’=Rel’ and Rel’=Id]) (auto intro: reflexive)

lemma resPres:

36



fixes P :: ccs

and Rel :: (ces x ces) set
and @ :: ccs

and =z : name

assumes P ~~[Rel] Q
and AR Sy. (R, S) € Rel = ((vy)R, (vy)S) € Rel’

shows (vz)P ~~[Rel’] (vz|) Q
using assms

by (fastforce simp add: simulation-def elim: resCases intro: Res)

lemma bangPres:

fixes P :: ccs
and Rel :: (ces x ces) set
and @ :: ccs

assumes (P, Q) € Rel
and C1: AR S. (R, S) € Rel = R ~+[Rel] S

shows |P ~»[bangRel Rel] 'Q
proof (induct rule: simlI)
case(Sim o Q)

fix Pa o Q'
assume !Q —a < @’ and (Pa, Q) € bangRel Rel
hence AP’. Pa —a < P' A (P’, Q') € bangRel Rel
proof (nominal-induct arbitrary: Pa rule: bangInduct)
case(cParl o Q')
from «(Pa, Q || 'Q) € bangRel Rel
show Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from «(P, )) € Rel> have P ~~[Rel] Q by(rule C1)
with «Q —a < Q") obtain P’ where P —a < P’ and (P’, Q') € Rel
by (blast dest: simFE)
from <P —a < P’y have P || R —a < P’ || R by(rule Parl)
moreover from ((P’, Q') € Rel» «(R, !Q) € bangRel Rel> have (P’ | R,
Q'] 'Q) € bangRel Rel
by (rule bangRel. BRPar)
ultimately show ?case by blast
qed
next
case(cPar2 a Q')
from «(Pa, Q || 'Q) € bangRel Rel
show Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from (R, !Q) € bangRel Rel> obtain R’ where R —a < R’ and (R,

37



Q") € bangRel Rel using cPar2

by blast
from (R —a < R"» have P | R —a < P || R’ by(rule Par2)

moreover from «(P, Q) € Rel> «(R’, Q') € bangRel Rel> have (P | R', Q
I Q) € bangRel Rel by(rule bangRel. BRPar)
ultimately show Zcase by blast
qed

next
case(cComm a Q' Q" Pa)
from «(Pa, Q || 'Q) € bangRel Rel
show “case
proof (induct rule: BRParCases)

case(BRPar P R)
from «(P, Q) € Rels have P ~~[Rel] Q by(rule C1)
with <Q —a < Q' obtain P’ where P ——a < P’ and (P’, Q') € Rel
by (blast dest: simE)
from ¢(R, !Q) € bangRel Rel» obtain R’ where R ——(coAction a) < R’
and (R’, Q") € bangRel Rel using cComm
by blast
from <P —a < P’y <R —(coAction a) < R"» <a # 7> have P || R ——7
< P’|| R’ by(rule Comm)
moreover from «(P’, Q) € Rely «(R’, Q") € bangRel Rel> have (P’ | R/,
Q'] Q") € bangRel Rel by(rule bangRel. BRPar)
ultimately show ?case by blast
qed
next
case(cBang o Q' Pa)
from <¢(Pa, !Q) € bangRel Rel
show ?Zcase
proof (induct rule: BRBangCases)

case(BRBang P)
from «(P, Q) € Rel> have (P, !Q) € bangRel Rel by(rule bangRel. BRBang)

with «(P, Q) € Rel> have (P || P, Q || 'Q) € bangRel Rel by(rule

bangRel. BRPar)
then obtain P’ where P || |P —a < P’ and (P’, Q') € bangRel Rel

using cBang
by blast
from <P || !P —a < P’ have |P —a < P’ by(rule Bang)

thus ?case using <(P’, Q') € bangRel Rel> by blast
qed
qed

}

moreover from «(P, Q) € Rel> have (1P, Q) € bangRel Rel by(rule BRBang)

ultimately show ?case using <!Q — o < Q' by blast
qed

end

38



theory Strong-Bisim-Pres
imports Strong-Bisim Strong-Sim-Pres
begin

lemma actPres:
fixes P :: ccs
and Q@ : ccs
and « : act

assumes P ~ (@

shows a.(P) ~ a.(Q)
proof —
let ?X = {(a.(P), .(Q)) | P Q. P ~ Q}
from assms have (a.(P), «.(Q)) € ?X by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto dest: bisimE intro: actPres)
qed

lemma sumPres:
fixes P :: ccs
and (@ :: ccs
and R : ccs

assumes P ~ @

shows P& R~ Q ® R
proof —
let X ={(P®R,Q®R)|PQR. P~ Q}
from assms have (P @ R, Q@ & R) € ?X by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: sumPres reflexive dest: bisimE)
qed

lemma parPres:
fixes P :: ccs
and @ :: ccs
and R : ccs

assumes P ~ @)

shows P| R~ Q || R
proof —
let 2X = {(P | R, Q|| R) | P QR P~ Q)
from assms have (P | R, Q || R) € ?X by blast
thus ?thesis
by (coinduct rule: bisimCoinduct, auto) (blast intro: parPres dest: bisimE)+
qed

39



lemma resPres:
fixes P :: ccs
and Q@ :: ccs
and z :: name

assumes P ~ (@

shows (vz)P ~ (vz|) @
proof —
let X = {((vz)P, (vz)Q) | z P Q. P ~ Q}
from assms have ((vz)P, (vz) Q) € ?X by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: resPres dest: bisimE)
qed

lemma bangPres:
fixes P :: ccs
and @ : ccs

assumes P ~ @

shows P ~ ()
proof —
from assms have (1P, Q) € bangRel bisim
by (auto intro: BRBang)
thus ?thesis
proof(coinduct rule: bisim WeakCoinduct)
case(cSim P Q)
from «(P, Q) € bangRel bisim) show Zcase
proof (induct)
case(BRBang P Q)
note (P ~ @ bisimE(1)
thus P ~~[bangRel bisim] !Q by (rule bangPres)
next
case(BRPar R T P Q)
from (R ~ T) have R ~[bisim] T by(rule bisimFE)
moreover note (R ~ T» (P ~~[bangRel bisim] Q> «(P, Q) € bangRel bisim»
bangRel. BRPar
ultimately show ?case by(rule Strong-Sim-Pres.parPresAuz)
qed
next
case(cSym P Q)
thus Zcase
by induct (auto dest: bisimE intro. BRPar BRBang)
qed
qed

end

40



theory Struct-Cong
imports Agent
begin

inductive structCong :: ccs = ccs = bool (- =5 -)
where
Refl: P =, P

| Sym: P =5, Q = Q =; P

| Trans: [P =5 Q; @ =s R] = P =, R

| ParComm: P || Q =5 Q || P
| ParAssoc: (P || Q) || R=s P | (Q || R)
| Parld: P || 0 =5 P

| SumComm: P ® Q =5 Q ® P
| SumAssoc: (P ® Q) ® R=s P® (Q & R)
| Sumld: P ® 0 =; P

| ResNil: (vz)0 =5 0

| ScopeExtPar: z § P = (vz|)(P |

| ScopeExtSum: x § P = (vz)(P @ Q) =s P & (vz)Q

| ScopeAct: z § a = (vz)(a.(P)) =5 a.((vz)P)

| ScopeCommAux: x # y = (vz)((vy)P) =5 (vy)((vz)P)

Q) =s P | (vz)@
Q

| BangUnfold: \P =, P || |P
equivariance structCong
nominal-inductive structCong
by (auto simp add: abs-fresh)

lemma ScopeComm:
fixes z :: name
and y :: name
and P :: ccs

shows (vz))((vy)P) =5 (vy)((vz)P)
by(cases z=y) (auto intro: Refl ScopeCommAuz)

end
theory Strong-Bisim-SC

imports Strong-Sim-SC Strong-Bisim-Pres Struct-Cong
begin

lemma resNil:
fixes z :: name

shows (vz)0 ~ 0
proof —

41



have ((vz))0, 0) € {((vz))0, 0), (0, (vz)0)} by simp
thus %thesis
by (coinduct rule: bisimCoinduct)
(auto intro: resNilLeft resNilRight)
qed

lemma scopeFExt:
fixes x :: name
and P :: ccs
and @ :: ccs

assumes z f P

shows (vz)(P || Q) ~ P | (vz)Q
proof —

let 2X = {((va)(P | Q) P | (va)Q) | 2 P Q. v % P} U {(P || (ve)Q, (va)(P
1 Q) 2P Q st P}

from assms have ((vz)(P || Q), P || (vz) Q) € ?X by auto

thus ?thesis

by (coinduct rule: bisimCoinduct) (force intro: scopeExtLeft scope ExtRight)+

qed

lemma sumComm:
fixes P :: ccs
and @ : ccs

shows P® Q ~ Q ® P
proof —
have (P& Q, Q@ P)e{(P& Q, Q& P), (Q® P, P& Q)} by simp
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: sumComm reflexive)
qed

lemma sumAssoc:
fixes P :: ccs
and @ :: ccs
and R : ccs

shows (P® Q) ® R~ P & (Q ® R)
proof —

have ((P® Q) ® R, P2 (Q@ R) e {(P® Q) © R, P& (Q & R)), (P®
(Q® R), (P® Q) ® R)} by simp

thus ?thesis

by (coinduct rule: bisimCoinduct) (auto intro: sumAssocLeft sumAssocRight

reflexive)
qed

lemma sumlid:
fixes P :: ccs

42



shows P& 0 ~ P
proof —

have (P ¢ 0, P) € {(P® 0, P), (P, P ® 0)} by simp

thus ?thesis by(coinduct rule: bisimCoinduct) (auto intro: sumlIdLeft sumIdRight
reflexive)
qed

lemma parComm:
fixes P :: ccs
and @ :: ccs

shows P || Q ~ Q|| P
proof —
have (P || @, @ | P) € {(P 1| @ @ | P) | P Q. True} U{(Q | P, P|| Q) | P
Q. True} by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: parComm)
qed

lemma parAssoc:
fixes P :: ccs
and (@ :: ccs
and R : ccs

shows (P | Q) | R~ P | (Q || B)
proof —

have (P [| @) || R, P (Q | R) e {((P @I R P (QIR)|PQR.
True} U

{PI(QIR),(PIQI R PQR True} by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (force intro: parAssocLeft parAssocRight)+

qed

lemma parld:
fixes P :: ccs

shows P |0 ~ P
proof —
have (P || 0, P) € {(P || 0, P) | P. True} U {(P, P || 0) | P. True} by simp
thus ?thesis by(coinduct rule: bisimCoinduct) (auto intro: parIdLeft parIdRight)
qged

lemma scopeFresh:
fixes x :: name

and P :: ccs

assumes z f P

43



shows (vz)P ~ P
proof —
have (vz)P ~ (vz)P || 0 by(rule parld[THEN symmetric])
moreover have (vz)P || 0 ~ 0 || (vz|) P by(rule parComm)
moreover have 0 || (vz)P ~ (vz))(0 || P) by(rule scopeExt| THEN symmetric])
auto
moreover have (vz)(0 || P) ~ (vz)(P || 0) by(rule resPres[OF parComm))
moreover from ¢z § P> have (vz))(P || 0) ~ P || (vz)0 by(rule scopeExt)
moreover have P | (vz)0 ~ (vz)0 || P by(rule parComm)
moreover have (vz)0 | P ~ 0 || P by(rule parPres|OF resNil])
moreover have 0 | P ~ P || 0 by(rule parComm)
moreover have P || 0 ~ P by(rule parld)
ultimately show ?thesis by (metis transitive)
qed

lemma scopeEztSum:
fixes z :: name
and P :: ccs
and @ : ccs

assumes z f P

shows (vz)(P ® Q) ~ P @ (vz) @
proof —
have ((vz)(P & Q), P & (vz)Q) € {((vz)(P & Q), P& (va) @), (P & (vz) @,
(wad(P & Q))}
by simp
thus ?thesis using <z § P>
by (coinduct rule: bisimCoinduct)
(auto intro: scopeExtSumLeft scopeExtSumRight reflexive scopeFresh scope-
Fresh[THEN symmetric])
qed

lemma resAct:
fixes z :: name
and « :: act
and P :: ces

assumes z f «

shows (vz))(a.(P)) ~ a.((vz)P)
proof —
ha];fe ((va)(a.(P)), a-((va) P)) € {((va)(a-(P)), a.((va) P)), (e-((va) P), (vz)(a-(P)))}
thl;:’S ?thisis using x § a»
by (coinduct rule: bisimCoinduct) (auto intro: resActLeft resActRight reflexive)
qed

lemma resComm:

44



fixes z :: name
and vy :: name
and P :: ccs

Shof‘jVS (va)(Qvy)P) ~ (vy)((vz)P)
proof —
have ((vs)((vsDP), (vod((v2)P)) € {((va)((ws)P), (wab((vabP)) | = y P.
True} by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: resComm)
qged

lemma bangUnfold:
fixes P

shows |P ~ P || |P
proof —
have (IP, P || !P) € {(!P, P || !P), (P || !P, |P)} by auto
thus ?thesis
by (coinduct rule: bisimCoinduct) (auto intro: bangUnfoldLeft bangUnfoldRight
reflexive)
qged

lemma bisimStructCong:
fixes P :: ccs
and @ :: ccs

assumes P =; @)

shows P ~ @)

using assms

apply(nominal-induct rule: Struct-Cong.strong-induct)

by (auto intro: reflexive symmetric transitive parComm parAssoc parld sumComm
sumAssoc sumld resNil scopeExt scopeExtSum resAct resComm bangUnfold)

end

theory Weak-Bisim
imports Weak-Sim Strong-Bisim-SC Struct-Cong
begin

lemma weakMonoCoinduct: Az y za xb P Q.
z < y=—
(Q ~ <{(zb, za). x zb za}> P) —
(Q ~ <{(zb, za). y zb za}> P)
apply auto
apply (rule weakMonotonic)
by (auto dest: le-funE)

45



coinductive-set weakBisimulation :: (ccs X ccs) set
where
[P ~ <weakBisimulation> Q; (Q, P) € weakBisimulation] = (P, Q) € weak-
Bisimulation
monos weakMonoCoinduct

abbreviation
weakBisimJudge (- = - [70, 70] 65) where P = Q = (P, Q) € weakBisimulation

lemma weakBisimulationCoinductAuz[consumes 1]:
fixes P :: ccs
and (@ :: ccs
and X :: (ces x ces) set

assumes (P, Q) € X
and AP Q. (P, Q) € X = P ~ <(X U weakBisimulation)> Q A (Q, P)
cX

shows P ~ ()
proof —
have X U weakBisimulation = {(P, Q). (P, Q) € X V (P, Q) € weakBisimula-
tion} by auto
with assms show ?thesis
by coinduct simp
qed

lemma weakBisimulationCoinduct[consumes 1, case-names cSim c¢Sym]:
fixes P :: ccs
and Q@ : ccs
and X :: (ces x ces) set

assumes (P, Q) € X
and ARS. (R, S) € X = R~ <(X U weakBisimulation)> S
and ARS. (R, S)eX = (S,R)e X

shows P ~ @)
proof —
have X U weakBisimulation = {(P, Q). (P, Q) € X V (P, Q) € weakBisimula-
tion} by auto
with assms show ?thesis
by coinduct simp
qged

lemma weakBisim WeakCoinductAuz[consumes 1]:
fixes P :: ccs
and @ :: ccs

and X :: (ces X ces) set

assumes (P, Q) € X

46



and APQ. (P,Q €X =P~ <X>QA(Q, P)eX

shows P ~ ()
using assms
by (coinduct rule: weakBisimulationCoinductAuz) (blast intro: weakMonotonic)

lemma weakBisim WeakCoinduct[consumes 1, case-names cSim cSym|:
fixes P :: ccs
and @ :: ccs
and X :: (ces X ces) set

assumes (P, Q) € X
and AP Q. (P,Q) e X = P~ <X>Q
and AP Q. (P,Q) e X = (Q,P)eX

shows P ~ ()
proof —
have X U weakBisim = {(P, Q). (P, Q) € X V (P, Q) € weakBisim} by auto
with assms show ?thesis
by (coinduct rule: weakBisimulationCoinduct) (blast intro: weakMonotonic)+
qed

lemma weakBisimulationkE:
fixes P :: ccs
and @ :: ccs

assumes P ~ @)

shows P ~ <weakBisimulation> Q)
and Q=P
using assms
by (auto simp add: intro: weakBisimulation.cases)

lemma weakBisimulationl:
fixes P :: ccs
and @ :: ccs

assumes P ~ <weakBisimulation> Q
and Q~P

shows P ~ ()
using assms
by (auto intro: weakBisimulation.intros)

lemma reflezive:
fixes P :: ccs

shows P ~ P
proof —

47



have (P, P) € Id by blast
thus ?thesis
by (coinduct rule: weakBisimulationCoinduct) (auto intro: Weak-Sim.reflexive)
qed

lemma symmetric:
fixes P :: ccs
and Q@ : ccs

assumes P ~ @)

shows @) =~ P
using assms
by (rule weakBisimulationE)

lemma transitive:
fixes P :: ccs
and (@ :: ccs
and R :: ccs

assumes P ~ @

and Q~R
shows P ~ R
proof —

from assms have (P, R) € weakBisimulation O weakBisimulation by auto
thus ?thesis
proof(coinduct rule: weakBisimulationCoinduct)
case(cSim P R)
from «(P, R) € weakBisimulation O weakBisimulation
obtain @) where P ~ @ and Q ~ R by auto
note <P ~ ()
moreover from <Q ~ R) have Q ~ <weakBisimulation> R by(rule weak-
BisimulationFE)
moreover have weakBisimulation O weakBisimulation C (weakBisimulation O
weakBisimulation) U weakBisimulation
by auto
moreover note weakBisimulationE (1)
ultimately show ?case by (rule Weak-Sim.transitive)
next
case(cSym P R)
thus ?case by(blast dest: symmetric)
qed
qed

lemma bisim WeakBisimulation:

fixes P :: ccs
and @ :: ccs

48



assumes P ~ (@

shows P ~ ()

using assms

by (coinduct rule: weakBisim WeakCoinduct[where X=bisim])
(auto dest: bisimE simWeakSim)

lemma structCongWeakBisimulation:
fixes P :: ccs
and @ :: ccs

assumes P =; @)

shows P ~ ()
using assms

by (auto intro: bisim WeakBisimulation bisimStructCong)

lemma strongAppend:

fixes P occs
and @ i ces
and R i ces
and Rel :: (cecs x ces) set

and Rel’ :: (ces X ces) set
and Rel” :: (ccs X ces) set

assumes PSimQ: P ~ <Rel> Q
and  QSimR: Q ~[Rell R
and Trans: Rel O Rel’ C Rel”

shows P ~ <Rel'"> R
using assms
by (simp add: weakSimulation-def simulation-def) blast

lemma weakBisim Weak Upto|case-names cSim cSym, consumes 1]:
assumes p: (P, Q) € X
and rSim: AP Q. (P, Q) € X = P ~ <(weakBisimulation O X O bisim)> Q
and rSym: A P Q. (P, Q) € X = (Q, P) € X

shows P ~ ()
proof —

let ?X = weakBisimulation O X O weakBisimulation

let ?Y = weakBisimulation O X O bisim

from «(P, @) € X» have (P, Q) € ?X by(blast intro: Strong-Bisim.reflexive
reflexive)

thus ?thesis

proof (coinduct rule: weakBisim WeakCoinduct)

case(cSim P Q)

{

49



fix PP’ Q' Q
assume P =~ P’and (P, Q') € X and Q' = @
from «(P’, Q') € X> have (P’, Q') € ?Y by(blast intro: reflexive Strong-Bisim.reflezive)
moreover from Q' ~ @ have Q' ~ <weakBisimulation> Q by(rule
weakBisimulationE)
moreover have ?Y O weakBisimulation C ?X by(blast dest: bisim Weak-
Bisimulation transitive)
moreover {
fix P Q
assume (P, Q) € ?Y
then obtain P’ Q' where P ~ P’ and (P’, Q) € X and Q' ~ @ by auto
from «(P’, Q") € X»> have P’ ~ <?Y> Q' by(rule rSim)
moreover from Q' ~ @ have Q' ~~[bisim] Q by(rule bisimE)
moreover have ?Y O bisim C ?Y by(auto dest: Strong-Bisim.transitive)
ultimately have P’ ~ <?Y> Q by(rule strongAppend)
moreover note <P ~ P’
moreover have weakBisimulation O ?Y C ?2Y by(blast dest: transitive)
ultimately have P ~ <?Y> Q using weakBisimulationE(1)
by (rule-tac Weak-Sim.transitive)

ultimately have P’ ~ <?X> Q by(rule Weak-Sim.transitive)
moreover note (P ~ P’
moreover have weakBisimulation O ?X C ?X by(blast dest: transitive)
ultimately have P ~ <?X> @ using weakBisimulationE(1)

by (rule-tac Weak-Sim.transitive)

with (P, Q) € ?X» show ?Zcase by auto
next
case(cSym P Q)
thus Zcase
apply auto
by (blast dest: bisimE rSym weakBisimulationF)
qed
qed

lemma weakBisimUpto|case-names cSim cSym, consumes 1]:

assumes p: (P, Q) € X

and rSim: AR S. (R, S) € X = R ~ <(weakBisimulation O (X U weakBisim-
ulation) O bisim)> S

and rSym: AR S. (R, S) € X = (S, R) € X

shows P ~ ()
proof —

from p have (P, Q) € X U weakBisimulation by simp

thus ?thesis
apply(coinduct rule: weakBisim WeakUpto)
apply(auto dest: rSim rSym weakBisimulationE)
apply(rule weakMonotonic)
apply(blast dest: weakBisimulationE)

50



apply(auto simp add: relcomp-unfold)
by (metis reflexive Strong-Bisim.reflexive transitive)
qed

end

theory Weak-Cong
imports Weak-Cong-Sim Weak-Bisim Strong-Bisim-SC
begin

definition weakCongruence :: ccs = ccs = bool (- = - [70, 70] 65)
where
P =2 @ = P ~w<weakBisimulation> Q N\ Q ~><weakBisimulation> P

lemma weakCongruencek:
fixes P :: ccs
and @ :: ccs

assumes P = @)

shows P ~»<weakBisimulation> ()
and @ ~<weakBisimulation> P
using assms
by (auto simp add: weakCongruence-def)

lemma weakCongruencel:
fixes P :: ccs
and @ :: ccs

assumes P ~»<weakBisimulation> @
and Q ~~<weakBisimulation> P

shows P = ()
using assms
by (auto simp add: weakCongruence-def)

lemma weakCongISym|[consumes 1, case-names cSym cSim]:
fixes P :: ccs
and (@ :: ccs

assumes Prop P Q
and AP Q. Prop P@Q = Prop QP
and AP Q. Prop P Q = (F P) ~»<weakBisimulation> (F Q)
shows F P F @
using assms

by (auto simp add: weakCongruence-def)

lemma weakConglSym?2|[consumes 1, case-names cSim]:

o1



fixes P :: ccs
and @ : ccs

assumes P = ()
and AP Q. P Q= (FP) ~<weakBisimulation> (F Q)

shows FP X F @
using assms
by (auto simp add: weakCongruence-def)

lemma refiezive:
fixes P :: ccs

shows P = P
by (auto intro: weakCongruencel Weak-Bisim.reflexive Weak-Cong-Sim.reflexive)

lemma symmetric:
fixes P :: ccs
and @ : ccs

assumes P = ()

shows () = P
using assms
by (auto simp add: weakCongruence-def)

lemma transitive:
fixes P :: ccs
and Q@ : ccs
and R :: ccs

assumes P = ()

and Q=R
shows P =2 R
proof —

let Prop =APR.3Q. P2 QANQ=ER
from assms have ?Prop P R by auto
thus ?thesis
proof (induct rule: weakCongISym)
case(cSym P R)
thus ?case by(auto dest: symmetric)
next
case(cSim P R)
from «?Prop P R) obtain () where P~ Q and Q = R
by auto
from (P = @» have P ~~<weakBisimulation> @ by(rule weakCongruenceF)
moreover from (@ = R) have Q ~<weakBisimulation> R by (rule weakCon-
gruencel)

52



moreover from Weak-Bisim.transitive have weakBisimulation O weakBisim-
ulation C weakBisimulation
by auto
ultimately show ?Zcase using weakBisimulationE(1)
by (rule Weak-Cong-Sim.transitive)
qed
qed

lemma bisim WeakCongruence:
fixes P :: ccs
and @ :: ccs

assumes P ~ (@)

shows P = ()
using assms
proof (induct rule: weakCongISym)
case(cSym P Q)
thus ?case by(rule bisimFE)
next
case(cSim P Q)
from (P ~ @) have P ~~[bisim] @ by(rule bisimE)
hence P ~~[weakBisimulation] Q using bisim WeakBisimulation
by (rule-tac monotonic) auto
thus ?case by(rule simWeakSim)
qed

lemma structCongWeakCongruence:
fixes P :: ccs
and Q@ :: ccs

assumes P =, ()

shows P 2 ()
using assms
by (auto intro: bisim WeakCongruence bisimStructCong)

lemma weakCongruence WeakBisimulation:
fixes P :: ccs
and @ : ccs

assumes P = ()

shows P ~ ()
proof —
let ?2X ={(P, Q)| PQ. P=Q}
from assms have (P, @) € ?X by auto
thus ?thesis
proof (coinduct rule: weakBisimulationCoinduct)

93



case(cSim P Q)
from (P, Q) € ?X> have P = @ by auto
hence P ~<weakBisimulation> @ by(rule Weak-Cong.weakCongruenceE)

hence P ~~<(?X U weakBisimulation)> Q by(force intro: Weak-Cong-Sim.weakMonotonic)
thus ?case by(rule weakCongSim WeakSim)

next
case(cSym P Q)
from «(P, Q) € ?X) show ?case by(blast dest: symmetric)

qed

qed

end

theory Weak-Sim-Pres
imports Weak-Sim

begin

lemma actPres:

fixes P :: ccs

and @ :: ccs

and Rel :: (ccs X ces) set
and a :: name

and Rel’:: (ces x ces) set
assumes (P, Q) € Rel

shows a.(P) ~ <Rel> a.(Q)
using assms
by (fastforce simp add: weakSimulation-def elim: actCases intro: weakAction)

lemma sumPres:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set

assumes P ~ <Rel> Q

and Rel C Rel’

and Id C Rel’

and CI:ASTU.(S,T)€ Rel = (S U, T) € Rel

shows P @ R ~» <Rel’> Q & R
proof (induct rule: weakSimI)
case(Sim o QR)
from «QQ ® R —a < QR» show ?case
proof (induct rule: sumCases)
case(cSuml Q)
from (P ~» <Rel> Q> «Q —a < Q)
obtain P’ where P = o < P’ and (P, Q') € Rel

54



by (blast dest: weakSimE)
thus Zcase
proof (induct rule: weakTransCases)
case Base
have P ® R = 7 < P @ R by simp
moreover from (P, Q') € Rel> have (P @ R, Q') € Rel’ by(rule C1)
ultimately show ?case by blast
next
case Step
from (P —a < P’ have P & R =« < P’ by(rule weakCongSum1)
hence P & R = «a < P’ by(simp add: weakTrans-def)
thus ?case using «(P’, Q') € Rely «Rel C Rel» by blast
qed
next
case(cSum2 R)
from (R —a < R have R =« < R’ by(rule transition WeakCong Transition)
hence P & R =-a < R’ by(rule weakCongSum2)
hence P & R = «a < R’ by(simp add: weakTrans-def)
thus ?case using <Id C Rel’y by blast
qed
qed

lemma parPresAuz:

fixes P :: ccs
and @ ces
and R  : ccs
and T  : ccs
and Rel :: (ces x ces) set
and Rel’ :: (ces X ces) set
and Rel” :: (ccs X ces) set

assumes P ~» <Rel> Q

and (P, Q) € Rel

and R~ <Rel’> T

and (R, T) € Rel’

and  CI: AP’ Q' R' T'. [(P", Q) € Rel; (R', T) € Rel] = (P'|| R, Q' |
T') € Rel”

shows P || R~ <Rel”> Q|| T
proof (induct rule: weakSimI)
case(Sim a QT)
from «Q | T —a < QT»
show ?case
proof (induct rule: parCases)
case(cParl Q)
from (P ~ <Rel> Q> <Q —a < Q" obtain P’ where P — o < P’ and
(P, Q') € Rel
by (rule weakSimE)
from (P = a < P» have P | R = «a < P’ | R by(rule weakPar1)

95



moreover from ((P’, Q') € Rel» «(R, T) € Rel’» have (P' | R, Q" || T) €
Rel” by (rule C1)
ultimately show ?case by blast
next
case(cPar2 T')
from (R ~~ <Rel’> T» «T —a < T’ obtain R’ where R = o < R’ and
(R, T') € Rel’
by (rule weakSimE)
from <R = a < R have P | R = a < P || R’ by(rule weakPar2)
moreover from (P, Q) € Rel> «(R’, T') € Rel’» have (P || R, Q || T') €
Rel” by(rule C1)
ultimately show ?case by blast
next
case(cComm Q' T' «)
from (P ~ <Rel> Q» <Q —ra < Q" obtain P’ where P — a < P’ and
(P, Q") € Rel
by (rule weakSimE)
from (R ~ <Rel’> T) «T ——(coAction o) < T’ obtain R’ where R
= (coAction o) < R’ and (R’, T') € Rel’
by (rule weakSimE)
from (P = a < P’ <R = (coAction a) < R"» «a # 7> have P | R =7
< P'"|| R
by (auto intro: weakCongSync simp add: weakTrans-def)
hence P || R = 7 < P’ || R’ by(simp add: weakTrans-def)
moreover from «((P’, Q') € Rel> «((R’, T') € Rel"» have (P’ || R/, Q' || T') €
Rel” by(rule C1)
ultimately show ?case by blast

qed
qed
lemma parPres:
fixes P :: ccs
and @ :: ccs
and R :ccs

and Rel :: (ces x ces) set

and Rel’:: (ces x ces) set

assumes P ~ <Rel> Q

and (P, Q) € Rel

and CI:ANSTU.(S,T)€Rel= (S| U, T| U)e€ Rel

shows P || R~ <Rel> Q || R
using assms

by (rule-tac parPresAuz[where Rel’=Id and Rel”’=Rel’]) (auto intro: reflexive)

lemma resPres:

fixes P :: ccs

and Rel :: (ces x ces) set
and @ :: ccs

and =z : name

o6



assumes P ~» <Rel> Q
and AR Sy. (R, S) € Rel = ((vy)R, (vy)S) € Rel’

shows (vz)P ~ <Rel”> (vz)Q
using assms

by (fastforce simp add: weakSimulation-def elim: resCases intro: weakRes)

lemma bangPres:

fixes P :: ccs
and Rel :: (cecs X ces) set
and @ :: ccs

assumes (P, Q) € Rel

and CI: AR S. (R, S) € Rel = R ~~ <Rel> S

and  Par: ARSTU.[(R,S) € Rel; (T, U)€ Rel] = (R|| T, S| U) €
Rel’

and C2: bangRel Rel C Rel’

and C3: ARS.(R| R, S) € Rel’=> (IR, S) € Rel’

shows |P ~ <Rel’> 1Q
proof (induct rule: weakSimI)
case(Sim o Q)

fix Pa o Q'
assume !Q —a < @’ and (Pa, Q) € bangRel Rel
hence 3P'. Pa = a < P' A (P’, Q') € Rel’
proof (nominal-induct arbitrary: Pa rule: bangInduct)
case(cParl o Q')
from «(Pa, Q || 'Q) € bangRel Rel
show Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from (P, Q) € Rel> have P ~ <Rel> Q by(rule C1)
with «Q —a < Q" obtain P’ where P = « < P’and (P’, Q') € Rel
by (blast dest: weakSimE)
from (P = a < P have P || R = a < P’ || R by(rule weakPar1)
moreover from «(P’, Q') € Rel> «(R, !Q) € bangRel Rel> C2 have (P’ ||
R, Q'] 1Q) € Rel’
by (blast intro: Par)
ultimately show ?case by blast
qed
next
case(cPar2 a Q')
from «(Pa, Q || 'Q) € bangRel Rel
show Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from «(R, !Q) € bangRel Rel> obtain R’ where R = a < R’ and (R/,

o7



Q") € Rel’ using cPar2
by blast
from (R = a < R» have P | R = « < P || R’ by(rule weakPar2)
moreover from (P, Q) € Rel» «(R’, Q') € Rel>» have (P | R/, Q || Q')
€ Rel’ by(rule Par)
ultimately show Zcase by blast
qed
next
case(cComm a Q' Q" Pa)
from «(Pa, Q || 'Q) € bangRel Rel
show “case
proof (induct rule: BRParCases)
case(BRPar P R)
from (P, Q) € Rel> have P ~ <Rel> Q by(rule C1)
with «Q —a < Q" obtain P’ where P = a < P’ and (P’, Q') € Rel
by (blast dest: weakSimFE)
from ((R, !Q) € bangRel Rel> obtain R’ where R = (coAction a) < R’
and (R’, Q") € Rel’ using cComm
by blast
from (P = a < P"» <R = (coAction a) < R"» <a # 7 have P | R
=7 < P'| R
by (auto intro: weakCongSync simp add: weakTrans-def)
moreover from «(P’, Q') € Rel) «(R’/, Q") € Rel’» have (P’ || R’, Q' |
Q') € Rel’ by(rule Par)
ultimately show ?case by blast
qed
next
case(cBang a Q' Pa)
from «(Pa, !Q) € bangRel Rel
show Zcase
proof (induct rule: BRBangCases)
case(BRBang P)
from «(P, Q) € Rel> have (1P, Q) € bangRel Rel by(rule bangRel. BRBang)
with «((P, Q) € Rel> have (P || !P, @ || 'Q) € bangRel Rel by(rule
bangRel. BRPar)
then obtain P’ where P || |P = a < P’ and (P’, Q') € Rel’ using
cBang
by blast
from <P || !P = a < P/
show Zcase
proof (induct rule: weakTransCases)
case Base
have |P — "7 < !P by simp
moreover from («(P’, Q') € Rel» <P || |P = P’ have (P, Q') € Rel’
by (blast intro: C3)
ultimately show ?case by blast
next
case Step
from (P || !P =>a < P’» have |P =>a < P’ by(rule weakCongRepl)

o8



hence |P = o < P’ by(simp add: weakTrans-def)
with «(P’, Q') € Rel’» show ?case by blast
qed
qed
qed
}

moreover from (P, @) € Rel» have (1P, Q) € bangRel Rel by(rule BRBang)

ultimately show ?case using (!Q — o < Q' by blast
qed

end

theory Weak-Bisim-Pres
imports Weak-Bisim Weak-Sim-Pres Strong-Bisim-SC
begin

lemma actPres:
fixes P :: ccs
and @ :: ccs
and « : act

assumes P ~ ()

shows a.(P) = a.(Q)
proof —

let ?X = {(a.(P), a.(Q)) | P Q. P = Q}

from assms have (a.(P), a.(Q)) € ?X by auto

thus ?thesis

by (coinduct rule: weakBisimulationCoinduct) (auto dest: weakBisimulationE

intro: actPres)
qed

lemma parPres:
fixes P :: ccs
and @ :: ccs
and R : ccs

assumes P ~ (@)

shows P| R~ Q || R
proof —

let 72X ={(P[ R, Q| R)|PQR. P~ Q}

from assms have (P || R, Q || R) € ?X by blast

thus ?thesis

by (coinduct rule: weakBisimulationCoinduct, auto)
(blast intro: parPres dest: weakBisimulationE)+

qed

99



lemma resPres:
fixes P :: ccs
and Q@ :: ccs
and z :: name

assumes P ~ @)

shows (vz)P =~ (vz|) Q
proof —

let X = {((vz)P, (vz)Q) | z P Q. P =~ Q}

from assms have ((vz)P, (vz) Q) € ?X by auto

thus ?thesis

by (coinduct rule: weakBisimulationCoinduct) (auto intro: resPres dest: weak-

BisimulationE)
qed

lemma bangPres:
fixes P :: ccs
and @ :: ccs

assumes P ~ @)

shows P ~ ()
proof —
let ?X = bangRel weakBisimulation
let ?Y = weakBisimulation O ?X O bisim

fix RTPQ
assume R~ T and (P, Q) € ?Y
from ¢(P, Q) € ?Y» obtain P’ Q' where P ~ P’and (P’, Q') € ?X and Q’
~Q
by auto
from <P ~ P’ have R || P~ R || P’
by (metis parPres bisim WeakBisimulation transitive parComm,)
moreover from (R~ T» «(P’, Q') € ?X» have (R || P, T || Q') € ?X by(auto
dest: BRPar)
moreover from «Q’'~ > have T || Q' ~ T || Q by(metis Strong-Bisim-Pres.parPres
Strong-Bisim.transitive parComm,)
ultimately have (R || P, T || Q) € ?Y by auto
} note BRParAux = this

from assms have (IP, Q) € ?X by(auto intro: BRBang)
thus ?thesis
proof(coinduct rule: weakBisim WeakUpto)
case(cSim P Q)
from «(P, Q) € bangRel weakBisimulation» show ?case
proof (induct)
case(BRBang P Q)

60



note (P = @) weakBisimulationE(1) BRParAux
moreover have ?X C ?Y by(auto intro: Strong-Bisim.reflexive reflexive)
moreover {

fix P Q)

assume (P || P, Q) € ?Y

hence (!P, Q) € ?Y using bangUnfold

by (blast dest: Strong-Bisim.transitive transitive bisim WeakBisimulation)

}

ultimately show ?case by(rule bangPres)

next
case(BRPar R T P Q)

from <R ~ T) have R ~ <weakBisimulation> T by(rule weakBisimulationE)
moreover note (R ~ T) (P ~ <?Y> ()

moreover from (P, Q) € ?X» have (P, Q) € ?Y by(blast intro: Strong-Bisim.reflezive

reflexive)
ultimately show ?case using BRParAuz by (rule Weak-Sim-Pres.parPresAuz)
qed
next
case(cSym P Q)
thus Zcase
by induct (auto dest: weakBisimulationE intro: BRPar BRBang)
qed
qed

end

theory Weak-Cong-Sim-Pres
imports Weak-Cong-Sim

begin

lemma actPres:

fixes P :: ccs

and @ :: ccs

and Rel :: (ces x ces) set
and a :: name

and Rel’:: (ces x ces) set
assumes (P, Q) € Rel

shows «a.(P) ~»<Rel> a.(Q)
using assms
by (fastforce simp add: weakCongSimulation-def elim: actCases intro: weakCongAc-
tion)

lemma sumPres:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set

61



assumes P ~~<Rel> @
and Rel C Rel’
and Id C Rel’

shows P & R ~»<Rel’> Q ® R
using assms
by (force simp add: weakCongSimulation-def elim: sumCases intro: weakCongSum1
weakCongSum?2 transition WeakCong Transition)

lemma parPres:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set

assumes P ~»<Rel> ()
and (P, Q) € Rel
and CI: NSTU. (S, T)€ Rel = (S || U, T || U) € Rel

shows P | R ~»<Rel’”> Q | R
proof (induct rule: weakSimI)
case(Sim o QR)
from «Q || R —a < QR
show ?case
proof (induct rule: parCases)
case(cParl Q)
from <P ~<Rel> @ «Q —a < (@ obtain P’ where P —«a < P’ and
(P, Q") € Rel
by (rule weakSimE)
from <P =—a < P’y have P | R =« < P’ || R by(rule weakCongParl)
moreover from «((P’; Q') € Rel> have (P’ || R, Q' | R) € Rel’ by(rule C1)
ultimately show ?case by blast
next
case(cPar2 R
from <R —a < R’ have R =« < R’ by(rule transition WeakCong Transition)
hence P || R =a < P || R’ by(rule weakCongPar2)
moreover from (P, Q) € Rel» have (P || R, Q || R’) € Rel’ by(rule C1)
ultimately show ?case by blast
next
case(cComm Q' R’ o)
from (P ~<Rel> @ «Q —a < Q" obtain P’ where P =—«a < P’ and
(P, Q) € Rel
by (rule weakSimE)
from (R ——(coAction o) < R"» have R =>(coAction ) < R’
by (rule transition WeakCongTransition)
with <P =—a < P’» have P | R =7 < P’ || R’ using <o # 7
by (rule weakCongSync)
moreover from ((P’, Q') € Rel> have (P’ || R, Q' || R') € Rel’ by(rule C1)
ultimately show ?case by blast
qed

62



qed

lemma resPres:

fixes P :: ccs

and Rel :: (ces x ces) set
and @ :: ccs

and =z : name

assumes P ~»<Rel> @
and AR Sy. (R, S) € Rel = ((vy)R, (vy)S) € Rel’

shows (vz)P ~><Rel"™> (vz) @
using assms

by (fastforce simp add: weakCongSimulation-def elim: resCases intro: weakCon-
gRes)

lemma bangPres:
fixes P :: ccs
and @ :: ccs
and Rel :: (ces x ces) set
and Rel’ :: (ccs X ces) set

assumes (P, Q) € Rel
and C1: ARS. (R, S) € Rel = R ~<Rel> S
and C2: Rel C Rel’

shows |P ~»<bangRel Rel’> 'Q
proof (induct rule: weakSimI)
case(Sim o Q)
{
fix Pa a Q'
assume !Q —a < Q' and (Pa, !Q) € bangRel Rel
hence 3 P’. Pa =>a < P’ A (P’, Q') € bangRel Rel’
proof (nominal-induct arbitrary: Pa rule: bangInduct)
case(cParl a Q')
from «(Pa, Q || 'Q) € bangRel Rel
show ?Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from (P, Q) € Rel> have P ~~<Rel"”> @ by(rule C1)
with «(Q —a < Q") obtain P’ where P =—a < P’ and (P’, Q) € Rel’
by (blast dest: weakSimE)
from <P =—>a < P’y have P || R =a < P’ || R by(rule weakCongParl)
moreover from (R, !Q) € bangRel Rel> C2 have (R, Q) € bangRel Rel’
by induct (auto intro: bangRel. BRPar bangRel. BRBang)
with «(P’, Q') € Rel’» have (P’ | R, Q' || 'Q) € bangRel Rel’
by (rule bangRel. BRPar)
ultimately show Zcase by blast
qed

63



next
case(cPar2 a Q')
from «(Pa, Q || 'Q) € bangRel Rel
show Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from «(R, Q) € bangRel Rel) obtain R’ where R —«a < R’ and (R/,
Q") € bangRel Rel’ using cPar?2
by blast
from <R =a < R"» have P | R =a < P || R’ by(rule weakCongPar2)
moreover from (P, Q) € Rel» «(R', Q') € bangRel Rel’y C2 have (P ||
R, Q| Q') € bangRel Rel’
by (blast intro: bangRel. BRPar)
ultimately show ?case by blast
qed
next
case(cComm a Q' Q" Pa)
from «(Pa, Q || 'Q) € bangRel Rel
show ?Zcase
proof (induct rule: BRParCases)
case(BRPar P R)
from «(P, Q) € Rel» have P ~~<Rel”> @ by(rule C1)
with <@ —a < @’ obtain P’ where P =—>a < P’ and (P/, Q') € Rel’
by (blast dest: weakSimE)
from «(R, !Q) € bangRel Rel) obtain R’ where R =—>(coAction a) < R’
and (R, Q") € bangRel Rel’ using cComm
by blast
from (P =ra < Py <R =>(coAction a) < R"» <a # 7> have P || R =7
< P'"|| R by(rule weakCongSync)
moreover from ((P’, Q') € Rel’ «(R’, Q') € bangRel Rel’» have (P’ ||
R, Q"] Q") € bangRel Rel’
by(rule bangRel. BRPar)
ultimately show ?case by blast
qed
next
case(cBang o Q' Pa)
from «(Pa, !Q) € bangRel Rel
show “case
proof (induct rule: BRBangCases)
case(BRBang P)
from (P, Q) € Rel» have (P, Q) € bangRel Rel by(rule bangRel. BRBang)
with <(P, @) € Rel> have (P || P, @Q || 'Q) € bangRel Rel by(rule
bangRel. BRPar)
then obtain P’ where P || |P =a < P’ and (P’, Q') € bangRel Rel’
using cBang
by blast
from (P || |P =a < P> have |P =>-a < P’ by(rule weakCongRepl)
thus ?case using <(P’, Q') € bangRel Rel’y by blast
qed

64



qed
}

moreover from (P, Q) € Rel» have (IP, Q) € bangRel Rel by(rule BRBang)

ultimately show ?case using <!Q — o < Q’ by blast
qed

end

theory Weak-Cong-Pres
imports Weak-Cong Weak-Bisim-Pres Weak-Cong-Sim-Pres
begin

lemma actPres:
fixes P :: ccs
and (@ :: ccs
and « : act

assumes P = ()

shows a.(P) & a.(Q)

using assms

proof (induct rule: weakConglSym2)

case(cSim P Q)

from <P = @ have P = @ by(rule weakCongruence WeakBisimulation)
thus ?case by(rule actPres)

qed

lemma sumPres:
fixes P :: ccs
and @ :: ccs
and R : ccs

assumes P = @)

shows PO R Q ® R
using assms
proof (induct rule: weakCongISym2)
case(cSim P Q)
from «P = @ have P ~~<weakBisimulation> @ by(rule weakCongruenceF)
thus “case using Weak-Bisim.reflexive
by (rule-tac sumPres) auto
qed

lemma parPres:
fixes P :: ccs

and @ :: ccs
and R : ccs

65



assumes P = ()

shows P| R Q|| R
using assms
proof (induct rule: weakConglSym?2)
case(cSim P Q)
from (P = @) have P ~»<weakBisimulation> @ by(rule weakCongruenceFE)
moreover from (P = > have P = @ by(rule weakCongruence WeakBisimula-
tion)
ultimately show ?case using Weak-Bisim-Pres.parPres
by (rule parPres)
qed

lemma resPres:
fixes P :: ccs
and (@ :: ccs
and <z :: name

assumes P = ()

shows (vz)P = (vz|) Q
using assms
proof (induct rule: weakConglSym2)
case(cSim P Q)
from <P = @ have P ~»<weakBisimulation> @ by(rule weakCongruenceF)
thus ?case using Weak-Bisim-Pres.resPres
by (rule resPres)
qed

lemma weakBisimBangRel: bangRel weakBisimulation C weakBisimulation
proof auto
fix P Q
assume (P, Q) € bangRel weakBisimulation
thus P =~ @
proof (induct rule: bangRel.induct)
case(BRBang P Q)
from (P ~ @) show |P ~ |Q by(rule Weak-Bisim-Pres.bangPres)
next
case(BRPar R T P Q)
from (R ~ T)> have R | P = T || P by(rule Weak-Bisim-Pres.parPres)
moreover from <P ~ @) have P || T~ Q || T by(rule Weak-Bisim-Pres.parPres)
hence T || P = T || Q by(metis bisim WeakBisimulation Weak-Bisim.transitive
parComm)
ultimately show R || P =~ T || Q by(rule Weak-Bisim.transitive)
qed
qed

lemma bangPres:

66



fixes P :: ccs
and @ : ccs

assumes P = ()

shows P = 1()
using assms
proof (induct rule: weakCongISym2)

case(cSim P Q)

let ?2X ={(P, Q)| PQ. P=Q}

from (P = () have (P, Q) € ?X by auto

moreover have AP Q. (P, Q) € X — P ~~<weakBisimulation> @ by(auto
dest: weakCongruenceFE)

moreover have ?X C weakBisimulation by (auto intro: weakCongruence Weak-
Bisimulation)

ultimately have !P ~»<bangRel weakBisimulation> Q) by (rule bangPres)

thus ?case using weakBisimBangRel by (rule Weak-Cong-Sim.weakMonotonic)
qed

end

References

[1] J. Bengtson. Formalising process calculi, volume 94. Uppsala Disserta-
tions from the Faculty of Science and Technology, 2010.

67



	Overview
	Formalisation

