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Abstract

In climate science, teleconnection analysis has a long standing history as a means for
describing regions that exhibit above average capability of explaining variance over time
within a certain spatial domain (e.g., global). The most prominent example of a global
coupled ocean-atmosphere teleconnection is the El Niño Southern Oscillation. There are
numerous signal decomposition methods for identifying such regions, the most widely
used of which are (rotated) empirical orthogonal functions. First introduced by van den
Dool, Saha, and Johansson (2000), empirical orthogonal teleconnections (EOT) denote a
regression based approach that allows for straight-forward interpretation of the extracted
modes. In this paper we present the R implementation of the original algorithm in the
remote package. To highlight its usefulness, we provide three examples of potential use-
case scenarios for the method including the replication of one of the original examples
from van den Dool et al. (2000). Furthermore, we highlight the algorithm’s use for cross-
correlations between two different geographic fields (identifying sea surface temperature
drivers for precipitation), as well as statistical downscaling from coarse to fine grids (using
Normalized Difference Vegetation Index fields).

Keywords: teleconnection analysis, spatial data mining, raster data, R, climate science.

1. Introduction

With more than 30 years of continuous satellite observations and an ever increasing amount of
available environmental models, time series analysis of gridded geoscientific data has become
more and more popular in the recent past. One field where spatio-temporal analysis of gridded
data has a long history is climate science. Due to the nature of the field, many studies are
carried out on rather large spatial extents (e.g., global scales) and hence gridded data sets
have been utilized intensively. Yet, even on smaller regional or local scales, high resolution
satellite imagery, gridded interpolated point measurements or numerical model grids are able
to provide very useful information that is spatially and temporally consistent.
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In climate science, teleconnection analysis has a long standing history as a means for describ-
ing regions that exhibit above average capability of explaining variance over time within a
certain spatial domain (e.g., global). The most prominent example of a global atmospheric
teleconnection is the El Niño Southern Oscillation (ENSO). There are numerous signal de-
composition methods for identifying such regions, the most widely used of which are (rotated)
empirical orthogonal functions (EOF). First introduced by van den Dool et al. (2000), em-
pirical orthogonal teleconnections (EOT) denote a correlation based approach that allows
for straight-forward interpretation of the extracted modes. There are several studies that
have made use of EOT analysis in various ways. Franzke (2002) used EOTs to character-
ize low-frequency flow variability modes and their influence on storm tracks in the Northern
Hemisphere in a simplified global circulation model. Smith and Reynolds (2003) used both
rotated EOFs and EOT analysis to investigate high-frequency anomalies in global sea surface
temperatures (SST) and found that both approaches produce many patterns that are almost
identical. To characterize drought severity across Europe between 1901 and 2002 van der
Schrier, Briffa, Jones, and Osborn (2006) used EOT analysis for both spatial pattern isola-
tion and time series analysis of these patterns. Yet another example of the use of EOTs can
be found in Reynolds, Smith, Liu, Chelton, Casey, and Schlax (2007). Here, EOTs are used
to bias correct satellite imagery as part of a methodology to create high-resolution (in space
and time) SST grids. Rotstayn et al. (2010) utilized EOT analysis in order to evaluate the
performance of a newly adapted coupled ocean-atmosphere global climate model, especially
its ability to reproduce leading modes of precipitation variability in Australia. Also using
EOT analysis Klingaman, Woolnough, and Syktus (2013) identified regions of high rainfall
variability in Queensland, Australia, which they then related to large-scale drivers such as
ENSO.

Despite the apparent diversity in the way of applying EOT analysis, all of the above-mentioned
investigations are rooted within climate science. We believe that the potential of the EOT
algorithm is much greater and that it can also be useful for other disciplines that make use
of gridded data sets. Therefore, we hope that with a computationally efficient implemen-
tation of the EOT algorithm in the open source package remote (Appelhans, Detsch, and
Nauss 2015) for R (R Core Team 2015), which is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=remote, this methodology will
be adopted more widely in the future, potentially also by disciplines other than the climate
science community.

2. Eot algorithm

Empirical orthogonal teleconnections have first been introduced to the international literature
as an alternative to the classical approach of empirical orthogonal functions by van den Dool
et al. (2000). van den Dool (2007) outlines that both EOT and EOF are indeed very similar
techniques with the former producing less abstract results. Both methods decompose spatio-
temporal fields into a set of independent orthogonal patterns. In contrast to EOFs, which are
orthogonal in both space and time, EOT analysis produces patterns that are orthogonal in ei-
ther space or time (the current implementation of package remote provides the latter). EOTs
carry a quantitative meaning in the form of explained variance, thus enabling intuitive inter-
pretation of the results. Additionally, the method is easy to comprehend both methodically
and algorithmically (see next paragraph). It is possible to calculate internal EOTs isolating
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teleconnection patterns within one spatio-temporal domain. We highlight this in Section 4.1
Figure 1. In addition, EOTs may also be used to investigate teleconnectivity between two
domains (van den Dool 2007 calls this EOT2, Eastman 2009 named it cross-EOT). In this
case, temporal variability of one domain (predictor) is analyzed with regard to explained vari-
ance of the temporal dynamics of another domain (response). Apart from similarity in the
temporal dimension (i.e., identical amount of data points over time), the algorithm can be
applied to any two domains without further requirements such as identical spatial resolution
or physical units of the data. An example of this can be found in Figure 2 in Section 4.2
where we explain precipitation variation as a function of sea surface temperatures.

The mathematics of the EOT algorithm are described in detail in van den Dool et al. (2000)
and van den Dool (2007) and can be summarized as follows. First, the temporal profiles
of each pixel pp of the predictor domain are regressed against the profiles of all pixels pr in
the response domain. The calculated coefficients of determination are summed up and the
pixel with the highest sum for explaining variance within the response domain is identified
as the “base point” of the first/leading mode. The temporal profile at this base point is the
first/leading EOT. Then, the residuals from the regression are taken to be the basis for the
calculation of the next EOT, thus ensuring orthogonality of the identified teleconnections.
This procedure is repeated until a predefined amount of n EOTs is calculated. Generally,
package remote can be considered a “brute force” spatial data mining approach to identify
locations of enhanced potential to explain spatio-temporal variability within some geographic
domain.

3. Package design and functionality

3.1. General package design

Package remote is based on the raster package (Hijmans and van Etten 2015) due to the
fact that EOT analysis is usually applied to gridded space-time data (though in theory any
irregular data may be analyzed this way as long as the area represented by each observation is
known). This means that in order to use the functions provided by package remote, input must
be of class ‘Raster*’. This ensures consistency and compatibility with all other R packages
designed for the analysis of ‘Raster*’ data. Essentially, all functionality provided by package
remote could be achieved with the standard functions provided by package raster, and indeed
many functions of the package at hand utilize these. However, as the nature of space-time
analysis is such that data sets are commonly very large and that in order to find one base point,
pp · pr computations are necessary, the regression calculations of package remote are imple-
mented in C++ via package Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013). This
ensures acceptable computation times and memory usage, even though calculations can still
take time to complete, depending on the number of predictor and response pixels. In compar-
ison to the most commonly available implementation of the EOT algorithm in IDRISI’s Earth
Trends Modeller (Version Taiga; Eastman 2009), computation time is reduced by one order of
magnitude. In addition to the above-mentioned raster and Rcpp dependencies, package re-
mote provides plotting methods that are based on the lattice and latticeExtra packages (Sarkar
2008; Sarkar and Andrews 2012) and use palettes from ColorBrewer.org (Harrower and Brewer
2003) through the RColorBrewer package (Neuwirth 2011). Package remote is licensed under
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the GNU General Public License version 3 and available from CRAN. The development version
is hosted at https://github.com/environmentalinformatics-marburg/remote and can be
installed with the install_github() function available in the devtools package (Wickham
and Chang 2013). Below, we give a detailed description of the classes, methods and functions
implemented in package remote.

3.2. Classes

As pointed out before, the input to all methods and functions provided by remote need to
be of class ‘Raster*’, in particular ‘RasterBrick’ or ‘RasterStack’. The workhorse function
of package remote is eot(). It calculates a variety of outcomes which are returned as class
‘EotMode’ if only one mode is calculated or ‘EotStack’ in the case of multiple modes.

The basic class ‘EotMode’ includes all necessary results from the regression calculations per-
formed by eot() and has the following slots (classes are given in brackets):

� mode: The number of the identified mode (integer).

� eot: The EOT (time series) at the identified base point(numeric).

� coords_bp: The coordinates of the identified base point (matrix).

� cell_bp: The cell number of the identified base point (integer).

� cum_exp_var: The (cumulative) explained variance of the considered EOT (numeric).

� r_predictor: The raster of the correlation coefficients between the base point and each
pixel of the predictor domain (‘RasterLayer’).

� rsq_predictor: As above but for the coefficient of determination (‘RasterLayer’).

� rsq_sums_predictor: As above but for the sums of coefficient of determination
(‘RasterLayer’).

� int_predictor: The raster of the intercept of the regression equation for each pixel of
the predictor domain (‘RasterLayer’).

� slp_predictor: Same as above but for the slope of the regression equation for each
pixel of the predictor domain (‘RasterLayer’).

� p_predictor: The raster of the significance (p-value) of the the regression equation for
each pixel of the predictor domain (‘RasterLayer’).

� resid_predictor: The ‘RasterBrick’ of the reduced data for the predictor domain
(‘RasterBrick’).

Apart from rsq_sums_predictor, all *_predictor slots are also available for the *_response
domain, even if predictor and response domain are equal. This is due to that fact, that if not
both fields are reduced after the first EOT is found, these ‘Raster*’ objects will differ. If the
user chooses to write the results to disk, all ‘Raster*’ objects outlined above will be saved
as native raster .grd files. Note that this may require rather large amounts of disk space, as
for each identified EOT 13 ‘Raster*’ objects will be written to disk. Location (x, y), EOT

https://github.com/environmentalinformatics-marburg/remote


Journal of Statistical Software 5

number n, cumulative explained variance along with a comment as to whether the location of
the EOT is unambiguous will be saved in a .csv file in a user-supplied location on the hard
disk. This enables further investigations of the results without having to re-run the analysis
from scratch, which, in light of the sometimes high computation times, is indispensable.

Multiple modes are stored in an object of class ‘EotStack’ with two slots. The first slot is
called modes and is essentially a list containing all calculated ‘EotModes’. The second slot is
called names and stores the names of the calculated ‘EotModes’.

3.3. Methods and functionality

Given below is a detailed list of the available remote functions and methods (in alphabetical
order). Most of these will be utilized in Section 4.2, however, the reader is referred to the
documentation where in-depth descriptions and detailed examples are readily available. To
highlight the functionality of the remote package, we provide three use-case scenarios of
potential applications of the package in Section 4.

Currently, remote provides the following functionality (only user relevant functions are shown):

� anomalize(): Create an anomaly space-time field from an object of class ‘RasterStack’
or ‘RasterBrick’. Either based on the overall mean of the object of class ‘RasterStack’
or ‘RasterBrick’, or a supplied reference ‘RasterLayer’.

� calcVar(): Calculate the mean (optionally standardized) space-time variance of a
‘RasterStack’ or ‘RasterBrick’.

� cutStack(): Remove a specified number of layers from the beginning or the end of a
‘RasterStack’ or ‘RasterBrick’. This is used in lagalize() to create lagged ‘Raster*’
objects.

� denoise(): Noise filtering through principal components. The user can either spec-
ify how many components to keep or can provide a value for the minimum variance
that should be kept. Additionally, the user can choose whether the field should be
geographically weighted (see geoWeight()).

� deseason(): Create seasonal anomalies of a ‘RasterStack’ or ‘RasterBrick’ by sup-
plying a suitable seasonal window.

� eot(): The core function of the package. The user supplies a predictor ‘RasterStack’ or
‘RasterBrick’ and (optionally) a response ‘RasterStack’ or ‘RasterBrick’, the number
of n EOT modes to be calculated, whether the results should be standardized (i.e., R2

values be multiplied by the variance), whether both predictor and response (or only the
latter) should be reduced after the first mode is identified (i.e., the residuals be taken)
and the type of the link function (either correlation or index of directional agreement).
Optionally, all results can be written to disk to a user-supplied path and the amount of
information printed to the console can be controlled.

� geoWeight(): Create geographically weighted fields by supplying a suitable function to
be used (e.g., cosine) in order to compensate for non-equal area grids in case of non-
projected geographical data (i.e., lat/lon coordinate reference system). The function is
applied to the (radians of) latitude of the supplied ‘Raster*’ object.
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� lagalize(): Create time-lagged ‘RasterStacks’ or ‘RasterBricks’ by choosing a suit-
able lag number with regard to the frequency of the data.

� names(): Get or set the names of ‘Eot*’ objects.

� nmodes(): Get the number of modes of an ‘EotStack’.

� nXplain(): identify the number of modes needed to explain a certain, user-supplied
amount of variance within the response series of an ‘EotStack’.

� plot(): Plotting method of package remote. By default three panels are drawn: i) the
coefficient of determination image of the predictor domain, ii) the correlation coefficient
image for the response domain and iii) the times series of the identified EOT at the
base point. It is possible to control which of the n EOT modes should be displayed and
the combination of images shown is completely flexible. Additionally, the color palette
can be controlled and further minor modifications can be made (see documentation).
Setting argument locations to TRUE will produce a map showing all identified base
points color coded by mode (1−n).

� predict(): Spatial predictions using the fitted models calculated with eot(). A user-
defined set of n EotModes will be used to model the outcome using the identified link
functions of the respective modes which are added together to produce the final predic-
tion.

� subset(): Extract a set of modes from an ‘EotStack’.

� writeEot(): Write ‘Eot*’ objects to disk. This is merely a wrapper around
writeRaster() from the raster package with argument overwrite set to TRUE by de-
fault.

3.4. Data sets

Package remote includes three data sets: vdendool, australiaGPCP and pacificSST. All
of these data sets are used in the package documentation examples and in the following
section which also provides detailed descriptions about these data. All data sets are of class
‘RasterBrick’.

4. Examples

This section highlights three different use-case scenarios for potential applications of the
remote package (though we are confident that there are many more exciting applications
to be found).

1. As a first example, we replicate one of the examples from van den Dool et al. (2000,
Example 3.d., Figure 6). A spatio-temporal field of 700 mb geopotential heights of
NCEP/NCAR reanalysis grids (Kalnay et al. 1996) is decomposed into its four lead-
ing modes exhibiting the prominent patterns of North Atlantic Oscillation (NAO) and
Pacific-North American Pattern (PNA) as modes 1 and 2, respectively.
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2. A second example highlights the application of an EOT analysis between two geosci-
entific fields. We identify influential areas of sea-surface temperature anomalies in the
tropical Pacific Ocean that remotely drive precipitation dynamics over mainland Aus-
tralia. For this we use NOAA OI SST V2 (Reynolds et al. 2007) as a predictor field
and Global Precipitation Climatology Project data (GPCP V2.2; Adler et al. 2003)
as the response series. The aim is to directly identify regions of sea surface tempera-
ture variability that exhibit enhanced ability of explaining precipitation variations over
mainland Australia. So far, only indirect approaches have been taken (e.g., Klingaman
et al. 2013) where internal base points of precipitation variability have been identi-
fied and then regressed against standard teleconnection indices, such as the Southern
Oscillation Index (SOI).

3. As a final example we show a completely different application of the remote functionality.
The intention is to spatially down-sample the Global Inventory Modelling and Mapping
Studies (GIMMS, V2.0) NDVI product (Tucker et al. 2005) with a resolution of 8 km to
MODIS NDVI MYD13Q1 observations (LPDAAC 2006) with a resolution of 250 m for
the region of Mt. Kilimanjaro. We evaluate the quality of the resulting artificial series
by comparing the calculated NDVI images with MODIS NDVI images that were not
considered during model definition. Furthermore, we visually assess the performance of
the calculated time series for a number of randomly selected pixels.

4.1. Winter mean 700 mb height over the Northern Hemisphere

Section 3.d. in van den Dool et al. (2000) provides an excellent example of the use of the EOT
algorithm to extract atmospheric teleconnections using winter mean 700 mb heights over the
Northern Hemisphere. The climatologically inclined reader is referred to the respective Section
in van den Dool et al. (2000) for a more detailed description of the atmospheric dynamics and
processes associated with the identified patterns. Here, we merely want to highlight that the
remote implementation of the algorithm produces similar results to those presented in van
den Dool et al. (2000).

The data set needed for this example is included in package remote and the four modes needed
for the example can be calculated with:

R> data("vdendool", package = "remote")

R> nh_modes <- eot(x = vdendool, y = NULL, n = 4, reduce.both = FALSE,

+ standardised = FALSE, verbose = FALSE)

In order to recreate Figure 6 from van den Dool et al. (2000), some additional lines of code
are necessary (including spatial re-projection of the rasters). These can be found in the
supplementary material and will produce Figure 1.

Even though the location of the identified base points (BP) is somewhat offset, and hence
the explained variance (EV) figures differ slightly, it is obvious that the isolated patterns are
very similar and represent the same signals. We can only speculate as to why the base point
locations differ slightly, but potential reasons may include different version numbers of the
reanalysis data, differences in the final data sets introduced through different aggregation
calculations while thinning the original 2.5◦× 2.5◦ reanalysis data to 10◦× 5◦ grids, rounding
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DJF HGT 700 hPa NCEP/NCAR Reanalysis (1948 − 1998)

Figure 1: Replication of Figure 6 from van den Dool et al. (2000). EV is explained variance
of the response domain, BP is the location of the identified base point (longitude, latitude).
Resolution of the grids is 10/5 degrees of longitude/latitude.

discrepancies between the utilized software environments (especially when summing up the
coefficients of determination) and slight differences in geographic projections.

4.2. Identifying tropical Pacific SST drivers for Australian precipitation

The processes of precipitation development are complex and not yet understood completely.
The physical state of the atmosphere, which determines whether rain occurs or not at any
point in space and time, is the result of a multitude of constantly changing factors. Influ-
ences range from local to hemispheric boundary conditions in all four dimensions (including
time). Some areas of the global oceans exhibit low-frequency anomaly signals which can
influence precipitation variability world-wide. The most prominent example of a coupled
ocean-atmosphere tropical SST variability is ENSO. ENSO has received much attention in
the scientific literature since the major 1982–83 El Niño. Here, we investigate whether EOT
analysis can be used to identify the ENSO signal as a driver for monthly Australian precip-
itation variability over the period 1982 to 2010. The data sets needed for this analysis are
included in package remote. In order to reveal low-frequency signals such as ENSO, we need
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to prepare the raw data fields so that high-frequency variation is eliminated. We achieve this
by creating seasonal anomalies using deseason() and by denoise()-ing the data to filter out
some of the noise that is present in any spatio-temporal data field. The first/leading mode of
SSTs most influential for Australian rainfall variability can be calculated with:

R> data("australiaGPCP", package = "remote")

R> data("pacificSST", package = "remote")

R> sst_pred <- deseason(pacificSST, cycle.window = 12)

R> gpcp_resp <- deseason(australiaGPCP, cycle.window = 12)

R> sst_pred_dns <- denoise(sst_pred, expl.var = 0.9)

Using the first 19 components (of 348) to reconstruct series...

these account for 0.9 of variance in orig. series.

R> gpcp_resp_dns <- denoise(gpcp_resp, expl.var = 0.9)

Using the first 37 components (of 348) to reconstruct series...

these account for 0.9 of variance in orig.~series.

R> aus_modes <- eot(x = sst_pred_dns, y = gpcp_resp_dns, n = 1,

+ standardised = FALSE, reduce.both = FALSE, verbose = FALSE)

As we can see, especially the principal components filter from denoise() is an important step,
as it tells us that we need only 19 (37) of the original 348 (12 months · 29 years) components
for the SST (GPCP) data to explain 90% of the respective inherent field variance. To get a
visual impression, the results for the first leading mode can be plotted using plot():

R> plot(aus_modes, y = 1, show.bp = TRUE, arrange = "long")

We see that we are indeed able to isolate the ENSO signal as the most important SST driver
in the tropical Pacific for Australian precipitation. This signal is able to explain just above
4% of the original variation found in rainfall over the analyzed period (1982–2010). This may
not seem much, but we need to keep in mind that precipitation is influenced by many factors,
with local conditions playing a major role. Spatially, mainly the North-Eastern part of the
response domain is being explained with some locations showing negative correlations of up to
0.4. With regard to mainland Australia, it becomes obvious that the identified ENSO signal
is not able to explain any rainfall variation in the inner-continental parts of the land mass.
It is mainly the coastal areas that are influenced by the ENSO phenomenon, which is in line
with the findings of Risbey, Pook, McIntosh, Wheeler, and Hendon (2009). Note that our
analysis did not take into account any time lags between the SST anomalies and precipitation.
Even though in this particular example lagging does not increase the explanatory power of
the SST signal (not shown), it can be expected that in many cases the influence will not
manifest instantaneously and that a certain time lag will explain a higher portion of the
rainfall variance.

4.3. Downscaling GIMMS NDVI to MODIS NDVI

As much of the authors’ research is focused on eco-climatological studies at and around
Mt. Kilimanjaro, this region shall be the focus of our last use-case. In order to infer sound
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Figure 2: Coefficient of determination image of the first leading mode of tropical Pacific SSTs
(predictor – top panel) along with correlation coefficient image of precipitation over mainland
Australia (response – central panel). The time series at the base point of this mode (gray
circle in top panel) is shown in the bottom panel. Time span of analysis is January 1982–
December 2010. Resolution of SST grid (predictor) is 1◦ × 1◦ long/lat, resolution of GPCP
grid (response) is 2.5◦ × 2.5◦ long/lat.
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trends of climatic or related environmental parameters, it is essential to have time series that
span a long enough period to capture some of the low-frequency signals that might influence
their temporal dynamics. One of the parameters frequently used in eco-climatological studies
is the Normalized Difference Vegetation Index (NDVI). The NDVI is a normalized difference
between red and near infra-red reflectances and gives information on the “greenness” of vege-
tation. Its essential characteristics are such that it ranges between −1 and 1 with dense green
vegetation having positive values (close to 1) and clouds, water, ice and snow being char-
acterized by negative values. The MODIS sensor on board NASA’s Aqua satellite platform
provides a standard NDVI product (MYD13Q1) that has been widely used for a diverse range
of investigations. Its horizontal resolution is 250 m by 250 m and with a repeat rate of 16
days it is perfectly suited for spatio-temporal vegetation analyses that require high-resolution
imagery. One of the biggest draw-backs of this data is that it is only available from mid 2002
and is therefore temporally not comprehensive enough for investigations over long time scales,
such as the above-mentioned trend analyses. Another readily available and also widely used
NDVI data set that spans a much longer time period (1982 to 2006) is GIMMS NDVI V2.0.
This data, however, has a horizontal resolution of only 8 km by 8 km. In this last example we
show that it is possible to utilize the remote package for the spatial downscaling of GIMMS
NDVI to MODIS resolution to create a consistent data set that provides high-resolution NDVI
information for the period of the GIMMS data set.

There are several commonly used approaches for statistical downscaling. Among others, these
include PCA based approaches (e.g., Ehrendorfer 1987), machine learning approaches (e.g.,
Sachindra, Huang, Barton, and Perera 2013; Chen, Yu, and Tang 2010; Tripathi, Srinivas,
and Nanjundiah 2006; Olsson et al. 2003; Davy, Woods, Russell, and Coppin 2010; Vaca,
Golicher, and Cayuela 2011) and multiple linear and non-linear regression based approaches,
or combinations of these (for an overview of commonly used approaches see e.g., Huth
1999; Wilby and Wigley 1997). The specifics of the methodologies differ depending on the
approach taken. PCA based approaches generally identify a number of components in the
predictor domain(s) that together explain a certain amount of variance of the response data.
This approach is very similar to the one using EOTs. In this case, the predictor domain is
screened for one grid-point that explains most of the variance in the entire response domain.
This is repeated on the reduced response domain to identify the next important grid-point
until a pre-defined number of reduced grid-point contributions is identified. Hence, for the
downscaling using package remote it is advisable to calculate many EOTs in order to explain
a large enough portion of the response variance. The exact amount obviously depends on
the nature of the relationship between predictor and response domains and on the intended
application. The number of EOTs needed to explain a certain, user-supplied amount of
variance can easily be calculated with the remote function nXplain().

In order to establish a relationship between GIMMS and MODIS data, we need the data sets
to overlap for some time. Obviously, the larger the overlap, the better the prediction will be.
In the case of GIMMS vs. MODIS, the available overlap is four years (2003–2006). As we need
to be able to evaluate the prediction performance, we split these four years into a training
series and an evaluation series of two years each. Here, we simply take the first two years
(2003–2004) for model training and the last two years (2005–2006) for evaluation. Of course,
more sophisticated approaches using random sampling of a number of layers are possible,
but given that vegetation dynamics in the Mt. Kilimanjaro region exhibit seasonality, it is
important that the monthly samples be equally distributed. Therefore, having two full years
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for the training and two full years for evaluation seems sufficient.

The data used for this example can be found in the supplementary material to this article.
It needs to be pointed out that the MODIS data set (modisKiliNDVI) was exposed to some
pre-processing due to high levels of cloud contamination. To address this issue, we used the
so-called Whittaker smoother (Atzberger and Eilers 2011) which is available as part of the
MODIS package (Mattiuzzi et al. 2014). We applied the Whittaker smoother with a lambda
of 6000 and three iterations. The GIMMS NDVI data is provided gap-free but we applied
the same smoothing to make the two data sets more comparable. In order to capture a large
enough amount of variability we calculate the first ten EOTs:

R> load("gimmsKiliNDVI.RData")

R> load("modisKiliNDVI.RData")

R> pred_ind <- 1:24

R> mod_stck_pred <- modisKiliNDVI[[pred_ind]]

R> mod_stck_eval <- modisKiliNDVI[[-pred_ind]]

R> gimms_stck_pred <- gimmsKiliNDVI[[pred_ind]]

R> gimms_stck_eval <- gimmsKiliNDVI[[-pred_ind]]

R> ndvi_modes <- eot(x = gimms_stck_pred, y = mod_stck_pred, n = 10,

+ standardised = FALSE, reduce.both = FALSE, verbose = FALSE)

As the results of eot() include all the necessary output from the regression analysis, namely
the ‘RasterLayers’ of intercept and slope, we can create an artificial data set as a function of
GIMMS NDVI with the resolution of MODIS NDVI for the evaluation time period 2005–2006.
For this, we first calculate the minimum number of modes (nm) needed to explain at least
98% of the response domain variance using nXplain(). In the example at hand, six modes
are needed. We then use predict() to make the spatial predictions from the evaluation data
set.

R> nm <- nXplain(ndvi_modes, 0.98)

R> mod_predicted <- predict(object = ndvi_modes,

+ newdata = gimms_stck_eval, n = nm)

In order to assess the downscaling performance we calculate the mean error (ME), the mean
absolute error (MAE), the root mean square error (RMSE), the correlation coefficient (R)
and the coefficient of determination (Rsq) shown in Figure 3. The code to produce this figure
and all subsequent figures can be found in the supplementary material.

We see that the mean error is generally slightly negative indicating a general underestimation
of the NDVI values. However, with less than 0.1, the general prediction error is generally low
as denoted by the MAE. Additionally, a median coefficient of determination of around 0.9
indicates very good prediction performance.

A look at the spatio-temporal distribution of the residuals (observed NDVI − predicted NDVI)
in Figure 4 exhibits that the most difficult areas to predict are the lowlands around Mt. Kil-
imanjaro. These regions are dominated by extensively managed agricultural crops such as
maize, wheat and sunflower fields that are indeed depending on the seasonal precipitation
cycle to a high degree (i.e., they are not artificially irrigated). Yet, they exhibit different
temporal responses to the local precipitation climatology than the also abundant natural
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Figure 3: Boxplot of evaluation statistics for quality of downscaling. ME – Mean Error; MAE
– Mean Absolute Error; RMSE – Root Mean Square Error; R – correlation coefficient; Rsq. –
coefficient of determination.

Savannah areas. The herbaceous layer of the Savannah ecosystems usually responds immedi-
ately to increased water input resulting in a rather large NDVI increase over very short time
periods with a gradual decrease thereafter. For the managed lowland systems this behavior
is usually reversed.

Figure 5 shows time series comparisons for 50 randomly selected pixels from the scenes shown
in Figure 4. Both central tendency (dashed lines) and variance of the time series are captured
well by the EOT approach. In summary, the general performance of the prediction seems
very reasonable, especially in light of the high complexity of the investigated region.

5. Conclusions

In this paper we have presented the R implementation of empirical orthogonal teleconnection
analysis as introduced to the scientific community by van den Dool et al. (2000). We have
highlighted the general remote package design as well as its classes and the specific set of
methods and functions that remote provides. Furthermore, we have shown a range of use-
case scenarios of remote in three distinct examples including the replication of one of the
original examples from van den Dool et al. (2000).

Especially the utilization of package Rcpp for the computation-intensive calculations ensures
acceptable computation times and memory usage for the “brute force” spatial data mining
algorithm at hand. This is a very important aspect of package remote as the amount of
data points in spatio-temporal geoscientific fields is generally extremely large and can easily
require millions, or even billions of calculations. The general design of package remote en-
sures easy integration into potential existing work flows as it is largely based on the raster
package which, as the name implies, is the standard foundation for raster analyses in R. In its
current implementation package remote provides all the tools to utilize the EOT algorithm
as postulated by van den Dool et al. (2000). For the future, we plan to implement space-
time reversal to facilitate the search for patterns that are orthogonal in space. Furthermore,
our aim is to enhance functionality through the integration of further link functions such
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Figure 4: Predicted NDVI images showing spatial distribution of residuals from the prediction.
Only residuals > 0.1 / < −0.1 are shown. The date of the scene is shown in the top right
corner of each panel.
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Figure 5: Predicted and observed NDVI time series for 50 randomly selected pixels. Black
lines are predicted NDVI values, gray lines are MODIS NDVI observations. Dashed lines
denote the mean of the respective series. Pixel numbers are shown above each panel.
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as non-parametric and/or non-linear approaches. Furthermore, it is intended to extend the
functionality towards providing the ability to use multiple predictor fields as well as more
options for data preparation and visualization of the results.

The examples provided in this paper highlight the diverse range of potential uses for package
remote. The first example is merely intended to show that the remote implementation of the
algorithm produces results similar to those of the original implementation by van den Dool
et al. (2000). Example 2 highlights the possibility to calculate EOTs across geoscientific data
fields of different parameters and it is shown that it is indeed possible to capture“real” signals.
Example 3 takes a slightly different approach of applying the remote algorithm by using the
method to statistically downscale NDVI observations from a coarse to a fine gridded data set.
Here, we see that some portions of the data are captured better than others, but that the
general prediction performance is very encouraging.

In summary, we are confident that the introduced remote package is able to expand the
possibilities for researchers of many disciplines to identify signals within spatio-temporal geo-
scientific data sets in order to assess influential patterns of space-time variability for various
applications. Furthermore, we are hopeful that package remote will be used in many appli-
cations other than the ones highlighted in this paper.
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