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Abstract

We present an Isabelle formalization of the basics of DCR-graphs [1]
before defining Execution Equivalent markings. We then prove that ex-
ecution equivalent markings are perfectly interchangeable during pro-
cess execution, yielding significant state-space reduction for execution-
based model-checking of DCR graphs.
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theory DCRExecutionEquivalence
imports Main

begin

1 DCR processes
Although we use the term "process", the present theory formalises DCR
graphs as defined in the original places and other papers.
type-synonym event = nat

The static structure. This encompasss the relations, the set of event dom
of the process, and the labelling function lab. We do not explicitly enforce
that relations and marking are confined to this set, except in definitions of
enabledness and execution below.
record rels =

cond :: event rel
pend :: event rel
incl :: event rel
excl :: event rel
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mist :: event rel

dom :: event set

The dynamic structure, called the marking
record marking =

Ex :: event set
In :: event set
Re :: event set

It will be convenient to have notation for the events required, excluded,
etc. by a given event.
abbreviation conds :: rels ⇒ event ⇒ event set

where
conds T e ≡ { f . (f ,e) ∈ cond T }

abbreviation excls :: rels ⇒ event ⇒ event set
where

excls T e ≡ { x . (e,x) ∈ excl T ∧ (e,x) /∈ incl T }

abbreviation incls :: rels ⇒ event ⇒ event set
where

incls T e ≡ { x . (e,x) ∈ incl T }

abbreviation resps :: rels ⇒ event ⇒ event set
where

resps T e ≡ { f . (e,f ) ∈ pend T }

abbreviation mists :: rels ⇒ event ⇒ event set
where

mists T e ≡ { f . (f ,e) ∈ mist T }

Similarly, it is convenient to be able to identify directly the currently
excluded events.

1.1 Execution semantics
definition enabled :: rels ⇒ marking ⇒ event ⇒ bool

where
enabled T M e ≡

e ∈ In M ∧
(conds T e ∩ In M ) − Ex M = {} ∧
(mists T e ∩ In M ) − (dom T − Re M ) = {}

definition execute :: rels ⇒ marking ⇒ nat ⇒ marking
where
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execute T M e ≡ (|
Ex = Ex M ∪ { e },
In = (In M − excls T e) ∪ incls T e,
Re = (Re M − { e }) ∪ resps T e
|)

1.2 Execution Equivalence
definition accepting :: marking ⇒ bool where

accepting M = (Re M ∩ In M = {})

fun acceptingrun :: rels ⇒ marking ⇒ event list ⇒ bool where
acceptingrun T M [] = accepting M

| acceptingrun T M (e#t) = (enabled T M e ∧ acceptingrun T (execute T M e) t)

definition all-conds :: rels ⇒ nat set where
all-conds T = { fst rel | rel . rel ∈ cond T }

definition execution-equivalent :: rels ⇒ marking ⇒ marking ⇒ bool where
execution-equivalent T M1 M2 = (
(In M1 = In M2 ) ∧
(Re M1 = Re M2 ) ∧
((Ex M1 ∩ all-conds T ) = (Ex M2 ∩ all-conds T ))

)

lemma conds-subset-eq-all-conds: conds T e ⊆ all-conds T
using all-conds-def by auto

lemma ex-equiv-over-cond: (Ex M1 ∩ all-conds T ) = (Ex M2 ∩ all-conds T ) =⇒
(Ex M1 ∩ conds T e) = (Ex M2 ∩ conds T e)

using conds-subset-eq-all-conds by blast

lemma enabled-ex-equiv:
assumes execution-equivalent T M1 M2 enabled T M1 e
shows enabled T M2 e

proof −
from assms(1 ) have
(Ex M1 ∩ all-conds T ) = (Ex M2 ∩ all-conds T )
by (simp add: execution-equivalent-def )

hence ex-eq:
(Ex M1 ∩ conds T e) = (Ex M2 ∩ conds T e)
using ex-equiv-over-cond by metis

from assms(1 ) have in-eq:
In M1 = In M2
by (simp add: execution-equivalent-def )

from assms(2 ) have
(conds T e ∩ In M1 ) ⊆ Ex M1
by(simp-all add: enabled-def )

hence
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(conds T e ∩ In M1 ) ∩ (conds T e) ⊆ Ex M1 ∩ (conds T e)
by auto

hence
(conds T e ∩ In M1 ) ⊆ Ex M1 ∩ (conds T e)
by auto

hence
(conds T e ∩ In M2 ) ⊆ Ex M2 ∩ (conds T e)
using ex-eq in-eq by auto

hence
(conds T e ∩ In M2 ) ⊆ Ex M2
by simp

then show ?thesis
using enabled-def assms in-eq execution-equivalent-def by auto

qed

lemma execute-ex-equiv:
assumes execution-equivalent T M1 M2 execute T M1 e = M3 execute T M2 e

= M4
shows execution-equivalent T M3 M4

proof−
from assms have

In M3 = In M4
using execute-def execution-equivalent-def by fastforce

moreover from assms have
Re M3 = Re M4
using execute-def execution-equivalent-def by force

ultimately show ?thesis using assms execute-def execution-equivalent-def
by fastforce

qed

lemma accepting-ex-equiv: execution-equivalent T M1 M2 =⇒ accepting M1 =⇒
accepting M2

by (simp add: accepting-def execution-equivalent-def )

theorem acceptingrun-ex-equiv:
assumes acceptingrun T M1 seq execution-equivalent T M1 M2
shows acceptingrun T M2 seq
using assms

proof(induction seq arbitrary: M1 M2 rule: acceptingrun.induct)
case (1 T M )
then show ?case

by (simp add: accepting-ex-equiv)
next

case (2 T M e t)
then show ?case proof−

from 2 (2 ) obtain M1e where m1e:
M1e = execute T M1 e
by blast

hence m1e-accept:
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acceptingrun T M1e t
using 2 (2 ) acceptingrun.simps(2 ) by blast

obtain M2e where
M2e = execute T M2 e
by blast

moreover from this m1e have
execution-equivalent T M1e M2e
using 2 (3 ) execute-ex-equiv by blast

moreover from this have
acceptingrun T M2e t
using 2 (1 ) m1e-accept by blast

ultimately show ?thesis using 2 (2 ) enabled-ex-equiv 2 (3 ) acceptingrun.simps(2 )
by blast

qed
qed

end
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