
JSS Journal of Statistical Software
April 2018, Volume 84, Issue 6. doi: 10.18637/jss.v084.i06

tmap: Thematic Maps in R

Martijn Tennekes
Statistics Netherlands

Abstract

Thematic maps show spatial distributions. The theme refers to the phenomena that
is shown, which is often demographical, social, cultural, or economic. The best known
thematic map type is the choropleth, in which regions are colored according to the dis-
tribution of a data variable. The R package tmap offers a coherent plotting system for
thematic maps that is based on the layered grammar of graphics. Thematic maps are cre-
ated by stacking layers, where per layer, data can be mapped to one or more aesthetics.
It is also possible to generate small multiples. Thematic maps can be further embellished
by configuring the map layout and by adding map attributes, such as a scale bar and a
compass. Besides plotting thematic maps on the graphics device, they can also be made
interactive as an HTML widget. In addition, the R package tmaptools contains several
convenient functions for reading and processing spatial data.

Keywords: thematic maps, spatial data, R.

1. Introduction
Visualization is important in statistics and data science. Without looking at the data, it
is difficult to understand the underlying phenomena, to unveil anomalies, and, moreover, to
extract valuable knowledge (Tufte 1983). Software tools to visually explore, analyze, and
present data are therefore greatly needed. The R environment (R Core Team 2017) and its
extension packages contain many possibilities to craft elegant and clarifying graphics, most
notably package ggplot2 (Wickham 2009). Although it is possible to achieve great looking
geospatial visualizations in R, the required programming is often complicated and the available
functions are often limited in terms of features and flexibility. Therefore, we introduce the
tmap package (Tennekes 2018a), which offers a flexible, easy to use, and layer-based approach
to crafting thematic maps. Package tmap is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=tmap.
Thematic maps are geographic maps in which spatial data distributions are shown. Although

https://doi.org/10.18637/jss.v084.i06
https://CRAN.R-project.org/package=tmap

2 tmap: Thematic Maps in R

they are widely used for publication purposes, which is no surprise due to their visual appeal
and recognizability, they also proved to be successful for the discovery and exploration of spa-
tial data (Friendly 1995). One of the most illustrative examples is the dot map that physician
John Snow used to locate the source of the cholera outbreak in London in 1854 (Snow 1855).
Spatial data analysis is also key in many of today’s global issues related to geography, for
instance those concerning climate change (IPCC 2014), health (WHO 2016), and sustainable
development (UN 2016). Visual exploration and presentation of the underlying spatial data
contributes to acquire knowledge about these issues and share this with the general public.

1.1. Layered grammar of thematic maps
Thematic maps are often characterized and named by the specific technique by which they are
created (Slocum, MacMaster, Kessler, and Howard 2009; Tyner 2010), such as a choropleth or
a dot map. Although this may be a good starting point to study thematic cartography, other
characterizations provide a more systematic approach that provide a better understanding
of the underlying structure of thematic maps (Bertin 1983; Kraak and Ormeling 2010). The
grammar of graphics (Wilkinson 2005) is an extension of this approach and can be applied to
any statistical graphic. The layered grammar of graphics (LGG) is a further refinement and
has been implemented in the R package ggplot2 (Wickham 2009, 2010). In this section, we
introduce the layered grammar of thematic maps (LGTM), which is a variation of the LGG
that is tailored to spatial data visualization and which has been implemented in package
tmap.
First, we enumerate the most commonly used thematic map types (Slocum et al. 2009; Tyner
2010), which will give an impression of the large diversity of thematic maps. Subsequently,
we show how thematic maps can also be described by the LGTM.

Choropleth: Areal regions, such as countries or municipalities, are filled with colors that
represent a variable which is either a density or a ratio. The usage of class intervals
encourages the readability of the data values. A good starting point is to use five or
seven classes based on natural breaks (MacEachren 1994) or quantiles (Brewer and
Pickle 2002).

Categorical map: Areal regions are filled with colors that represent a categorical data vari-
able. Categorical maps are often confused with choropleths.

Proportional symbol map: Data points are encoded by symbols that are scaled in pro-
portion to a variable (Slocum et al. 2009). Bubbles are the most widely used symbols.
The corresponding map is called a bubble map.

Isopleth or contour map: Contour lines are drawn through equally valued data points.
Since data points are often sampled, these lines often have to be approximated according
to a two-dimensional kernel density estimator. This method is also useful when the
data distribution is not smooth, which may result in an occlusion of spiky contour lines.
Smoothing spatial data with a two-dimensional kernel density estimator may result in
smooth contour lines that provide a better understanding in the overall patterns of the
data distribution. Isopleths are commonly used in elevation and weather maps.

Dasymetric map: Similar to the choropleth, except that the polygons are not predefined
areal areas, but defined by levels of the variable that is encoded by color. The advantage

Journal of Statistical Software 3

over the choropleth is that the dasymetric map portrays the underlying data distribu-
tions in a better way (Langford and Unwin 1994). The dasymetric map can be seen as
a hybrid between the choropleth and the isopleth.

Dot map: Data points are shown as dots, like the cholera occurrences in John Snow’s map.
Although the dot map can technically be seen as a bubble map with bubbles of fixed,
very small, size, they are conceptually different. The dot map is based on spatial points
rather than areas. Generally, dot maps contain much more objects than bubble maps.

Raster map: Square grid cells are colored according to the values of a data variable. Raster
maps are especially popular in geology and ecology, where gridded land cover and land
use data are often visualized (Fisher, Comber, and Wadsworth 2005).

Cartogram: Areal regions are distorted such that the obtained area sizes are proportional
to a quantitative variable (Gastner and Newman 2004; Nusrat and Kobourov 2016).
In a contiguous area cartogram, the shapes of the polygons are distorted, where the
neighborhood relationships between them are preserved as much as possible. In a non-
contiguous cartogram, the polygons are only resized. Categorical maps and choropleths
of ratio variables are often misleading, since these maps do not take the population dis-
tribution into account properly. Densely populated regions are often underemphasized
by their small areas. The project http://www.worldmapper.org/ contains a couple
of illustrative examples, for instance a distorted world map in which the areas of the
countries are proportional to their population sizes (Barford and Dorling 2008).

The LGG is a tool to describe a statistical graphic. Data variables are mapped to graphical
variables, such as position, size, color, and shape. These graphical variables are called aes-
thetics. A graphic consists of one or more layers, for example, a scatter plot with a smoothed
line. Each layer is defined by a geometry and optionally a statistical transformation. For the
scatter plot, the geometry is a point where no statistical transformation is applied, i.e., each
data record corresponds to a point in the graphic. For the smoothed line, the geometry is
a line and the statistical transformation is a smoothing function. A scale is defined for each
aesthetic, for instance, a linear scale for the position aesthetics and a sequential color scale
for the color of the points. The coordinate system determines how the position aesthetics
are mapped. Finally, small multiples are graphics that are created for different subsets of the
data. These small multiples, which are also called facets, trellis charts, or lattice charts, are
usually placed on a rectangular grid.
Although the LGG can be directly applied to thematic maps, it can be tailored to thematic
maps in order to make it more practical, especially regarding the coordinates. Whereas the
coordinates of a scatter plot are determined by mapped data, the coordinates of a bubble
map are determined by geographic locations. In the context of geospatial visualization, the
coordinate system is called the coordinate reference system, which is usually referred to as
the map projection. It determines how longitude-latitude coordinates are projected from the
earth surface to a two-dimensional plane (Slocum et al. 2009; Tyner 2010). We introduce the
LGTM to accommodate this specific focus on geospatial visualization.
The LGTM is built up as follows:

Shape: We refer to a shape as an object that consists of the following components:

http://www.worldmapper.org/

4 tmap: Thematic Maps in R

Coordinates and topology: The coordinates and topology are required to define spa-
tial units. Four basic types can be distinguished: polygons, lines, points, and raster
cells. A spatial unit may consist of multiple polygons or lines. This is the case
when areal regions are non-contiguous, for instance a country with islands.

Data: The format of the data is tabular, where the rows correspond to the spatial units
and the columns to the data variables.

Map projection: The map projection defines how longitude-latitude coordinates are
projected.

Bounding box: The bounding box determines which part of the map is shown.

Spatial transformation: The spatial transformation determines whether and how the shape
is transformed. It may be related to the coordinates/topology, to the data, or both.
Three common examples are (1) a cartogram, where polygons are transformed accord-
ing to the values of a numeric data variable, (2) a two-dimensional kernel density map,
where a two-dimensional kernel density estimator is applied to a shape consisting of
points, and (3) a raster map, where polygons or spatial points are converted to a spatial
raster, along with the corresponding data.

One or more layers: Each layer consists of the following components:

Geometry: The geometry determines the spatial geometry that is shown, for instance
polygons, symbols, or text labels. The availability of the geometries depends on
the type of spatial units in the shape object. Obviously, polygon units can be
visualized with a polygon geometry, but also with a symbol geography by using
the polygon centroids as coordinates. The reverse is not possible, i.e., point units
cannot be visualized with a polygon geometry.

Mapping: The mapping specifies which data variables are mapped to the available
aesthetics. The set of aesthetics depends on the chosen geometry. For example,
the available aesthetics for symbols are color, size, and symbol shape.

Scaling: A scale determines how the data values are translated to graphical attribute
values. For the most common aesthetic in thematic maps, color, the scale de-
termines what color palette is used and how the data values are mapped to this
palette.

Faceting: Small multiples are created by subsetting the data, or by specifying more than
one data variable for one aesthetic.

Map attribute layers: Additional components can be added to the thematic map, for in-
stance a map compass and coordinate grid lines.

A shape object and one or more layers form a group. When multiple groups are stacked, only
one map projection and bounding box can be used. By default, these will be taken from the
shape specified in the first group.
A thematic map of the world that has been created with package tmap is depicted in Figure 1
to illustrate the LGTM. It shows the relation between level of income per country and the
distribution of emerging metropolitan areas. While the metropolitan areas in high income
countries have an annual growth rate that is less than two percent, which is lower than the

Journal of Statistical Software 5

Figure 1: World map created with package tmap. The bottom layer is a choropleth of income
class on country level. The top layer is a bubble map of metropolitan areas where the size of
the bubbles corresponds to population and the color to the annual growth rate.

world population growth rate of 2.7 percent, metropolitan areas in lower income countries
grow rapidly, especially in Asia but also western and middle Africa.
The LGTM description of the map in Figure 1 is the following. It contains two groups.
The first one uses a shape with country polygons. These polygons are also drawn with the
polygon geometry where income data is mapped to the fill color aesthetic using a sequential
color palette of blues. The second group is specified with a shape of spatial points that
correspond to the geographic centers of the metropolitan areas. For the second group, a
bubble geometry is used, where population is mapped to size and annual growth rate to
color, using a diverging color palette from green via yellow to red.
Although the map in Figure 1 may aesthetically look pretty and does contain a lot of informa-
tion, there is one note of caution from a methodological point of view. The bubble map and
the choropleth interfere with each other perceptually. For instance, the yellow bubbles may be
perceived differently against a dark blue background than against a light blue background. In
color theory, this phenomenon is known as simultaneous contrast (Whittle 2003). Although
this may still be a useful map, especially for illustrating the tmap package, it is better to have
a bubble map with a uniform background to analyze the distribution of metropolitan areas.

1.2. The tmap package

The aim of the tmap package is to provide R users with an elegant and flexible way to
make thematic maps, requiring a minimum amount of code. All of the thematic map types
enumerated in Section 1.1 can be applied with package tmap. However, package tmap is not
a collection of stand-alone functions, one for each thematic map type, but an implementation
of the LGTM. The syntax of tmap resembles the syntax of ggplot2.
The following code is the core part of the code to reproduce the map depicted in Figure 1

6 tmap: Thematic Maps in R

and illustrates the basics of the LGTM and its implementation in tmap.

R> tm_shape(World) + tm_polygons(col = "income_grp") +
+ tm_text(text = "iso_a3", size = "AREA") +
+ tm_shape(metro) + tm_bubbles(size = "pop2010", col = "growth")

The objects World and metro are the shape objects of world country borders and metropolitan
area centers respectively. The functions tm_polygons, tm_text, and tm_bubbles define the
layers. The geometry follows from the function names, in this example polygons, text, and
bubbles respectively. The mappings are specified by the arguments, where the argument
names correspond to the aesthetics and the values to the mapped data variables, except for
"AREA", which is a fixed value for polygon area size. The scales are not specified in this
code, hence default scale settings are used. The tmap package facilitates two modes to create
thematic maps: the "plot" mode is used to create static maps and the "view" mode to
create interactive maps. The code to create the maps in both modes is identical. The syntax
of tmap will be discussed in more detail in Section 3. The complete code to reproduce the
map depicted in Figure 1 will be provided in Section 4.1.
The tmap package stands on the shoulders of the following R packages.

sp (Pebesma and Bivand 2005; Bivand, Pebesma, and Gómez-Rubio 2008): This package
contains classes and methods for spatial data.

raster (Hijmans 2017): This package contain classes and methods for rastered spatial data.

rgdal (Bivand, Keitt, and Rowlingson 2017): Reading and writing ESRI shape files is done
with this package, as well as map projections via the PROJ.4 library (Warmerdam and
Evenden 2015).

rgeos (Bivand and Rundel 2017): All geometric processing is carried out by this package.

classInt (Bivand 2017): This package facilitates class intervals, which are used to map data
variables to classes.

RColorBrewer (Neuwirth 2014): All used color schemes have been proposed by Brewer,
Hatchard, and Harrower (2003) and have been implemented in this package.

grid (R Core Team 2017): This package provides the graphics system that tmap relies on.

leaflet (Cheng, Karambelkar, and Xie 2017): This package is an R interface to the JavaScript
library Leaflet (Agafonkin 2017) for interactive maps.

The tmap package also usesOpenStreetMap (Fellows 2016) and osmar (Eugster and Schlesinger
2013) for obtaining OpenStreetMap data. For facilitating interactive maps, tmap not only
uses leaflet, but also mapview (Appelhans, Detsch, Reudenbach, and Woellauer 2017) for in-
teractive small multiples, htmlwidgets (Vaidyanathan, Xie, Allaire, Cheng, and Russell 2016)
for further processing interactive maps, and htmltools (RStudio Inc. 2017) for processing
HTML. Finally, the package spdep (Bivand, Hauke, and Kossowski 2013; Bivand and Piras
2015) is used to find neighboring polygons.
The supplementary R package tmaptools (Tennekes 2018b) contains several convenient func-
tions to read and process spatial data. Although there are already many R packages for these

Journal of Statistical Software 7

tasks (Bivand et al. 2008), the aim of tmaptools is to supply the workflow for creating thematic
maps that should be sufficient for most users, e.g., reading a shapefile, appending external
data, and exploring color palettes. These functions are further discussed in Section 3.4. Many
of these functions are also used by tmap. However, the user does not need to use tmaptools
explicitly to make thematic maps with tmap.

2. Related software
Dedicated desktop geographic information system (GIS) software is supposedly the most
straightforward choice to analyze and visualize spatial data for most users. ArcGIS (ESRI
2016) is considered as the industry standard of desktop GIS software, whereas QGIS (QGIS
Development Team 2016) and GRASS (GRASS Development Team 2016) are widely used
free and open source alternatives (Steiniger and Bocher 2009; GIS Geography 2016). Desktop
GIS software packages provide easy to use graphical user interfaces and contain standard,
ready to use tools for processing and analyzing spatial data. The programming languages R
and Python (Van Rossum et al. 2011) offer more freedom to analyze spatial data and also
provide functionalities to visualize spatial data (Bivand et al. 2008; Westra 2015). However, a
major drawback in comparison to desktop GIS software is that the learning curve is steep for
users without any programming experience. Also, the ability to visualize spatial data with
R and Python is considered moderate in comparison to desktop GIS software, because the
workflow to create geographic visualizations is often cumbersome, the created visualizations
are usually not interactive, and the ability to design and embellish thematic maps is often
limited. However, the aim of the tmap package is to tackle these shortcomings.
Another programming language besides R and Python that is useful to create geospatial visual-
izations is JavaScript, especially with the libraries D3 (Villarreal 2014) and Leaflet (Agafonkin
2017). With these libraries, maps can be made interactive and embedded in web pages. How-
ever, users will have to know the basics of JavaScript, HTML, and CSS. Moreover, JavaScript
is less suitable for exploratory spatial data visualization, since data processing is usually more
cumbersome than with R or Python.
There are a couple of other ways by which thematic maps can be created in R. The sp package
contains a plotting method for spatial objects using the generic plot function. Creating
thematic maps in this away is completely do-it-yourself regarding data processing, statistical
transformation, and map layout. It usually takes some effort and requires many lines of code
to create nice-looking thematic maps (Lovelace 2015).
Thematic maps can also be created with package ggplot2. Although the result can be very
satisfactory, there are two obstacles to overcome. First, shape objects have to be converted
to data.frames with the function fortify, which is prohibitive for data processing purposes
since the rows in the obtained data.frames no longer correspond to statistical units anymore,
which are represented by polygons, points, lines, or raster cells. Second, the layout is not
optimized for maps. For instance, coordinate grid panels are visualized by default, and the
legend is shown outside of the map viewport, while in many maps there is space for it in at
least one corner.
The R packages rworldmap (South 2011), GISTools (Brunsdon and Chen 2014), and choro-
plethr (Lamstein and Johnson 2017) provide high level functions that are tailored to plot
spatial data. However, the scope of features that these packages offer is limited. For instance

8 tmap: Thematic Maps in R

they do not support multiple layers and small multiples. They are also less flexible regarding
the map layout.
The maps package provides low level plotting functions that are similar to those of sp, so
users have to create class intervals and color palettes by themselves. Moreover, only shapes
included in the package itself can be used.
Another R package that can be used to create thematic maps is cartography (Giraud and
Lambert 2016). Like tmap, it offers a layer-based approach and it is very flexible regarding
the map layout. This package uses base graphics, whereas tmap uses grid-based graphics.
For each implemented thematic map type, which are the choropleth, the proportional symbol
map, the categorical map, the flow map, and the discontinuities map1, a map can be created
with a stand-alone function. The maps can be stacked as layers by setting the add argument
of the functions that create the add-on maps to TRUE. However, it assumes that the map
projections of the shapes are identical, since otherwise the add-on maps will be misplaced. In
comparison to tmap, cartography does not support small multiples nor interactive maps.
Several R packages use maps from Google Maps or OpenStreetMap as base layer to plot
spatial data. Maps made with ggplot2 can be enhanced by adding such as base layer with
the ggmap package (Kahle and Wickham 2013; Lovelace 2015). Alternatively, static thematic
maps with a base layer can be created with package RgoogleMaps, which facilitates small
multiples when combined with the loa package (Loecher and Ropkins 2015).
There are three downsides to using basemaps for thematic maps. First, since basemaps are
usually projected according to the web Mercator projection, the created thematic maps are
also limited to this projection. Although the web Mercator projection is useful for navigation
purposes, it is often not the best projection for static thematic maps (Slocum et al. 2009).
In particular, thematic maps that deal with densities, such as choropleths and dot maps,
are best suited with map projections where areas are preserved. Second, for many thematic
map types, detailed and colorful basemaps can be distracting, especially in combination with
space-filling thematic map types like choropleths. Moreover, colored basemaps may influence
our color perception of the map layers (Whittle 2003). Grayscale maps, which are used by
ggmap, have less interference with the thematic map drawn on top, and are therefore better
suited. Third, the thematic map layer may occlude the content of the basemap tiles. This
problem can be partly solved by using semi-transparent layers. Another solution is to use
interactive maps where the layers can be easily turned on and off.
For interactive maps, tmap uses the R package leaflet, an interface for the JavaScript library
Leaflet (Agafonkin 2017). Interactive thematic maps can also directly be made with the R
package leaflet. The main advantage of using leaflet directly is that it offers more control to
design the maps. However, the plotting functions are of lower level than those of tmap and
therefore require more user code. The R package mapview also provides high level functions
for the R package leaflet. In comparison to the interactive output of tmap, mapview has some
extra interactive tools, such as a function to compare two raster shapes and a function to
view a raster shape as a three-dimensional cube interactively. Both mapview and tmap are
useful for spatial data exploration, although the emphasis is a little different. The mapview
package offers more features regarding interactive mapping, such as a home button per layer
and popup charts. Its function to view small multiples interactively, latticeView, has been

1A discontinuity map shows borders between neighboring polygons. The line widths of these borders reflect
the ratio between data values of neighboring polygons.

Journal of Statistical Software 9

imported by tmap. On the other hand, tmap offers a more systematic approach to create
thematic maps. One of the design principles of tmap is that the interactive maps look similar
as their static counterparts, so that users are able to switch between interactive and static
mapping without additional effort.
Interactive maps can also be created in R with the plotGoogleMaps package (Kilibarda and
Bajat 2012). Spatial data can be plotted as layers in Google Maps, which is opened in
a browser. With plotGoogleMaps, spatio-temporal data can be visualized interactively as
small multiples. The main advantage of using Google Maps as mapping service is that it
is very popular and therefore familiar to most people. However, a downside is that Google
Maps have a fixed style that is often less suitable for thematic maps. OpenStreetMap, on
the other hand, has many third-party tile servers, of which some are well suited for thematic
maps because of the use of neutral color schemes, in particular CARTO (CartoDB, Inc. 2017).
Interactive maps made with plotGoogleMaps can only be opened in a browser, whereas the
R packages leaflet, mapview, and tmap create HTML widgets (Vaidyanathan et al. 2016),
which can also be opened in the viewer pane in RStudio (RStudio Team 2017).

3. Syntax
The syntax of tmap is briefly discussed in this section and will be illustrated with examples
in Section 4. The method of stacking layers will be referred to as the main plotting method.
Thematic maps can also be easily made with one function, qtm, which stands for quick
thematic map. Drawing maps with this function will be referred to as the quick plotting
method.
The methods are interchangeable, so each map created with the main plotting method can
also be created with the quick plotting method and vice versa. As a rule of thumb, qtm
is recommended for quick plotting, whereas the main plotting method is recommended for
plotting maps that require more control.

3.1. Plotting and interactive viewing
The tmap package contains two drawing modes: plot and view.
In the default mode, plot, thematic maps are drawn in the graphics device. It encompasses
all features that will be described in Sections 3.2 and 3.3, and in more detail in the package
documentation. The output of the "plot" mode can be saved with the function save_tmap
to static formats, such as JPG, PNG, SVG, and PDF.
In the interactive viewing mode, thematic maps are shown as interactive HTML widgets
(Vaidyanathan et al. 2016). Within RStudio, these are shown in its viewer pane, and other-
wise, in a web browser. Users are able to zoom, pan, and click on the spatial units. Therefore,
the interactive mode is especially useful to explore dense spatial data. However, there are a
few downsides in comparison to the plotting mode. First of all, maps will be projected to
the web Mercator projection, since the vast majority of basemap tiles have been rendered
accordingly. In this projection, areas are not preserved, which makes it less suitable for the-
matic maps. Second, the options to embellish the map layout and to add map attributes are
limited. Third and last, although small multiples can be shown interactively, the number of
small multiples in "view" mode is restricted to four (by default) in order to prevent slow
interaction.

10 tmap: Thematic Maps in R

Figure 2: Forecasted metropolitan population sizes.

Interactive maps can be exported to standalone HTML files with save_tmap. It is also possible
to embed the HTML widgets in dynamic documents made with rmarkdown (Allaire, Cheng,
Xie, McPherson, Chang, Allen, Wickham, Atkins, Hyndman, and Arslan 2017).
The mode is stored in a global option named tmap.mode. It can be changed with the function
tmap_mode, which is to be called with either "plot" or "view". For convenience, the function
ttm, called without arguments, is used to toggle between the two modes.

3.2. Main plotting method

In R, a shape is usually an object of class ‘Spatial’ or ‘Raster’ from packages sp and raster
respectively. Simple features are the next generation class of spatial objects and are currently
being implemented in the sf package (Pebesma 2017). These ‘Spatial’, ‘Raster’, and ‘sf’
objects contain the four elements described in Section 1.1, namely the coordinates/topology,
the data, the map projection, and the bounding box.
The main plotting method is applied in the following code. It produces the map illustrated in
Figure 2 where the metropolitan areas, contained in the shape object metro, are displayed as
bubbles that are sized according to the data variable pop2030, which contains the forecasted
population numbers for the year 2030. The layout of the map is configured with predefined
settings for world maps. Furthermore, a color scheme based on cobalt blue is applied.

R> data("metro", package = "tmap")
R> tm_shape(metro) + tm_bubbles(size = "pop2030") + tm_format_World() +
+ tm_style_cobalt()

We define an element as a building block to create thematic maps. Element functions, whose
names have the prefix tm_, are stacked with the + operator. The most fundamental element
function of the main plotting method, tm_shape, specifies the shape, the desired map projec-
tion, and bounding box (Table 1). The map projection can take characters specified according
to the PROJ.4 syntax (Warmerdam and Evenden 2015), EPSG projection numbers (IOGP
2015), or shortcut characters for commonly used map projections, such as "longlat" and
"wintri" for longitude-latitude coordinates2 and the Winkel tripel projection respectively.

2The shortcut "longlat" corresponds to the longitude-latitude definition using the WGS84 geodetic datum.

Journal of Statistical Software 11

Function Argument Description Spatial types
tm_shape shp shape object polygons

points
lines
raster cells

projection projection code
bbox bounding box

Table 1: Overview of the function tm_shape.

The function tm_shape should always be proceeded by one or more layers, which are created
by the functions provided in Table 2. Each of these functions specifies the geometry, mapping,
and scaling component of the LGTM. An aesthetic can take a constant value, a data variable
name, or a vector consisting of values or variable names. Variable names are specified through
standard evaluation, i.e., by character strings, as opposed to non-standard evaluation, which is
used by ggplot2. If a data variable is provided, the scale is automatically configured according
to the values of this variable, but can be adjusted with several arguments. For instance, the
main scaling arguments for a color aesthetic are color palette, the preferred number of classes,
and a style to create classes. Also, for each aesthetic, except for the text labels, a legend is
automatically created. If a vector of variable names is provided, small multiples are created,
which will be explained further below.
Notice that the five base layer functions listed in Table 2 correspond to the basic spatial
unit types, except for the text labels. In other words, spatial polygons are drawn with
tm_polygons, spatial points with tm_symbols, spatial lines with tm_lines, and a spatial
raster with tm_raster. Each derived layer function is composed of one or two base layer
functions with different default settings.
The base layer tm_symbols accepts three types of symbol shapes: character symbols, icons,
and ‘grob’ objects. Icons can be created from PNG images with the function tmap_icons.
Visualizations created with the grid package can be exported to ‘grob’ objects. This is
not only useful for creating vector based icons, but also for charts created with the ggplot2
package. The result is a map with inset charts, which can be scaled with the size aesthetic.
An example is included in the documentation page of tm_symbols.
One tm_shape element together with one or more layers form a group. Multiple groups can
be stacked. This is particularly useful when multiple shapes are used, which is illustrated in
the examples of Section 4. Shapes may have different map projections and different bounding
boxes. In that case, the map projection and bounding box of the master shape are used in
the map. By default, the master is the shape of the first group. If one of the shapes is a
raster, then that shape is the master shape. Any shape can be set to the master shape with
the argument is.master of the function tm_shape.
Functions related to the spatial transformation, the second component of the LGTM, are
not implemented as element functions, but as stand-alone functions in tmaptools. The main
reason for this is that these functions are often time consuming and require manual configura-
tion. It is therefore recommended to apply the statistical transformation prior to the plotting
phase.
Small multiples can be created in three ways. First, a vector of constant values or data

12 tmap: Thematic Maps in R

Function Geometry Accepted spatial units Aesthetics
Base layer functions

tm_polygons polygons polygons col fill color
tm_symbols symbols points, polygons, and lines size symbol size

col symbol color
shape symbol shape

tm_lines lines lines col line color
lwd line width

tm_raster raster raster col raster color
tm_text text points, polygons, and lines text text labels

size text size
col text color

Derived layer functions
tm_fill polygons (fill) polygons see tm_polygons
tm_borders polygons (borders) polygons none
tm_bubbles bubbles points, polygons, and lines see tm_symbols
tm_squares squares points, polygons, and lines see tm_symbols
tm_dots dots points, polygons, and lines see tm_symbols
tm_rgb RGB image raster none
tm_markers marker symbols points, polygons, and lines see tm_symbols and

with text labels tm_text
tm_iso contour lines with lines see tm_lines and

text labels tm_text

Table 2: Layer elements of package tmap.

Figure 3: Small multiples created by assigning two constant values for one aesthetic.

variable names can be assigned to one of the aesthetics listed in Table 2. This generates
a small multiple for each constant value or data variable. An example is the following line
of code, which creates Figure 3. Constant color values are assigned to the fill aesthetic of
tm_polygons. In the example of Section 4.3, we illustrate this for multiple data variables.

R> tm_shape(World) + tm_polygons(col = c("blue", "red"))

The second method to create small multiples is by assigning the names of one or two data
variables to the by argument of tm_facets. In that case, the data is split according to these
variables. The following line of code creates small multiples in which countries are colored by

Journal of Statistical Software 13

Figure 4: Small multiples created by specifying the by argument of tm_facets.

Function Description Main arguments
tm_facets small multiples by group by variable

free.coords should each map have its own
coordinate ranges?

free.scales should aesthetic scales be free
for each map?

nrow and ncol number of rows and columns

Table 3: Element that configures small multiples.

continent (see Figure 4). We also illustrate this method in Section 4.5.

R> tm_shape(World) + tm_polygons(col = "red") +
+ tm_facets(by = "continent", free.coords = FALSE)

For these first two methods, the function tm_facets can be used to further specify the small
multiples (see Table 3). By setting free.coords = FALSE, the coordinate range will be
identical for all small multiples. The argument free.scales is used to specify whether the
aesthetic scales should be determined per small multiple. By default, this argument is set to
TRUE for the first method and FALSE for the second method. This can also be specified for
each aesthetic separately.
The third and final method to create small multiples is by creating several independent maps
and use the function tmap_arrange to arrange them in a grid layout. This is illustrated in the
following code chunk, which produces Figure 5. The objects tm1 and tm2 are ‘tmap’ objects,
which can also be used to export maps. This will be described in Section 3.5.

R> tm1 <- tm_shape(World) + tm_polygons()
R> tm2 <- tm_shape(metro) + tm_dots()
R> tmap_arrange(tm1, tm2)

The map can be embellished with map attributes. The attribute element functions are listed
in Table 4. The usage of map attributes is illustrated in Section 4.2
Elements that are related to the map layout are listed in Table 5. The function tm_layout
is the main function which contains all arguments regarding the layout in plotting mode.
Arguments that are legend related can also be set with tm_legend.

14 tmap: Thematic Maps in R

Figure 5: Small multiples created with tmap_arrange.

Function Description Main arguments
tm_grid coordinate grid lines x and y position of grid lines

projection projection of the grid lines
tm_credits credits text text credits text
tm_scale_bar scale bar breaks scale bar breaks
tm_compass map compass type compass type
tm_logo logo(s) file filename or URL
tm_xlab and tm_ylab axis labels text label text

Table 4: Map attributes.

The wrapper functions tm_format_X, with X being the name of a predefined format, specify
position related arguments, such as margins and scale, and positions of map items such as
title, legend, and map attributes. The optimal values of these arguments may depend on the
geometry of the shape. The default format, which is specified by the default values of the
position related arguments of tm_layout, is supposed to be of general purpose, where the
legend position is automatically determined based on the coordinates of the shape. A couple
of these predefined formats are included in the tmap package, for instance tm_format_World,
and users are able to specify their own.

The arguments that are specified with the tm_style_X wrapper functions, with X being the
name of a predefined style, do not relate to position and are therefore shape independent. The
default style is "white", which refers to the white background. Other styles are "natural"
with natural colors, "col_blind" with color-blind friendly color palettes, and "classic",
which emulates old-style maps. The function style_catalogue generates a catalogue of all
available styles. The default style is defined in the global option "tmap.style", and can be
get and set with the function tmap_style.

The function tm_view contains arguments that are specific for the viewing mode. Most
importantly, the alpha controls the transparency of all layers specified by the functions listed
in Table 2. The optimal value is a trade-off between the clarity of the layers and the readability
of the underlying basemap. The default basemap depends on the style. For "white", the
default style, a neutral, light gray basemap from CARTO (CartoDB, Inc. 2017) is used.

Journal of Statistical Software 15

Function Description Main arguments
tm_layout all layout options title map title
tm_legend∗ legend options position legend position
tm_format_X∗ formatting options inner.margins inner margins

outer.margins outer margins
asp aspect ratio
scale global size multiplier of all

text, bubbles, and lines
tm_style_X∗ styling options bg.color background color

aes.color default colors for constant aesthetics
aes.palette default color palettes for mapped

aesthetics
basemaps basemaps (for viewing mode only)

tm_view interactive options alpha overall transparency

Table 5: Layout related elements of tmap. The functions marked with ∗ are wrappers of
tm_layout.

3.3. Quick plotting method

The function qtm stands for quick thematic map. It is a wrapper of the main plotting method.
The map shown in Figure 2 can also be created with the quick plotting method using the
following line of code.

R> qtm(metro, symbols.size = "pop2030", format = "World", style = "cobalt")

Its first argument is a shape. In the main plotting method, it is defined with tm_shape. If
none of the other arguments are specified, in this example qtm(metro), then a simple map of
the shape is drawn. This is comparable to the generic plot function implemented in packages
sp and raster for ‘Spatial’ and ‘Raster’ objects respectively, but with a different layout.
The other important arguments of qtm are the aesthetics from the base layer functions listed
in Table 2 and the by argument from tm_facets that can be used to define small multiples.
In the code above, symbols.size is the only specified aesthetic. All other arguments are
passed on to the element functions listed in Tables 1, 2, 3, and 5. In order to assign the
arguments to the correct element functions, the argument names can be prefixed with the
element function name excluding tm_. For instance, the argument symbols.alpha controls
the alpha transparency of the symbols.
Note that only one shape object can be assigned to qtm and each of the layers only once.
Therefore, qtm is actually one group of one or more layers. It is possible to stack multiple qtm
function calls with the + operator. The function qtm can also be used in conjunction with
element functions listed in Tables 2, 3, 4 and 5.
In interactive mode, the qtm function can also be called without arguments, or with a search
query. In these cases, the basemaps are shown interactively. When a search query is pro-
vided, a place marker is added to the map at the coordinates found by the OpenStreetMap
Nominatim search engine.

16 tmap: Thematic Maps in R

3.4. Reading and processing spatial data

The tmaptools package contains several functions for reading and processing spatial data, of
which the most important ones are listed in Table 6. These functions should be sufficient to
supply the workflow that is needed to create thematic maps in most common cases. Most of
these functions are convenient wrappers around functions from underlying packages.
OpenStreetMap (OSM) data exists in two formats: vectors and rasters. Typically, vectors are
used when analyzing OSM data and rasters when plotting OSM data as a background layer.
Both can be read with read_osm. It requires a bounding box or a shape object from which
the bounding box is extracted. Note that reading OSM rasters with read_osm is only useful
in "plot" mode, since in "view" mode, OSM rasters are already shown as basemaps. The
function read_osm requires the suggested R package OpenStreetMap, which requires Java to
be installed.
The function bb can be seen as a Swiss army knife regarding bounding boxes. It can retrieve
and modify existing bounding boxes, for instance with the extension factor argument ext,
and reproject them. Furthermore, it allows users to create new bounding boxes from scratch,
either using coordinates or by querying OpenStreetMap Nominatim. For the latter, the
function geocode_OSM is used.
Often, spatial data is not yet contained in a shape object. In that case, the data can be
appended to a shape object with the function append_data. In database terminology, a left
join is executed, i.e., matched data will be appended to the corresponding spatial units where
missing values will be used for spatial units without match. Both the under coverage and
over coverage of the match can be retrieved. Under coverage is the subset of spatial units
for which no data records could be found. Over coverage is the subset of data for which no
spatial units could be found. The function append_data will be illustrated in Section 4.4.
The tmap package uses color palettes from ColorBrewer (Brewer et al. 2003; Neuwirth 2014)
by default. A graphical user interface that enables users to explore these palettes can be
started with the function palette_explorer. Users are able to change the number of colors
and the contrast range. Moreover, they can test the palettes for color blindness.
The tmaptools package contains a couple of spatial transformation functions. The functions
set_projection and crop_shape can be used to set the map projection and crop the shape
by a bounding box respectively. Both map projection and bounding box can also be specified
directly in the plot code as arguments of tm_shape. With crop_shape, it is also possible to
crop a shape by a polygon instead of a rectangle. The function simplify_shape reduces the
number of coordinates used to describe polygons or lines. This is especially useful for shapes
with high detailed natural boundaries, such as coastlines or rivers, that may become too
occluded when they are plot in low resolution. The function smooth_map creates a smooth
map by estimating a two-dimensional kernel density from the spatial data distribution of
the input shape. The output of this function can be used to create two-dimensional kernel
density maps or smoothed raster maps. The two-dimensional kernel densities are calculated
with package KernSmooth package (Wand 2015).
For cartograms, we suggest to use the cartogram package (Jeworutzki 2016). Contiguous
and non-contiguous cartogram shapes can be created with the functions cartogram and
nc_cartogram respectively. These shapes can be visualized with the tmap package using
the standard approach, as described in Sections 3.2 and 3.3.

Journal of Statistical Software 17

Function Description Main arguments
Reading spatial data

read_shape read ESRI shape files file file name
read_osm read OpenStreetMap data x bounding box or

shape object
geocode_OSM find location q location search query
rev_geocode_OSM find address x ‘SpatialPoints’ object

or x coordinates
y y coordinates

Tool functions
bb bounding box generator x shape object,

bounding box, or
location search query

append_data append data to shape shp shape object
object data data to append

approx_areas approximate polygon areas shp shape object
palette_explorer explore color palettes

Spatial transformation functions
set_projection set map projection or shp ‘tmap’ object

reproject map projection projection code
crop_shape crop a shape object x shape object

y bounding box or
shape object

polygon crop by y as polygon?
simplify_shape simplify a shape object shp shape object (polygons

or lines)
fact simplification factor

aggregate_map aggregate a map shp shape object (except
spatial points)

by group variable name
fact raster aggregation

factor
smooth_map create a smooth map using shp shape object (except

two-dimensional kernel spatial lines)
density estimations

cartogram and create a cartogram (from shp polygon shape object
nc_cartogram the cartogram package) weight name of a numeric

data variable

Table 6: Functions to read and process spatial data.

3.5. Output

A plot created with tmap silently returns an object of class ‘tmap’. This object can be used
to redraw the map, possibly in the other mode, or export the map. Table 7 lists the export
possibilities.

18 tmap: Thematic Maps in R

Function Description Main arguments
print plot or view tm ‘tmap’ object
last_map redraw the last map
tmap_leaflet obtain leaflet object x ‘tmap’ object
save_tmap save map tm ‘tmap’ object

width width
height height

animation_tmap animation (GIF or MPEG) tm ‘tmap’ object that creates
multiple plots

Table 7: Output functions.

The print function draws the map from a ‘tmap’ object, either static or interactive, based
on the chosen mode. In "plot" mode, the map is shown in the graphics device. The layout
of the map is configured for the original size and aspect ratio of the graphics device window.
Therefore, it is recommended to set the proper size of the graphics device window prior to
plotting the map. The function last_map can be used to redraw the last map in a resized
window.
In "view" mode, an HTML widget is printed. This widget can also be obtained explicitly
with the function tmap_leaflet and further processed with functions from the R package
leaflet.
Maps made with tmap can easily be saved into the usual formats such as JPG, PNG, and
PDF with save_tmap. If only one of the dimensions width and height is specified, the other
will be set automatically based on the aspect ratio of plot, which depends on the aspect ratio
of the shape, the margins, and the layout of small multiples. The save_tmap function can also
export interactive maps to stand-alone HTML pages. When the ‘tmap’ object is not specified,
the last map is taken, retrieved with last_map(). The type of output does not depend on
the current mode, but on the file extension.
When the free software tool ImageMagick (ImageMagick Studio LLC 2017) is installed, an-
imations can be made with animation_tmap. This is particularly useful to visualize a time
series of spatial data. The main argument of animation_tmap is a ‘tmap’ object that results
in multiple plots. This can be achieved by generating small multiples, where each multiple is
plot on a separate page, which can be done by using the argument along of tm_facets or by
setting both nrow and ncol of tm_facets to one.

4. Examples
In this section, the syntax described in the previous section is illustrated with a set of examples
that cover most of the features of tmap. Both the main and the quick plotting methods will
be applied. Preprocessed shape objects that are contained in package tmap are used in the
examples in Sections 4.1, 4.2, and 4.3. We illustrate how package tmaptools can be used to
read and process spatial data from external sources in Sections 4.4 and 4.5. Here, we also
show how to go from exploratory to explanatory data visualization. More examples can be
found in the package documentation.
The following code is required to load the tmap and tmaptools packages.

Journal of Statistical Software 19

R> library("tmap")
R> library("tmaptools")

4.1. Metropolitan areas

The code required to create the map depicted in Figure 1 is the following.

R> data("World", "metro", package = "tmap")
R> metro$growth <- (metro$pop2020 - metro$pop2010)/(metro$pop2010 * 10) * 100
R> tm_shape(World) + tm_polygons("income_grp", palette = "-Blues",
+ title = "Income class", contrast = 0.7, border.col = "gray30",
+ id = "name") +
+ tm_text("iso_a3", size = "AREA", col = "gray30", root = 3) +
+ tm_shape(metro) + tm_bubbles("pop2010", col = "growth",
+ border.col = "black", border.alpha = 0.5,
+ breaks = c(-Inf, 0, 2, 4, 6, Inf), palette = "-RdYlGn",
+ title.size = "Metro population (2010)",
+ title.col = "Annual growth rate (%)", id = "name",
+ popup.vars = c("pop2010", "pop2020", "growth")) +
+ tm_format_World() + tm_style_gray()

First, two shapes that are included in the tmap package are loaded. The shape World
is a ‘SpatialPolygonsDataFrame’ of the countries of the world. The shape metro is a
‘SpatialPointsDataFrame’ object containing a population time series for metropolitan areas.
In the second line of code, the annual growth rate percentage is calculated.
The first group of the plot call defines the choropleth and adds the country codes using the
World shape. A bubble map is drawn on top of that using the metro shape.
In this example, World serves as the master shape, so its projection, the equal-area Eck-
ert IV projection, is used in this map. This map can also be drawn in longitude-latitude
(WGS84) coordinates by letting the metro shape be the master, which can be done by set-
ting is.master = TRUE. However, in that case, also the bounding box will be taken from
the metro shape, which will result in a map that is cropped too much. Better is to repro-
ject the World shape to longitude-latitude coordinates by replacing tm_shape(World) with
tm_shape(World, projection = "longlat").
Figure 6 shows the map in "view" mode. The code to produce this map is the following.
After the mode is set to "view" with ttm, the map is redrawn with the function last_map.

R> ttm()

tmap mode set to interactive viewing

R> last_map()

Text size will be constant in view mode.
Set tm_view(text.size.variable = TRUE) to enable text size variables.
Legend for symbol sizes not available in view mode.

20 tmap: Thematic Maps in R

Figure 6: Screenshot of the interactive "view" mode of the map depicted in Figure 1.

Text labels in thematic maps often cause occlusion. Common ways to prevent this are using
different font sizes, hiding less important text labels, and changing placement of the text
labels. These options can be enabled by using the specification of tm_text. In the code
chunk that reproduces Figure 1, the polygon area sizes are used to scale the text labels,
where size.lowerbound, by default 0.4, determines which labels are shown. Alternatively,
the arguments auto.placement and remove.overlap can be used to change the placement
of the text labels. However, in "view" mode, occlusion is usually less of a problem due to
the ability to zoom in. Therefore, text sizes are kept constant in "view" mode by default, as
shown in Figure 6.
The Javascript library Leaflet does not support legend items for bubble sizes yet. However, by
clicking on a bubble, its data values are shown in a small pop-up window. The argument id
of the layer element functions tm_polygons and tm_bubbles are both specified with "name",
which is the data variable that contains the names of the countries and the metropolitan
areas. These names are included in the pop-up text as titles.
The size of the bubbles are not fixed, but scale proportionally with the zoom level. This
behavior can be changed by stetting tm_view’s argument bubble.size.fixed to TRUE.
Both the choropleth and the bubble map can be created quickly with qtm as the following
two lines of code show.

R> qtm(World, fill = "income_grp", text = "iso_a3", text.size = "AREA")
R> qtm(metro, symbols.size = "pop2010", symbols.col = "growth")

The map depicted in Figure 1 can also be reproduced with qtm. To do this, the two func-
tion calls above need to be extended with the remaining arguments, e.g., fill.palette =
"-Blues" in the first line, and to be stacked with the + operator. However, for readability
issues, we only recommend qtm for quick plotting.

Journal of Statistical Software 21

Figure 7: Classic world map, consisting of gridded elevation data, rivers, country borders,
and country names.

4.2. Classic world map

Figure 7 illustrates that the tmap package is not limited to maps for statistical purposes. A
classic styled world map is shown with elevation data, country borders and names, the largest
world rivers, projected grid lines and a map compass.

R> data("World", "land", "rivers", package = "tmap")
R> tm_shape(land) + tm_raster("elevation", breaks = c(-Inf, 250, 500, 1000,
+ 1500, 2000, 2500, 3000, 4000, Inf), palette = terrain.colors(9),
+ title = "Elevation (m)", auto.palette.mapping = FALSE) +
+ tm_shape(rivers) +
+ tm_lines("lightblue", lwd = "strokelwd", scale = 1.5,
+ legend.lwd.show = FALSE) + tm_shape(World, is.master = TRUE) +
+ tm_borders("gray20", lwd = .5) +
+ tm_grid(projection = "longlat", labels.size = 0.4, lwd = 0.25) +
+ tm_text("name", size = "AREA") +
+ tm_compass(position = c(0.08, 0.45), color.light = "gray90",
+ size = 3) +
+ tm_credits("Eckert IV projection", position = c("RIGHT", "BOTTOM")) +
+ tm_layout(inner.margins = c(0.04, 0.04, 0.03, 0.02),
+ earth.boundary = TRUE) +
+ tm_style_classic(bg.color = "lightblue", space.color = "gray90") +
+ tm_legend(position = c("left", "bottom"), frame = TRUE,
+ bg.color = "lightblue")

The ‘SpatialGridDataFrame’ object land is reprojected from longitude-latitude coordinates

22 tmap: Thematic Maps in R

to the Eckert IV projection, since is.master = TRUE in the specification of the shape object
World.
A quick map of elevation data and country borders can be created with the following line of
code.

R> qtm(land, raster = "elevation") + qtm(World, fill = NULL)

The color classes are by default based on rounded equidistant breaks. Since there are also
negative elevation numbers, that is below mean sea level, a diverging color palette is used in
this case.

4.3. Two world views

Two thematic world maps are depicted in Figure 8 as small multiples. The map at the top
shows the happy planet index across countries and the map at the bottom shows the gross
domestic product (GDP) per capita. The following code is needed to produce these maps.

R> data("World", package = "tmap")
R> tm_shape(World, projection = "robin") +
+ tm_polygons(c("HPI", "gdp_cap_est"),
+ auto.palette.mapping = c(FALSE, TRUE),
+ palette = list("RdYlGn", "Purples"),
+ style = c("pretty", "fixed"), n = 7,
+ breaks = list(NULL, c(0, 500, 2000, 5000, 10000, 25000, 50000, Inf)),
+ title = c("Happy Planet Index", "GDP per capita")) +
+ tm_credits(c("", "Robinson projection"),
+ position = c("RIGHT", "BOTTOM")) +
+ tm_format_World(inner.margins = 0.02, frame = FALSE) +
+ tm_style_natural(earth.boundary = c(-180, 180, -87, 87)) +
+ tm_legend(position = c("left", "bottom"), bg.color = "gray95",
+ frame = TRUE)

By assigning two data variables to an aesthetic, in this case polygon fill color, two small
multiples are generated. The call of the function tm_polygons shows how other, non-aesthetic,
arguments can be specified per small multiple. Arguments that normally take a single value
can also take a vector of values, one per small multiple. Likewise, arguments that normally
take a vector can also take a list of vectors, one per small multiple.
The arrangement of the small multiples in terms of rows and columns is determined auto-
matically based on the aspect ratios of the map and the graphics device, but can be changed
with the function tm_facets.
Small multiples can be created with qtm in a similar way. The following line of code generates
two small multiples of the same data variables, using default values for the non-aesthetic
arguments.

R> qtm(World, fill = c("HPI", "gdp_cap_est"), style = "natural")

Journal of Statistical Software 23

Figure 8: Two choropleths on country level. The top one shows the happy planet index and
the bottom one shows the GDP per capita.

4.4. Obesity in the United States

In this example, we will explore obesity in the United States. Percentages of adult obesity
per county have been published in the Food Environment Atlas (ERS and USDA 2017).
This data is assigned to the object FEA, which is a data.frame. The shape with county
borders for 2010 (US Census Bureau 2016) has been downloaded manually and assigned to
the ‘SpatialPolygonsDataFrame’ object US. The package tigris (Walker 2016) provides a
convenient interface for shapes published by the US Census Bureau that are more recent.
First, we plot the US shape to ensure it is the correct shape. The result is shown in Figure 9.

R> qtm(US)

Note that some of the islands of Alaska are drawn at the right-hand side of the map, because
they have positive longitude values. The map with coordinates grid lines can be shown with
qtm(US) + tm_grid().
When the data is separate from the shape, which is the case in this example, the first thing

24 tmap: Thematic Maps in R

Figure 9: Shape of the counties of the United States.

to do is to append the data to the shape file. We use the function append_data where the
data is matched by Federal Information Processing Standard (FIPS) code.

R> US <- append_data(US, FEA, key.shp = "FIPS", key.data = "FIPS",
+ ignore.duplicates = TRUE)

Data contains duplicated keys: 08014
Over coverage: 34 out of 3255 data records were not appended. Run
over_coverage() to get the corresponding data row numbers and key values.

It turns out that there are two identical data records for county 08014 (Broomfield, Colorado).
Without setting ignore.duplicates to TRUE, the duplicated FIPS codes would have caused
an error message. In this example, there are 34 unmatched data records, which can be
identified as follows.

R> unmatched_data <- over_coverage()
R> str(unmatched_data)

List of 4
$ result: chr "Over coverage: 34 out of 3255 data records were not

appended."
$ call : chr [1:2] "append_data(shp = US, data = FEA, key.shp = \"FIPS\",

key.data = \"FIPS\", " " ignore.duplicates = TRUE)"
$ id : int [1:34] 68 90 93 94 99 339 559 1663 2931 2959 ...
$ value : chr [1:34] "02010" "02201" "02231" "02232" ...

The list item id contains the row numbers of the unmatched data records. Inspection of these
records with View(FEA[unmatched_data$id,]) reveals that the corresponding values of the
variable of interest, PCT_DIABETES_ADULTS10, are missing. Hence, the over coverage can be
safely ignored.
An interactive choropleth of adult obesity can be created with the following code. The
produced map, depicted in Figure 10, is already useful for data exploration and, with some
minor improvements, also for publication. These improvements include the adjustment of
the legend title and the addition of thick state borders. In the remaining of the example, we
illustrate these improvements for the "plot" mode, but they can also be applied in "view"
mode. Adjustments that are specific to the "view" mode, such as the basemap specification
and the overall alpha transparency of the layers on top, can be set with tm_view.

Journal of Statistical Software 25

Figure 10: Interactive choropleth of adult obesity percentages per county.

R> ttm()

tmap mode set to interactive viewing

R> qtm(US, fill = "PCT_OBESE_ADULTS10")

Static maps of the United States usually contain insets of Alaska and Hawaii. To accomplish
this, the county polygons of Alaska and Hawaii need to be separated from the contiguous
United States. In the following code chunk, we create three shapes. The shape US_cont
consists of county polygons of the contiguous United States. The shapes US_AK and US_HI
represent the counties of Alaska and Hawaii respectively. Furthermore, we simplify each shape
in order to reduce the level of detail, which is locally very high, especially along the coastlines.
The simplification factor of 0.2 is chosen by trial and error. For these processing steps, we use
the pipe operator %>%, which is imported from the magrittr package (Bache and Wickham
2014).

R> US_cont <- US %>% subset(!STATE %in% c("02","15","72")) %>%
+ simplify_shape(0.2)
R> US_AK <- US %>% subset(STATE == "02") %>% simplify_shape(0.2)
R> US_HI <- US %>% subset(STATE == "15") %>% simplify_shape(0.2)

Thick borders of aggregated regions, in this example the states, usually improve the readability
of choropleths. We create a shape of state polygons by aggregating the county polygons of
the contiguous United States.

R> US_states <- US_cont %>% aggregate_map(by = "STATE")

The choropleth of the contiguous United States is created as follows. The result is shown in
Figure 11.

26 tmap: Thematic Maps in R

Figure 11: Choropleth of the United States on county level with additional state borders.
Alaska and Hawaii are placed as map insets.

R> m_cont <- tm_shape(US_cont, projection = 2163) +
+ tm_polygons("PCT_OBESE_ADULTS10", title = "", showNA = TRUE,
+ border.col = "gray50", border.alpha = .5) + tm_shape(US_states) +
+ tm_borders(lwd = 1, col = "black", alpha = .5) +
+ tm_credits(paste0("Data @ Unites States Department of Agriculture\n",
+ "Shape @ Unites States Census Bureau"),
+ position = c("right", "bottom")) +
+ tm_layout(title = "2010 Adult Obesity by County, percent",
+ title.position = c("center", "top"),
+ legend.position = c("right", "bottom"), frame = FALSE,
+ inner.margins = c(0.1, 0.1, 0.05, 0.05))

Note that the choropleth of contiguous United States is not plotted yet, but assigned to the
variable m_cont, which is a ‘tmap’ object. Likewise, the maps of Alaska and Hawaii are
created and assigned to the variables m_AK and m_HI respectively. For these two maps, we
define viewports in which the insets will be printed.

R> library("grid")
R> vp_AK <- viewport(x = 0.15, y = 0.15, width = 0.3, height = 0.3)
R> vp_HI <- viewport(x = 0.4, y = 0.1, width = 0.2, height = 0.1)

The following code chunk shows how these maps are printed. The map of contiguous United
States is plotted in the normal way. The maps of Alaska and Hawaii are printed as insets in

Journal of Statistical Software 27

the viewports vp_AK and vp_HI respectively.

R> tmap_mode("plot")

tmap mode set to plotting

R> m_cont
R> print(m_AK, vp = vp_AK)
R> print(m_HI, vp = vp_HI)

This map is exported to a PNG file in the following code chunk. The width is set to 6.125
inches, equal to the text width of this journal. The height is not specified. Therefore, it is
configured automatically based on the width and the aspect ratio of the map. The scale
argument determines the overall size of all map objects that are scalable, such as the font
size and the line width. Finally, the map insets and the corresponding viewports are specified
with the arguments insets_tm and insets_vp respectively.

R> save_tmap(m_cont, "US_adult_obesity.png", scale = 0.7, width = 6.125,
+ insets_tm = list(m_AK, m_HI), insets_vp = list(vp_AK, vp_HI))

4.5. Crimes in Greater London

Data about crime in England, Wales, and Northern Ireland have been made publicly available
by Police UK (2016). In this example, we will explore the crimes that are registered by the City
of London Police and the Metropolitan Police Service during October 2015. The crime data
set, which has been downloaded manually from https://data.police.uk/data, is available
as a supplementary file of this publication.
The data set crimes is a data.frame that contains latitude, longitude, and crime type,
among other variables. With the following code, a ‘SpatialPointsDataFrame’ is created. In
the second code line, records of crimes with unknown location are removed. Next, the crimes
object is converted to a ‘SpatialPointsDataFrame’ by assigning the coordinate variables.
Finally, the map projection is set to the British National Grid, which corresponds to EPSG
code 27700 (IOGP 2015).

R> library("sp")
R> crimes <- crimes[!is.na(crimes$Longitude) & !is.na(crimes$Latitude),]
R> coordinates(crimes) <- ~ Longitude + Latitude
R> crimes <- set_projection(crimes, current.projection = "longlat",
+ projection = 27700)

A first glance at the data can be done with qtm.

R> tmap_mode("plot")

tmap mode set to plotting

R> qtm(crimes)

https://data.police.uk/data

28 tmap: Thematic Maps in R

(a) Dot map of crime locations. (b) Dot map with added basemap layer.

Figure 12: Dot maps of the crimes data.

The result, a dot map, is shown in Figure 12(a). This map tells that the vast majority
of the dots are clustered, whereas the other dots can be marked as outliers. In order to
locate the outliers, the same map can be executed in viewing mode with tmap_mode("view")
and last_map(). However, since there are over 80,000 points, the interactive viewer will
probably be slow. Another approach is to add a basemap in plotting mode. A basemap from
OpenStreetMap can be loaded with read_osm, as the following code shows. The bounding
box of the basemap is set to be identical to the bounding box of crimes, but extended with 5
percent. The function bb can be used to obtain this bounding box explicitly. The produced
map is depicted in Figure 12(b).

R> crimes_osm <- read_osm(crimes, ext = 1.05)
R> qtm(crimes_osm) + qtm(crimes, symbols.col = "red", symbols.size = 0.5)

It may be interesting to find out what types of crime were committed outside London. The
following code produces the map in Figure 13. The basemap is shown with 50 percent
transparency to better highlight the bubbles. From this map, it is clear that most of these
outlier crimes are related to violence and sexual offenses.

R> qtm(crimes_osm, raster.alpha = 0.5) +
+ qtm(crimes, symbols.col = "Crime.type", symbols.size = 0.5) +
+ tm_legend(outside = TRUE)

Journal of Statistical Software 29

Figure 13: Map of crimes colored by type.

In the remaining of this example, we will focus on the crimes committed in Greater London.
Therefore, we crop the crimes object in the following way.

R> library("rnaturalearth")
R> regions <- ne_download(scale = "large", type = "states",
+ category = "cultural")
R> london <- regions[which(regions$region == "Greater London"),]
R> london <- set_projection(london, projection = 27700)
R> crimes_london <- crop_shape(crimes, london, polygon = TRUE)

The object london is a ‘SpatialPolygonsDataFrame’ of the districts within Greater Lon-
don. This object is obtained with the package rnaturalearth (South 2017). The function
crop_shape returns the intersection of the first two arguments if the argument polygon is
set to TRUE. In this case, the intersection is taken of the crime locations and the outer borders
of Greater London.
A quick plot of crimes_london with qtm still shows a large amount of occlusion. This can be
prevented by applying an alpha transparency to the points. In the following code, we apply
ten percent alpha transparency. As a result, individual dots are hard to see, but the overall

30 tmap: Thematic Maps in R

Figure 14: Dot map of crimes in Greater London.

data distribution is more clear. The borders of the districts of Greater London are added for
geographical reference.

R> qtm(crimes_london, dots.alpha = 0.1) + tm_shape(london) +
+ tm_borders()

This map, which is shown in Figure 14, clearly illustrates the distribution of crimes in Greater
London. However, it is hard to infer the actual density values. This can be done by show-
ing two-dimensional kernel densities instead of dots. The bandwidth of the kernel density
estimator determines the smoothness of the kernel and is set to half a kilometer in this case.

R> crime_densities <- smooth_map(crimes_london, bandwidth = 0.5,
+ breaks = c(0, 50, 100, 250, 500, 1000), cover = london)

The variable crime_densities is a list consisting of a spatial raster of smoothed density
values, contour lines, and spatial polygons that represent areas with uniform density values.
The latter is used to draw the map depicted in Figure 15. This map is made with publication
in mind. Besides the borders of the districts of Greater London, the Thames is also drawn
as an additional layer since it is a main natural border between the districts. Spatial data

Journal of Statistical Software 31

Figure 15: Kernel density map of crimes in Greater London.

of the Thames is downloaded via the package rnaturalearth and cropped using crop_shape.
With the default specification polygon = FALSE, the function crop_shape determines the
intersection of the first object and the bounding box of the second object. Therefore, the
Thames is also drawn outside the borders of Greater London.

R> rivers <- ne_download(scale = "large", type = "rivers_lake_centerlines",
+ category = "physical")
R> thames <- crop_shape(rivers, london)

The following code is used to produce this map in Figure 15. A map compass and scale
bar are added to embellish the map. Further, a gray background is chosen, because of the
contrast with the yellow areas.

R> tm_shape(crime_densities$polygons) + tm_fill(col = "level",
+ palette = "YlOrRd", title = expression("Crimes per " * km^2)) +
+ tm_shape(london) + tm_borders() + tm_shape(thames) +
+ tm_lines(col = "steelblue", lwd = 4) +
+ tm_compass(position = c("left", "bottom")) +
+ tm_scale_bar(position = c("left", "bottom")) +
+ tm_style_gray(title = "Crimes in Greater London\nOctober 2015")

The crimes are classified into fourteen types as Figure 13 already showed. Next, we will
analyze the distribution of crimes per type in the City of London. In the following code, the

32 tmap: Thematic Maps in R

Figure 16: Small multiples that show the crimes per type in the City of London.

district of the City of London is selected from london and assigned to a new object of class
‘SpatialPolygonsDataFrame’ called london_city. An OpenStreetMap basemap is obtained
from Stamen-Watercolor, a tile server with artistically designed basemaps. The subset of
crimes, that are located in the City of London, are assigned to crimes_city.

R> london_city <- london[london$name == "City",]
R> london_osm <- read_osm(london_city, type = "stamen-watercolor", zoom = 13)
R> crimes_city <- crop_shape(crimes_london, london_city, polygon = TRUE)

The following code shows how to create small multiples in which the crimes are split by type.
The produced plot is shown in Figure 16.

R> qtm(london_osm) +
+ qtm(crimes_city, dots.size = 0.2, by = "Crime.type", free.coords = FALSE)

The "view" mode can be used to explore the crime data in depth. Figure 17 shows a screenshot

Journal of Statistical Software 33

Figure 17: Screenshot of an interactive map that shows the crimes colored by group type.

of the widget. The dots are colored by type, classified into seven groups. Jittering is enabled
since many crimes have the exact same location.

R> tmap_mode("view")
R> tm_shape(crimes_city) + tm_dots(jitter = 0.2, col = "Crime.group",
+ palette = "Dark2", popup.vars = TRUE) +
+ tm_view(alpha = 1, basemaps = "Esri.WorldTopoMap")

This interactive map can be saved to a stand-alone HTML page with save_tmap.

R> save_tmap(filename = "index.html")

5. Conclusions and future directions
The tmap package can be used to create thematic maps of many kinds. It offers a flexible,
layered approach to build thematic maps from scratch. Users have a lot of freedom in several
aspects of mapping. First, there are many possibilities to map spatial data to the aesthetics
of the layer functions. Users are able to create their own class intervals, use their own color
palettes, and customize the corresponding legends. Second, users have a lot of possibilities to
format and style maps. Third, the produced maps can be easily exported to different formats
with full control over important settings, such as the aspect ratio and the overall scale. Finally,
users are able to switch instantly between static plotting and interactive viewing.
Although one of the main objectives of tmap is to have a large degree of flexibility and
customization, it is also important that the default values are suitable in most cases, since
users often need to be able to create thematic maps fast, especially in the phase of data
exploration. To accommodate this need, the default format and style are chosen as general as
possible. Also, the amount of code to create a minimal working thematic map, for instance a
choropleth, is low, especially with the function qtm.
A couple of features are not implemented yet in "view" mode. The legend is not yet available
for the aesthetics regarding bubbles, dots, lines, and text labels. From the map attributes

34 tmap: Thematic Maps in R

listed in Table 4, only the scale bar and the grid lines are supported in "view" mode. Other
interactive mapping features, especially those implemented by the R packages leaflet and
mapview, could also be used by tmap in future versions.
Another aim for future development is the implementation of the flow map. Arcs between
spatial units, points or polygons, represent a certain flow between them. This type of map is
especially useful to visualize migration. Flow maps with a low number of arcs that are located
between more or less uniformly distributed points are probably easy to implement. However,
for a high number of flows, or when spatial points lie close to each other, the implementation
is hard, since it often requires routing and partial clustering of arcs (Buchin, Speckmann, and
Verbeek 2011).
Currently, packages tmap and tmaptools are based on the classes and methods from the
sp, rgdal, and rgeos packages for shapes other than rasters. The class of simple features,
implemented in the R package sf, can be seen as the successor of the class of ‘Spatial’
objects. This format is similar to GeoJSON, a popular format for shapes, especially for
web-based applications, and also used in PostGIS, a spatial database (Holl and Plum 2009),
and ArcGIS. Both tmap and tmaptools support ‘sf’ objects. However, ‘sf’ objects are still
coerced to ‘Spatial’ objects under the hood. For future development, it will be worthwhile
to use the ‘sf’ classes and the corresponding methods directly.

Acknowledgments
I would like to thank Edwin de Jonge, Roger Bivand, Tim Appelhans and the anonymous
referees for their useful and constructive comments on earlier versions of this paper and the
software. Furthermore, thanks to all users of the tmap package, in particular Joel Gombin,
Kent Russell, Sebastian Jeworutzki, Richard Zijdeman, Carsten Behring, Melanie Bacou,
Mario Nowak, Egge-Jan Pollé, Robin Lovelace, Andy South, and Edzer Pebesma for providing
me with useful feedback and bug reports, and for sharing ideas for extra features and future
development.

References

Agafonkin V (2017). Leaflet: An Open-Source JavaScript Library for Mobile-Friendly Inter-
active Maps. URL http://leafletjs.com.

Allaire JJ, Cheng J, Xie Y, McPherson J, Chang W, Allen J, Wickham H, Atkins A, Hyndman
R, Arslan R (2017). rmarkdown: Dynamic Documents for R. R package version 1.5, URL
https://CRAN.R-project.org/package=rmarkdown.

Appelhans T, Detsch F, Reudenbach C, Woellauer S (2017). mapview: Interactive Viewing
of Spatial Objects in R. R package version 2.0.1, URL https://CRAN.R-project.org/
package=mapview.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.5, URL https://CRAN.R-project.org/package=magrittr.

http://leafletjs.com
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=magrittr

Journal of Statistical Software 35

Barford A, Dorling D (2008). “Telling an Old Story with New Maps.” In M Turner, M Dodge,
M McDerby (eds.), Geographic Visualization: Concepts, Tools and Applications, pp. 67–
107. John Wiley & Sons.

Bertin J (1983). Semiology of Graphics. University of Wisconsin Press.

Bivand RS (2017). classInt: Choose Univariate Class Intervals. R package version 0.1-24,
URL https://CRAN.R-project.org/package=classInt.

Bivand RS, Hauke J, Kossowski T (2013). “Computing the Jacobian in Gaussian Spatial
Autoregressive Models: An Illustrated Comparison of Available Methods.” Geographical
Analysis, 45(2), 150–179. doi:10.1111/gean.12008.

Bivand RS, Keitt TH, Rowlingson B (2017). rgdal: Bindings for the Geospatial Data Ab-
straction Library. R package version 1.2-7, URL https://CRAN.R-project.org/package=
rgdal.

Bivand RS, Pebesma EJ, Gómez-Rubio V (2008). Applied Spatial Data Analysis with R.
Springer-Verlag, New York. doi:10.1007/978-1-4614-7618-4.

Bivand RS, Piras G (2015). “Comparing Implementations of Estimation Methods for Spatial
Econometrics.” Journal of Statistical Software, 63(18), 1–36. doi:10.18637/jss.v063.
i18.

Bivand RS, Rundel C (2017). rgeos: Interface to Geometry Engine – Open Source (GEOS).
R package version 0.3-23, URL https://CRAN.R-project.org/package=rgeos.

Brewer CA, Hatchard GW, Harrower MA (2003). “ColorBrewer in Print: A Catalog of
Color Schemes for Maps.” Cartography and Geographic Information Science, 30(1), 5–32.
doi:10.1559/152304003100010929.

Brewer CA, Pickle L (2002). “Evaluation of Methods for Classifying Epidemiological Data
on Choropleth Maps in Series.” The Annals of the Association of American Geographers,
92(4), 662–681. doi:10.1111/1467-8306.00310.

Brunsdon C, Chen H (2014). GISTools: Some Further GIS Capabilities for R. R package
version 0.7-4, URL https://CRAN.R-project.org/package=GISTools.

Buchin K, Speckmann B, Verbeek K (2011). “Flow Map Layout via Spiral Trees.” IEEE
Transactions on Visualization and Computer Graphics, 17(12), 2536–2544. doi:10.1109/
tvcg.2011.202.

CartoDB, Inc (2017). CARTO. CartoDB, Inc., New York. URL https://carto.com/.

Cheng J, Karambelkar B, Xie Y (2017). leaflet: Create Interactive Web Maps with the
JavaScript Leaflet Library. R package version 1.1.0, URL https://CRAN.R-project.org/
package=leaflet.

ERS, USDA (2017). Food Environment Atlas. Economic Research Service,
U.S. Department of Agriculture. URL http://www.ers.usda.gov/data-products/
food-environment-atlas.aspx.

https://CRAN.R-project.org/package=classInt
https://doi.org/10.1111/gean.12008
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=rgdal
https://doi.org/10.1007/978-1-4614-7618-4
https://doi.org/10.18637/jss.v063.i18
https://doi.org/10.18637/jss.v063.i18
https://CRAN.R-project.org/package=rgeos
https://doi.org/10.1559/152304003100010929
https://doi.org/10.1111/1467-8306.00310
https://CRAN.R-project.org/package=GISTools
https://doi.org/10.1109/tvcg.2011.202
https://doi.org/10.1109/tvcg.2011.202
https://carto.com/
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=leaflet
http://www.ers.usda.gov/data-products/food-environment-atlas.aspx
http://www.ers.usda.gov/data-products/food-environment-atlas.aspx

36 tmap: Thematic Maps in R

ESRI (2016). ArcGIS Desktop: Release 10.4. Environmental Systems Research Institute,
Redlands.

Eugster MJA, Schlesinger T (2013). “osmar: OpenStreetMap and R.” The R Journal, 5(1),
53–63.

Fellows I (2016). OpenStreetMap: Access to Open Street Map Raster Images. R package
version 0.3.3, using the JMapViewer library by Jan Peter Stotz, URL https://CRAN.
R-project.org/package=OpenStreetMap.

Fisher PF, Comber AJ, Wadsworth RA (2005). “Land Use and Land Cover: Contradiction
or Complement.” In PF Fisher, D Unwin (eds.), Re-Presenting GIS, pp. 85–98. John Wiley
& Sons.

Friendly M (1995). “Milestones in the History of Thematic Cartography, Statistical Graphics,
and Data Visualization.” In 13th International Conference on Database and Expert Systmes
Applications (DEXA 2002), pp. 59–66. Aix en Provence.

Gastner MT, Newman MEJ (2004). “Diffusion-Based Method for Producing Density-
Equalizing Maps.” Proceedings of the National Academy of Sciences of the United States of
America, 101(20), 7499–7504. doi:10.1073/pnas.0400280101.

Giraud T, Lambert N (2016). “cartography: Create and Integrate Maps in Your R Workflow.”
The Journal of Open Source Software, 1(4), 1–2. doi:10.21105/joss.00054.

GIS Geography (2016). “Mapping Out the GIS Software Landscape.” Published on 2016-07-
28, URL http://gisgeography.com/mapping-out-gis-software-landscape/.

GRASS Development Team (2016). Geographic Resources Analysis Support System (GRASS
GIS) Software, Version 7.0. Open Source Geospatial Foundation. URL http://grass.
osgeo.org/.

Hijmans RJ (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7,
URL https://CRAN.R-project.org/package=raster.

Holl S, Plum H (2009). “PostGIS.” GeoInformatics, 3, 34–36.

ImageMagick Studio LLC (2017). ImageMagick: Convert, Edit, and Compose Images. Ver-
sion 7.0.6-1, URL http://www.ImageMagick.org/.

IOGP (2015). “EPSG Geodetic Parameter Dataset.” URL http://www.epsg.org/.

IPCC (2014). Climate Change 2014: Synthesis Report. Intergovernmental Panel on Climate
Change, Geneva.

Jeworutzki S (2016). cartogram: Create Cartograms with R. R package version 0.0.2, URL
https://CRAN.R-project.org/package=cartogram.

Kahle D, Wickham H (2013). “ggmap: Spatial Visualization with ggplot2.” The R Journal,
5(1), 144–161.

Kilibarda M, Bajat B (2012). “plotGoogleMaps: The R-Based Web-Mapping Tool for The-
matic Spatial Data.” GEOMATICA, 66(1), 37–49. doi:10.5623/cig2012-007.

https://CRAN.R-project.org/package=OpenStreetMap
https://CRAN.R-project.org/package=OpenStreetMap
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.21105/joss.00054
http://gisgeography.com/mapping-out-gis-software-landscape/
http://grass.osgeo.org/
http://grass.osgeo.org/
https://CRAN.R-project.org/package=raster
http://www.ImageMagick.org/
http://www.epsg.org/
https://CRAN.R-project.org/package=cartogram
https://doi.org/10.5623/cig2012-007

Journal of Statistical Software 37

Kraak MJ, Ormeling FJ (2010). Cartography: Visualization of Spatial Data. Pearson Prentice
Hall.

Lamstein A, Johnson BP (2017). choroplethr: Simplify the Creation of Choropleth Maps in
R. R package version 3.6.1, URL https://CRAN.R-project.org/package=choroplethr.

Langford M, Unwin DJ (1994). “Generating and Mapping Population Density Surfaces within
a Geographical Information System.” The Cartographic Journal, 31(1), 21–26. doi:10.
1179/000870494787073718.

Loecher M, Ropkins K (2015). “RgoogleMaps and loa: Unleashing R Graphics Power on Map
Tiles.” Journal of Statistical Software, 63(4), 1–18. doi:10.18637/jss.v063.i04.

Lovelace R (2015). Creating Maps in R. Online tutorial, URL https://github.com/
Robinlovelace/Creating-maps-in-R.

MacEachren AM (1994). Some Truth with Maps: A Primer on Symbolization and Design.
Association of American Geographers, Washington, DC.

Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, URL
https://CRAN.R-project.org/package=RColorBrewer.

Nusrat S, Kobourov SG (2016). “The State of the Art in Cartograms.” Computer Graphics
Forum, 35(3), 619–642. doi:10.1111/cgf.12932.

Pebesma E (2017). sf: Simple Features for R. R package version 0.4-1, URL https://CRAN.
R-project.org/package=sf.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13.

Police UK (2016). “Crime and Policing in England, Wales and Northern Ireland.” URL
https://data.police.uk/.

QGIS Development Team (2016). QGIS Geographic Information System. Open Source
Geospatial Foundation. URL http://qgis.osgeo.org.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RStudio Inc (2017). htmltools: Tools for HTML. R package version 0.3.6, URL https:
//CRAN.R-project.org/package=htmltools.

RStudio Team (2017). RStudio: Integrated Development Environment for R. RStudio, Inc.,
Boston, MA. URL https://www.RStudio.com/.

Slocum TA, MacMaster RB, Kessler FC, Howard HH (2009). Thematic Cartography and
Geovisualization. 3rd edition. Pearson Prentice Hall.

Snow J (1855). “On the Mode of Communication of Cholera.” London.

South A (2011). “rworldmap: A New R package for Mapping Global Data.” The R Journal,
3(1), 35–43.

https://CRAN.R-project.org/package=choroplethr
https://doi.org/10.1179/000870494787073718
https://doi.org/10.1179/000870494787073718
https://doi.org/10.18637/jss.v063.i04
https://github.com/Robinlovelace/Creating-maps-in-R
https://github.com/Robinlovelace/Creating-maps-in-R
https://CRAN.R-project.org/package=RColorBrewer
https://doi.org/10.1111/cgf.12932
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://data.police.uk/
http://qgis.osgeo.org
https://www.R-project.org/
https://CRAN.R-project.org/package=htmltools
https://CRAN.R-project.org/package=htmltools
https://www.RStudio.com/

38 tmap: Thematic Maps in R

South A (2017). rnaturalearth: World Map Data from Natural Earth. R package version
0.1.0, URL https://CRAN.R-project.org/package=rnaturalearth.

Steiniger S, Bocher E (2009). “An Overview on Current Free and Open Source Desktop
GIS Developments.” International Journal of Geographical Information Science, 23(10),
1345–1370. doi:10.1080/13658810802634956.

Tennekes M (2018a). tmap: Thematic Maps. R package version 1.11-2, URL https://CRAN.
R-project.org/package=tmap.

Tennekes M (2018b). tmaptools: Thematic Map Tools. R package version 1.2-4, URL https:
//CRAN.R-project.org/package=tmaptools.

Tufte ER (1983). The Visual Display of Quantitative Information. Graphics Press.

Tyner JA (2010). Principles of Map Design. Guilford Press.

UN (2016). Global Sustainable Development Report 2016. United Nations, New York.

US Census Bureau (2016). Topologically Integrated Geographic Encoding and Referenc-
ing (TIGER). United States Census Bureau. URL https://www.census.gov/geo/
maps-data/data/tiger.html.

Vaidyanathan R, Xie Y, Allaire JJ, Cheng J, Russell K (2016). htmlwidgets: HTML Widgets
for R. R package version 0.8, URL https://CRAN.R-project.org/package=htmlwidgets.

Van Rossum G, et al. (2011). Python Programming Language. URL http://www.python.
org/.

Villarreal O (2014). Learning D3.js Mapping. Community Experience Distilled. Packt Pub-
lishing.

Walker K (2016). “tigris: An R Package to Access and Work with Geographic Data from the
US Census Bureau.” The R Journal, 8(2), 231–242.

Wand M (2015). KernSmooth: Functions for Kernel Smoothing Supporting Wand &
Jones (1995). R package version 2.23-15, URL https://CRAN.R-project.org/package=
KernSmooth.

Warmerdam F, Evenden G (2015). “PROJ.4 – Cartographic Projections Library, version
4.9.2.” URL http://trac.osgeo.org/proj/.

Westra E (2015). Python Geospatial Analysis Essentials. Packt Publishing.

Whittle P (2003). “Contrast Colours.” In R Mausfeld, D Heyer (eds.), Colour Perception:
Mind and the Physical World, pp. 115–138. Oxford University Press.

WHO (2016). World Health Statistics 2016. World Health Organization, Geneva.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. URL
http://ggplot2.org.

Wickham H (2010). “A Layered Grammar of Graphics.” Journal of Computational and
Graphical Statistics, 19(1), 3–28. doi:10.1198/jcgs.2009.07098.

https://CRAN.R-project.org/package=rnaturalearth
https://doi.org/10.1080/13658810802634956
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=tmaptools
https://CRAN.R-project.org/package=tmaptools
https://www.census.gov/geo/maps-data/data/tiger.html
https://www.census.gov/geo/maps-data/data/tiger.html
https://CRAN.R-project.org/package=htmlwidgets
http://www.python.org/
http://www.python.org/
https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=KernSmooth
http://trac.osgeo.org/proj/
http://ggplot2.org
https://doi.org/10.1198/jcgs.2009.07098

Journal of Statistical Software 39

Wilkinson L (2005). The Grammar of Graphics. Statistics and Computing. Springer-Verlag.

Affiliation:
Martijn Tennekes
Statistics Netherlands
CBS-weg 11
6412 EX Heerlen, The Netherlands
E-mail: mtennekes@gmail.com
URL: https://github.com/mtennekes/tmap

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

April 2018, Volume 84, Issue 6 Submitted: 2016-03-18
doi:10.18637/jss.v084.i06 Accepted: 2017-06-12

mailto:mtennekes@gmail.com
https://github.com/mtennekes/tmap
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v084.i06

	Introduction
	Layered grammar of thematic maps
	The tmap package

	Related software
	Syntax
	Plotting and interactive viewing
	Main plotting method
	Quick plotting method
	Reading and processing spatial data
	Output

	Examples
	Metropolitan areas
	Classic world map
	Two world views
	Obesity in the United States
	Crimes in Greater London

	Conclusions and future directions

