计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 217-223.doi: 10.11896/j.issn.1002-137X.2019.07.033
宋晓祥,郭艳,李宁,余东平
SONG Xiao-xiang,GUO Yan,LI Ning,YU Dong-ping
摘要: 针对大多数已有算法在预测协同进化时间序列中的缺失数据时只适用于缺失数据较少情况的问题,提出了一种高效的缺失数据预测算法。首先,应用压缩感知理论,将协同进化时间序列中的缺失数据预测问题建模成多稀疏向量恢复问题;其次,从稀疏表示向量是否足够稀疏和感知矩阵是否满足有限等距特性两个方面分析了模型的性能;最后,针对协同进化时间序列的特点设计了一种基于稀疏贝叶斯学习的高效恢复算法,该算法可以通过学习得到部分支持信息,从而同时解决多个稀疏向量的恢复问题。仿真结果表明,所提算法可以同时有效地预测出多个时间序列中的缺失数据。
中图分类号:
[1]SOWMYA R,SUNEETHA K R.Data mining with big data[C]∥ International Conference on Intelligent Systems and Control.IEEE,2017:246-250. [2]SHI W,ZHU Y,YU P S,et al.Temporal dynamic matrix factori- zation for missing data prediction in large scale coevolving time series [J].IEEE Access,2017,4(99):6719-6732. [3]ELENI I,VLAHOGIANNI J,GOLIAS C,et al.Short-term traffic forecasting:Overview of objectives and methods [J].Transport Reviews,2004,24(5):533-557. [4]BALOUJI E,SALOR Q,ERMIS M.Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and inter harmonics of EAF currents[C]∥IEEE Industry Applications Society Meeting.IEEE,2017:1-8. [5]KOZERA R,WILKOLAZKA M.Natural spline interpolation and exponential parameterization for length estimation of curves[C]∥International Conference of Numerical Analysis & Applied Mathematics.AIP Publishing LLC,2017:1-140. [6]AL-DEEK H M,CHANDRA C.New algorithms for filtering and imputation of real-time and archived dual-loop detector data in 1-4 data warehouse[C]∥Meeting of the Transportation-Research-Board.2004:116-126. [7]BOYLES S D.A comparison of interpolation methods for mis- sing traffic volume data[C]∥Transportation Research Board Annual Meeting.2011:23-27. [8]LIPPI M,BERTINI M,FRASCONI P.Short-term traffic flow forecasting:An experimental comparison of time-series analysis and supervised learning[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(2):872-882. [9]LI Y,LI Z,LI L,et al.Comparison on PPCA,KPPCA and MPPCA based missing data imputing for traffic flow[C]∥Procee-dings of IEEE Conference on Intelligent Transportation System.2013:1535-1540. [10]SHI W,ZHU Y,YU P.Effective Prediction of Missing Data on Apache Spark over Multivariable Time Series[J].IEEE Tran-sactions on Big Data,2017,PP(99):1. [11]STRAUMAN A S,BIANCHI F M,MIKALSEN K.Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks[C]∥IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).2018:307-310. [12]CAI Y,TONG H,FAN W,et al.Fast mining of a network of coevolving time series[C]∥2015 SIAM International Conference on Data Mining.2015:298-306. [13]HADI A,WAHIDAH I.Delay estimation using compressive sensing on WSN IEEE 802.15.4[C]∥International Conference on Control,Electronics,Renewable Energy and Communications.IEEE,2017:192-197. [14]ARJOUNE Y,KAABOUCH N,GHAZI H E,et al.Compressive sensing:Performance comparison of sparse recovery algorithms[C]∥Computing and Communication Workshop and Con-ference.IEEE,2017:1-7. [15]RHEE I,SHI N M,HONG S,et al.Mobility traces[OL]. http://carwdad.org/ncsu/mobilitymodels. [16]SAMUEL M.Intel Lab Data[OL].http://db.csail.mit.edu. [17]FONOLLOSA J,SHEIK S,HUERTA R,et al.Reservoir computing compensates slow response of chemo sensor arrays exposed to fast varying gas concentrations in continuous monitoring[J].Sensors,2015,215:618-629. [18]WU X,LIU M.In-situ soil moisture sensing:Measurement scheduling and estimation using compressive sensing[C]∥Proceedings of the 11th ACM International Conference on Information Processing in Sensor Networks.2012:1-12. [19]HU S W,LIN G X,HSIEH S H,et al.Performance analysis of joint-sparse recovery from multiple measurement vectors with prior information via convex optimization[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2016:4368-4372. [20]ZHAO X,YANG Q,ZHANG Y.Synthesis of sparse linear array with multiple patterns based on joint sparse recovery[C]∥IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting.IEEE,2017:425-426. [21]WALEWSKI A C,STEFFENS C,PESAVENTO M.Off-Grid Parameter Estimation Based on Joint Sparse Regularization[C]∥International Itg Conference on Systems,Communications and Coding.2017. [22]ZHANG Z,RAO B D.Sparse signal recovery in the presence of correlated multiple measurement vectors[C]∥International Conference on Acoustics Speech and Signal Processing.2010:3986-3989. [23]PRASAD R,MURPHY C R,RAO B D.Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning[J].IEEE Signal Processing Letters,2014,62(14):3591-3603. [24]CHEN W.Simultaneous sparse Bayesian learning with partially shared support[J].IEEE Signal Processing Letters,2017,24(11):1641-1645. [25]TIPPING M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244. [26]BISHOP C M.Pattern Recognition and Machine Learning (Information Science and Statistics).Springer-Verlag New York,2006. |
[1] | 李培冠, 於志勇, 黄昉菀. 基于稀疏表示的电力负荷数据补全 Power Load Data Completion Based on Sparse Representation 计算机科学, 2021, 48(2): 128-133. https://doi.org/10.11896/jsjkx.191200152 |
[2] | 陈平, 郭秋歌, 李攀, 崔峰. OFDM系统中基于贝叶斯学习的联合稀疏信道估计与数据检测 Joint Sparse Channel Estimation and Data Detection Based on Bayesian Learning in OFDM System 计算机科学, 2020, 47(11A): 349-353. https://doi.org/10.11896/jsjkx.191100090 |
[3] | 宋晓祥, 郭艳, 李宁, 王萌. 基于压缩感知的时间序列缺失数据预测算法 Missing Data Prediction Based on Compressive Sensing in Time Series 计算机科学, 2019, 46(6): 35-40. https://doi.org/10.11896/j.issn.1002-137X.2019.06.004 |
[4] | 卞孝丽. 基于拉伸因子图的低复杂度贝叶斯稀疏信号算法研究 Low Complexity Bayesian Sparse Signal Algorithm Based on Stretched Factor Graph 计算机科学, 2018, 45(6A): 135-139. |
[5] | 陈静杰,车洁. 基于标准欧氏距离的燃油流量缺失数据填补算法 Fuel Flow Missing-value Imputation Method Based on Standardized Euclidean Distance 计算机科学, 2017, 44(Z6): 109-111. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.023 |
[6] | 王 锋 魏 巍. 缺失数据数据集的组增量式特征选择 Group Feature Selection Algorithm for Data Sets with Missing Data 计算机科学, 2015, 42(7): 285-290. https://doi.org/10.11896/j.issn.1002-137X.2015.07.061 |
[7] | 彭红毅 朱思铭 蒋春福. 数据挖掘中基于ICA的缺失数据值的估计 计算机科学, 2005, 32(12): 203-205. |
|