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ON MEASURABLE SOLUTIONS
OF A FUNCTIONAL EQUATION AND ITS APPLICATION
TO INFORMATION THEORY

GUR DIAL

In this paper, the measurable solutions of a functional equation with two unknown functions
are obtained. As an application of the measurable solutions, characterization of three measures
of information is given.

1. INTRODUCTION

Let 4, ={P =(py, .., p); P20, i=1,...,n, % p; = 1} for n = 1 be the set
of n-complete probability distributions. =1
Let R be the set of all real numbers and let I = [0, 1].

Let us consider measurable functions k, g : I — R satisfying the functional equa-
tion ’

(LY ii ji h(x.y;) =;§:1 jig(x.-) h(y;) +i:21 jgm:lg(yj) h(x;)

where X = (X1, ..., %,) €4y, Y= (1, o0 Y€ Ay for n,m = 2,3.
The continuous solutions of (1.1) were given by Sharma and Taneja [3].

The objective of this paper is to find the measurable solutions of the functional
equation (1.1} and given its application to information theory.

2. MEASURABLE SOLUTIONS OF (1.1)

In the following theorem, we will give the measurable solutions of system (1.1)
of functional equations.

Theorem 1. If  and g are Lebesgue measurable solutions of system (1.1) of func-
tional equations for X € 4,, Ye 4,, where n, m = 2, 3, then they are given for
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x € [0,1], by one of the following solutions:

(22) h(x) = Ax*logx, g(x)=x", >0

(23) h(x) = 1/B(x* — xP}, g(x) = 1[2(x* + %), o, >0

(24) h(x) = (x*/C)sin (Blog x), g(x) = a*cos (Blogx),
a>0, p=*0.

Proof. Putting Y= (y,0,1 —y—v)ed; and Y=(y+v,1—y —v)ed,
respectively in (1.1), we get

(2:9) Zi:(h(xiy) + h(xp) + Bx(l — y —v))) =

= Zig(xi) (h(y) + h(v) + Bl — y — v)) + Zih(xz) (9(y) + 9(v) + 91 = y — v))
and

(26) S(Hxily + o) + hx(l = y = o)) =

= 200x) (h(y + 0) + b1 = y = 0)) + Th(x) (g(y +0) + g(1 — 7 = v))
Subtracting (2.6) from (2.5), we have
27) Shlx) + h(x) = hx(y + 1)) =

= 290u) (W) + h(e) = h(y +0)) + 2h(x) (90) + 9(0) + 9(1 =~y = 0))

ForXed,n=273let

(2.8) Ax(t) = Xi:h(xit) - iZg(xi) (i) — ;h(x,-) g(1)
Using (2.8), (2.7) becomes
(2.9) Ax(y + v) = Ax(y) + Ax(v)

It means that 44(.) is additive on I. We can conclude from the result of Daroczy
and Losonczi [2] that the measurable solution of (2.9) is

(2.10) Ax(f) = t Ax(1)
Thus, in order to see the expression of Ax(t), we need to evaluate
(2.11) Ax(1) = Zh(x,-) - Ya(x) h(1) — Zh(x;) g(1)

Substituting ¥ = (1, 0) and Y = (1, 0, 0) respectively in (1.1) we get

(2.12) Zi:h(xi) + n h(0) = };g(xi) (r(1) + Rr(0)) + zi:h(xi) (9(1) + g(0))
and

(2.13) ;h(x,-) + 2n h(0) = zi:g(x,-) (r(1) + 2K(0)) + ;h(x,) (9(1) + 24(0))
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Subtracting (2.12) from (2.13, we have

(2.14) n h(0) = Zi:g(x,-) h(O) + ;h(xi) g(O)
Using (2.14), (2.12) becomes

(2.15) Zih(xi) = lZg(xi) h(1) + ;’7(-“:) g9(1)
50 that Ag(1) = 0. Now by (2.10)

(2.16) zih(xit) = Zg(x,-) h(t) + ‘Zh(x,») g()

for X = (xq,...,x,)€4,,n =2,3and 1€ [0, 1]
Let X = (x,u, 1 — x — u). Then (2.16) becomes

217y h(xt) + h(ut) + A((L — x —u)t) = (g(x) + g(u) + g(L — x — u)) h(t) +
+ (h(x) + h(u) + (1 = x — u)) g(¢)
Again, if X = (x + u, 1 — x — u) in (2.16), we have
(218) h{x +u)t + h(1 — x —u)t) = (g(x + u) + g(1 — x — u)) h(r) +
+ (h{x + u) + 0(L — x — u)) g(2)
Subtracting (2.18) from (2.17), we get
(2.19)  h(xt) + h(ut) — h((x + u) 1) = (g(x} + g(u) — g(x + w)) h(t) +
+ (h(x) + h(u) — h(x + u)) g(1)
For 1€[0,1], let us define

(2.20) B,(w) = h(wt) — g(w) h(t) — h(w) g(), we[0, 1]
Then, (2.19) can be written as

(2.12) B,(x + u) = B{x) + Bu) for x,u,x+ue[0,1]
Using again the result of Daroczy and Losonoczi [2], we have
(2.22) B(w)=wB(1), wel0,1]

(2.23) B(1) = h(r) — g(1) h(t) — h(1) 9(2), te[0,1]
Putting X = (1, 0) and X = (1, 0, 0) respectively in (2.16), we get
(2.24) h(t) + h(0) = (9(1) + 9(0)) h(2) + (h(2) + h(0)) g(1)
and

(2.25) (1) + 2h(0) = (9(1) + 29(0)) h(t) + (h(1) + 2h(0)) (1)
Subtracting (2.24) from (2.25), we obtain

(2.26) h(0) = g(0) h(z) + h(0) g(2)
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Using (2.26), (2.24) becomes

(2.27) (1) = g(1) h(z) + h(L) (1)

Hence we have

(2.28) B(1)=0

Then (2.20) becomes

(2.29) h(wi) = g(w) h(t) + h(w) g(t), w,te[0,1]

But the most general complex solutions of (2.29) are given by (see [1])
(2.30) h(w) =0, g(w)arbitrary ;

(2.31) h(w) = eo(w) a(w), g(w) = eo(w);

and

(23) M) = R (e) — 0. a() = Heslw) + es(w)
where k # 0 is an arbitrary real or purely imaginary constant and a(w).e(w),
(t =0, 1, 2) arc arbitrary functions satisfying

(2.33) a(wt) = a(w) + aft),
and
(2.34) e(wt) = e{w)eft)y, 1=0,1,2
respectively.
From (2.30), (2.31), (2.32), (2.33) and (2.34) it is easy to see that the real measurable
solutions  and g arc given by (2.2), (2.3) and (2.4). This proves the theorem. O

3. APPLICATION TO INFORMATION THEORY

Let K be a real measurable function such that
(3.1) H(P) = Y h(p)

where P e 4,. Also suppose that h satisfies the normalizing condition h(}) = 1.
In the next theorem we give characterization of threc measures of information
satisfying (1.1), (3.1) and the normalizing condition.

Theorem 2. The entropics of a probability distribution P e 4, corresponding
to real measurable solution (2.2), (2.3) and (2.4) of the functional equation (1.1)
under the normalization condition h(%) = 1 are given by

(32) H(P) = 2 Splogp, >0,
(33) HEPP) =t =2VH LS (i —pf), a%B, >0, >0
T

(34) HEP(P) = (—22"'sin B) Y pisin (Blogp), B+0, a>0.

The proof is rather straighforward. 0
(Received November 2, 1982.)
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