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Abstract  
 

Background: Sputum is the sample to monitor the lower respiratory tract microbiota in 

cystic fibrosis (CF), but young patients often cannot expectorate. We hypothesized that throat 

swabs could reflect lower airway colonization and assessed the concordance of bacterial 

community composition between paired sputum and throat swab samples from children with 

CF. 

Methods: The prospective longitudinal multicenter MUCOVIB cohort included 379 samples 

from 61 CF children. Using V3-V4 16S rRNA amplicon metagenomics, we compared 

bacterial community diversity and composition between sputum and throat swabs in the full 

cohort and in 11 patients with paired samples from the same visit. 

Results: Sputum and Throat swabs exhibited similar bacterial diversity, regardless of the 

exacerbation status, and presented a substantial agreement for detecting pathogens (Cohen’s 

Kappa: 0.6). Differences in bacterial abundance were observed (p=0.001), but not 

presence/absence (p=0.098). Community typing revealed three distinct community types, 

with 86% of paired samples falling into the same cluster, highlighting the homogeneity 

between sputum and throat swabs microbiota. Network analysis demonstrated slight, non-

random similarities in microbial interactions between sample types (ARI = 0.08 and 0.10). 

The average distance between samples collected from the same visit was shorter (0.505, ± 

0.056 95%CI), compared to sputum (0.695, ± 0.017) or throat swab (0.704, ± 0.045) from the 

same patient collected during different visits.  

Conclusions: Throat swabs can provide representative information on lower respiratory 

microbiota. Clinicians should collect throat swabs rather than relying on sputum samples 

from previous visits to guide antibiotic prescriptions in CF children unable to expectorate. 
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1.  Introduction  

Cystic fibrosis (CF) is characterized by chronic pulmonary exacerbations, primarily driven by 

persistent bacterial infections, that lead to progressive lung disease [1–3]. The evolution of 

CF's respiratory tract microbiome - from an initially diverse population to one increasingly 

dominated by pathogenic bacteria such as Staphylococcus aureus, Haemophilus influenzae, 

and Pseudomonas aeruginosa - highlights the interest in precise microbiota monitoring, to 

identify turning points in disease progression such as P. aeruginosa colonization [4,5].  

The Climax-Attack Model (CAM) provides insights into the microbial dynamics within the 

CF lung [6,7]. The model differentiates 'attack' communities present during exacerbations, 

characterized by transient species colonization that triggers acute immune responses and 

lower pH through sugar fermentation, from 'climax' communities of more stable, slower-

growing microbes resistant to antibiotics, associated with nitrogen waste management and an 

increased pH during stable periods. This framework underscores the dynamic nature of CF 

pathology and the importance of understanding microbial shifts for effective disease 

management [8]. Indeed, guidelines recommend regular microbiological workup to tailor 

antimicrobial therapy [10].  

A significant challenge in CF management is obtaining the appropriate sample for respiratory 

microbiota analysis [9], especially among non-expectorating infants and young children. 

Bronchoalveolar lavage (BAL) is the gold standard and the best representative sample of 

lower respiratory microbiota. Yet, regular bronchoscopy is not recommended due to its 

invasive nature and the absence of proven clinical benefit [10]. Expectorated sputum stands 

as the best alternative for adults and older children capable of expectorating [10]. Throat 

swabs (TS) are the recommended alternative for infants and preschoolers [11]. Yet, culture-

independent analyses have questioned the ability of TS to capture the lower respiratory tract 

microbiota, where chronic infection and inflammation occur [12]. Furthermore, interpreting 

TS results in children is complicated by age-related variations in the expected healthy 

microbial within different niches. This variability particularly affects infants and 

preschoolers, leading to inconsistent results across pediatric age groups and fueling debates 

about the reliability of TS in these cohorts [13–17]. 

The Mucoviscidosis, Respiratory Viruses, and Intracellular Bacteria (MUCOVIB) project, a 

Swiss prospective longitudinal multicenter cohort, collected TS, sputum, nasopharyngeal 

swabs, bronchoalveolar lavage, and bronchial aspirate, to detect respiratory bacteria and 
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viruses in 61 children with CF under 18 years of age [18, 19]. The efficacy of the 16S assay 

for pathogen detection compared to conventional culture results on respiratory samples 

showed fair agreement (0.4) based on Cohen’s Kappa score [23]. However, the 16S assay 

was more sensitive in detecting H. influenzae and S. aureus in respiratory samples compared 

to standard culture methods. 

The present sub-study aims to clarify whether TS is a reliable proxy to sputum samples to 

reflect the microbial dynamics in the lower respiratory tract. By analyzing 16S rRNA 

sequence data from paired sputum and TS, we evaluated the concordance between microbial 

communities in these sample types, and key factors influencing their composition. Through 

community typing and ecological network analysis, focusing on keystone species and their 

interactions, we investigated the similarity in microbial community structure between sputum 

and TS during follow-up visits and pulmonary exacerbations.  

2. Materials and methods 

2.1. Study population and design  
Details of the collection of clinical information, study design, and protocol have been 

published in the first MUCOVIB studies [18, 19]. Briefly, 61 patients were recruited from the 

respiratory clinics of Lausanne and Geneva University Hospital Centers and followed 

routinely by their treating pulmonologists. Culture, quantitative PCRs, and 16S amplicon-

based metagenomics were used to assess the presence of viruses and bacteria in the 

respiratory tract. Overall, 269 TS and 51 sputa samples were collected longitudinally every 3 

months from children with CF. The present MUCOVIB substudy evaluates the microbial 

composition of sputum and TS collected from the entire cohort and a subset of eleven 

individuals who provided 22 paired sputa and TS samples at the same visit.  

2.2. Bioinformatics and statistical analyses 

The composition of the microbial community was assessed through analyses of the V3-V4 

regions of the 16S rRNA gene, sequenced using the Illumina MiSeq platform, as previously 

described [18, 19]. Raw sequencing reads are available in the European Nucleotide Archive 

(ENA) with project number PRJEB41059. The zAMP pipeline, an in-house DADA2-based 

bioinformatics tool, was used to process the paired-end sequences from the 16S amplicons 

(https://github.com/metagenlab/zAMP release v 0.9.15).   
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To assess the concordance between sputum and TS for detecting pathogens, Cohen’s Kappa 

statistic was computed using R software (v4.2.2). The vegan [20], mia [21], and ggplot2 

packages were used for downstream statistical analysis and visualization. Wilcoxon rank-sum 

test was used to compare bacterial alpha diversity across two sample types, using paired tests 

for matched samples. Beta diversity was assessed by Bray-Curtis distance, considering the 

abundance of bacteria, and Jaccard distance, accounting for their presence/absence. 

Homogeneity of group dispersion was calculated using the betadisper test and bacterial 

composition between sample types was compared using the permutational multivariate 

ANOVA (PERMANOVA) test with 999 permutations. Adjusted p-values obtained from the 

BH method and values below 0.05 were considered statistically significant.  

To examine the effect of host factors on variation of microbial composition, distance-based 

redundancy analysis (db-RDA) was performed with Bray-Curtis and Jaccard distances using 

capscale [20]. The species profiles from paired sputum and TS were used for community 

typing using the Dirichlet Multinomial Mixtures model (DMM) [22] and Laplace 

approximation, which was applied to identify the optimal number of DMMs. For both 

analyses, missing metadata for FEV1% (percentage of predicted Forced Expiratory Volume) 

and LCI (lung clearance index) were imputed using the median, as it is robust against outliers 

and skewed data. 

The NetCoMi [23] package was used to construct and compare networks graphically and 

quantitatively. For this analysis, we applied sparse Correlations for Compositional data 

(SparCC) correlation coefficients [24], considering species that were present in at least 50% 

of each sample type and selecting associations with SparCC > 0.5. To identify topology and 

structural differences between networks of sputum and TS, a differential network was 

constructed where only differentially associated taxa are connected with only significant (P < 

0.05) and strongly positive (SparCC > 0.5) correlations. 

 

3. Results 

3.1. Characteristics of the study population 

The microbial composition of sample types was compared across the entire MUCOVIB 

cohort, consisting of 61 children (average age: 7.4; IQR [3.7; 12.2]). This cohort was 

followed for up to 756 days, with a median number of 7 visits (IQR [5;8]), resulting in the 
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collection of a total of 379 samples. Furthermore, the sub-study focused on 22 paired sputum 

and TS samples collected during the same visit from 11 children, which represents 18% of 

the cohort. Among these 11 patients, 36% (4 children) contributed a single pair of samples, 

while 64% (7 children) contributed two or more pairs. 

 

While the sex ratio was slightly imbalanced towards males (59%) in the entire cohort, in the 

subset of patients who provided both sample types on the same day of the visit, males and 

females accounted for 72.7% and 27.3%, respectively (Table 1). FEV1% was lower and LCI 

was increased during exacerbations. Although FEV1% did not show a significant difference 

between the entire cohort and the paired cohort during follow-up visits, the difference was 

significant during pulmonary exacerbations. Additionally, LCI values were increased in the 

cohort of paired samples. Patients in the paired cohort tended to be older, with an average age 

of 12.7 years (IQR: 9.7- 14.6), and exhibited more severe disease symptoms, as correlated to 

the observed increase in LCI values. 

 

3.2. Comparability of sputum and throat swabs for pathogen detection 

To assess the reliability of TS, we measured pathogen detection rates in paired sputum and 

TS specimens using 16S assay. Compared to sputum, which was considered the gold 

standard, the 16S assay on TS showed an overall sensitivity of 78% and a specificity of 98%. 

Table 2 details the Cohen’s Kappa scores, along with sensitivity and specificity values for 

the detection of five common CF pathogens. The Kappa score indicates a variable level of 

agreement in detection rates between paired sputum and TS samples depending on the 

bacterial species, ranging from substantial agreement for Achromobacter (0.69) to no 

agreement for Stenotrophomonas maltophilia (0), likely due to the small sample size. For S. 

aureus, throat samples yielded a sensitivity of 94%, a specificity of 25%, a positive 

predictive value (PPV) of 81%, and a negative predictive value (NPV) of 50%. In the case of 

P. aeruginosa, TS demonstrated sensitivities, specificities, PPVs, and NPVs of 50%, 83%, 

40%, and 88%, respectively. The sensitivity rates varied significantly between the two 

sample types, with sputum samples yielding higher sensitivities. 
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3.3. Microbiome diversity and composition in paired sputum and throat 
swab samples 

Microbial diversity was calculated across sample types, using Chao1, indicating ASV 

richness, and the Shannon diversity index, which accounts for ASV richness and evenness 

(Fig. 1A, B). Overall richness was not significantly different between the two sample types 

within the entire MUCOVIB cohort (p-value: 0.34) as well as in paired samples (p-values: 

0.59). Similarly, comparisons of the Shannon index revealed no significant differences 

across both sample types. Hence, sputum and TS may offer similar insights into microbial 

diversity, irrespective of the patient's exacerbation status (Fig. S1A, B). 

Furthermore, bacterial communities across sample types were compared at the ASV level. In 

the MUCOVIB cohort, variability (dispersion) within microbial communities was 

significantly different between sputum and TS based on the abundance of bacteria (Fig. 

1C, Bray-Curtis index, p-value: 0.05), but not based on the species composition (Jaccard 

index, p-value: 0.9). The significant difference in the overall bacterial community structure 

for both indices (PERMANOVA p-value: 0.001) indicated distinct microbial compositions 

between sample types. Similar results were observed within the paired samples, with a 

significant difference in dispersion using Bray-Curtis index (Fig. 1D, p-value: 0.04) but not 

with the Jaccard index (p-value: 0.41). In both cohorts, a PERMANOVA performed using 

sample type and visits (regular follow-up or exacerbations) as grouping factors, while 

stratifying by patient (Fig. S1C, D) suggested that both sample types (p-value: 0.001) and 

clinical status of the patient (p-value: 0.001) independently affect microbial community 

composition. However, their interaction did not show a significant impact (p-value: 0.64). 

Patient-specific signatures in the microbiota were evident from the clustering of sputum and 

TS samples collected from the same visit observed in both the hierarchical clustering (Fig. 

2A) and the NMDS (Fig. 2B) based on the presence/absence of the bacteria. A multivariate 

multiple regression model was built to evaluate the correlation between clinical and 

demographic covariates and the observed microbial communities. A significant proportion 

(57%, p-value: 0.001) of the variation in species abundances based on the adjusted R2 (Fig. 

2C) was attributed to the patient’s visit. Only 15% of the total microbiota variation was 

explained by the exacerbation status, demographic factors (gender, age), and pulmonary 

functions (FEV1%, LCI) thereby suggesting that intra-individual variability mostly affected 

the microbial composition. 

3.4. Microbial community typing  

We then investigated whether variance in bacterial abundance reflects distinct microbial 

community types, or if community structures remain consistent despite quantitative variances 
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across the two sample types. Using DMM, three distinct microbial community types, referred 

to as clusters, were detected (Fig. 3A). We hypothesize that they could reflect host 

physiological states, rather than random statistical variances in microbial populations between 

sputum and TS samples, and potentially influence disease severity and clinical outcomes. 

Eighty-six percent of paired samples (19/22) were grouped into the same cluster, indicating a 

high degree of homogeneity between microbial communities in sputum and TS regardless of 

exacerbation status. The relative abundance heatmap of dominant taxa at species level 

provides a detailed view of the variability within each cluster (Fig. 3A). 

Cluster 1 is notable for a community composition similar to the oropharyngeal flora, featuring 

a mix of facultatively anaerobic bacteria such as Streptococcus sp. and Granulicatella 

adiacens, alongside the obligate anaerobe Fusobacterium nucleatum and aerobic Neisseria 

spp.. This cluster presents a microbiota profile common to both throat and sputum samples, 

which may reflect a baseline microbial environment in CF patients. While sharing similarity 

with cluster 1 for the presence of anaerobic bacteria, Streptococcus sp. and Neisseria sp., 

cluster 2 is marked by a significant presence of Veillonella sp., a common organism from the 

oral microbiota, Gemella haemolysans, and Haemophilus parainfluenzae. Additionally, the 

abundance of bacteria present in cluster 2 is more stable over patient visits, whereas cluster 1 

displays more dynamic changes. In contrast, cluster 3 is composed of samples from only three 

patients dominated by S. aureus.  

Cluster 1, which contains more pulmonary exacerbation visits, displayed a lower species 

richness and evenness compared to cluster 2 (Fig. 3B). Cluster 3 showed the lowest diversity, 

maybe owing to the small sample size (n=4) limiting the statistical power. When comparing 

patient clinical and demographic variables across clusters, there was no significant age 

difference (Fig. 3C). Patients in cluster 1 had a lower FEV1% (Fig. 3D) and higher LCI 

scores (Fig. 3E) than cluster 2, indicating a reduced lung function. Clusters 1 and 3 had a 

higher proportion of patients with the homozygous F508del genotype, known to be associated 

with more severe disease phenotypes (Fig. 3F). 

 3.5 Network 

Expanding on the compositional similarities between sample types revealed by DMM 

analysis, we built an ecological network to delve deeper into the capacity of TS to capture 

microbial interactions within the lower respiratory tract microbiota of non-expectorating 

patients (Figure 4A, B). Both networks displayed several clusters of microbial species that 
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are associated, positively or negatively, within each sample type, exhibiting a mixture of 

conserved and niche-specific associations. For instance, the preservation of clusters 

of Haemophilus, Veillonella, Porphyromonas, Neisseria, and Gemella across both upper and 

lower respiratory samples in CF patients underlines the stability of these microbial 

associations despite the differing physical and immunological characteristics of these niches. 

Quantitative comparisons of global network properties between the two sample types 

revealed no significant differences in key metrics (Table S1). Adjusted Rand Index (ARI) for 

the whole network and the Largest Connected Component (LCC) indicated a non-random 

similarity between the two networks (ARI of 0.08 and 0.10, respectively) with significant p-

values (p=0.001 and 0.008). Whereas the sets of central nodes within the two microbial 

networks present moderate similarity in centrality measures, hub taxa presented a noticeable 

divergence (P(<=Jacc)=0.03*) between the two sample types (Table S2). Furthermore, while 

several species are present in both networks, their roles as hub nodes differ, indicating the 

varied contributions of these central species to the ecological dynamics within each niche. In 

the sputum network, hub nodes such as H. parainfluenzae, Solobacterium 

moorei, and Neisseria sp. play central roles, while in the throat swab network, different taxa 

emerge as hubs, specifically Capnocytophaga leadbetteri, Bergeyella DQ241813_s, 

Actinomyces sp., and Veillonella rogosae. None of the nodes had significantly different 

centrality measures (Table S1) and no significant differential association was detected after 

multiple testing adjustments. 

To contextualize the ecological networks within the CAM framework and assess the ability of 

the TS to reflect exacerbation status, we constructed microbial networks at the climax and 

attack phases. In the climax phase, sputum samples exhibited a substantially larger relative 

LCC size (0.92) compared to TS (0.62), indicating a more complex and interconnected 

microbial network (Table S3). Significant variation in hub taxa suggests that the species 

concentrating interactions in the lungs (represented by sputum) may not hold the same 

influence in the TS (Table S4). During the attack phase, there was no substantial difference 

in the overall topology and the types of connections or graphlets between networks (Table 

S5). However, a significant difference in the proportion of cooperative interactions among 

taxa (positive edge percentage) was observed between sputum (49.08%) and TS (54.13%). 

Similarly, network analysis identified significant differences according to exacerbation 

status (Table S6). 
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3.6. Temporal dynamics of microbial communities across patient visits  

Building upon our analyses that demonstrate a concordance between microbial compositions 

of the upper and lower respiratory tracts in children with CF, we further investigated the 

temporal stability of these microbial communities. Specifically, we aimed to evaluate the 

reliability of TS as a proxy for lower respiratory tract microbiota at the time of patient visits, 

as compared to sputum samples or TS from previous visits. To address this, the Generalized 

Estimating Equations (GEE) method, which accounts for the intra-individual correlation of 

repeated measures, was employed to estimate the mean beta-diversity distances using both 

the Bray-Curtis and Jaccard indices while considering the dependence between observations 

from the same individual (Fig. 5A, B). For the Bray-Curtis index, the GEE model indicated 

an average distance of 0.51 (95% CI: 0.45-0.57) between sputum and TS from the same visit. 

In contrast, the average distance between sputum samples from different visits was estimated 

at 0.57 (95% CI: 0.52-0.62), and the distance between TS samples from different visits was 

0.66 (95% CI: 0.64-0.68), suggesting increased variability over time. Similarly, for the 

Jaccard index, sample types collected from the same visit presented a more similar bacterial 

composition (0.47; 95% CI: 0.42-0.52) than sputum or TS collected from different visits 

(0.68; 95% CI: 0.64-0.72 and 0.69; 95% CI: 0.67-0.70, respectively). 

4. Discussion 

In this study, we compared the microbial landscape of TS and sputum using 16S rRNA 

amplicon sequencing to address a critical need for non-invasive, reliable sampling methods in 

CF. By focusing on paired samples collected on the same day and using a culture-independent 

method, we provided a direct comparison of the two microbiota and showed a reduced 

distance as compared to samples collected from the same site and the same patient during 

another visit. Our findings suggest the reliability of TS, collected on the same day of the visit, 

to mirror the CAM's Climax and Attack phases in CF patients.  

TS exhibited comparable microbial alpha-diversity (richness and evenness), with partially 

similar microbial composition to sputum. This is consistent with Boutin et al. [16], who 

demonstrated a close microbiota between sputum and TS in non-exacerbating patients. While 

both sample types harbor a broad range of microbial species, differences in relative 

abundances likely reflect anatomical and functional differences between the two niches.  
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The multivariate analysis showed that the predictive value of TS in relation to clinical and 

demographic covariates, compared to sputum, varies according to the individual-specific 

nature of the CF microbiota. Similarly, Prevaes et al. [12] noted that the degree of 

concordance between the microbial communities of different sample types with their 

corresponding BAL microbiota was variable within each patient when studied by either 

conventional culture or molecular assays. 

Interestingly, community typing revealed that sputum-TS pairs often fall within the same 

cluster, suggesting consistency in microbial community structure across sample types. This 

consistency contrasts with the inter-individual variability observed across clusters, likely 

inherent to host-related factors such as CFTR F508del allele zygosity. Stephanie et al. [26] 

and Juan de Dios Caballero et al. [27] also observed unique microbiome patterns within each 

patient over time, despite variations in bacterial populations and without clear associations 

with exacerbation status or antibiotic treatment, thereby suggesting that personalized 

monitoring and treatment approaches may be beneficial in CF care. 

Additionally, network analysis showed notable consistency in the microbial associations 

between sputum and TS across different clinical states (climax and attack phases) in our small 

population of children with exacerbation. The preservation of several anaerobes’ interactions, 

including Veillonella and Prevotella, between the two networks suggests they play roles in 

respiratory infections. Their ability to break down carbohydrates and mucins, could contribute 

to metabolic diversity, influencing immune modulation or biofilm formation within the 

mucosal environment of CF patients [28, 30, 31, 32]. The presence of these key bacterial taxa 

in both sample types support the potential utility of TS for monitoring microbial dynamics in 

young children with CF unable to expectorate and not yet colonized by P. aeruginosa. 

However, hub taxa—key players within each network—remained distinct, indicating 

differences in microbial roles across the two sample types. 

Our 16S amplicon-based study provides insights into bacterial identity rather than function. 

Hence the taxa presence in TS may not necessarily reflect active biological roles specific to 

the ecological niche. Throat microbiota may partly be constituted of transient spillover 

bacteria from the mouth (saliva) and lungs (sputum) rather than a stable, throat-specific entity 

[29]. The larger Bray-Curtis distances between TS samples within individuals (Fig. 6) 

supported this hypothesis. Additionally, imbalanced sampling of paired samples among 

patients could introduce bias into the co-occurrence network. Patients with more frequent 
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sampling may disproportionately influence inferred microbial associations and interactions. 

Not all multivariate analyses were adjusted to host-related factors such as F508del genotypes 

and antibiotic exposure, thereby limiting the assessment of specific patient-signatures. 

Despite these limitations, the overall trends and key findings remain robust. When sputum 

samples are not available, the simplified collection of throat swabs has the potential to 

facilitate our understanding of disease progression and treatment response in young children 

with CF. Future studies with larger sample sizes including children with exacerbations should 

employ normalization techniques to weight samples or interactions based on the number of 

visits per patient. Large-scale longitudinal studies including F508del genotyping are needed to 

quantify the stability of microbial signatures, exchanges between compartments, and establish 

the functional profile of microbial communities across sample types.  
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Tables 

Table 1. Patients’ characteristics in MUCOVIB and the subcohort 
Clinical parameters Complete cohort 

61 patients 

Paired samples subcohort 

11 patients 

Significant differences (p-value) 

Gender 
Female 

  

25 (41.0%) 
  

3 (27.3%) 
  

0.9 

Male 36 (59.0%) 8 (72.7%) 0.7 
Age at inclusion (Years) 7.4 [3.7, 12.2] 12.7 [9.7, 14.6] 0.02 
Comorbidities 55 (90.2%) 11 (100%) 0.04 
Pancreatic insufficiency 50 (82.0%) 10 (90.9%)   

Allergic bronchopulmonary aspergillosis 4 (6.6%) 2 (18.8%)   

Diabetes 6 (9.8%) 2 (18.8%)   

Liver disease 5 (8.2%) 2 (18.8%)   

Others 16 (26.2%) 4 (36.6%)   

Follow-up (days) 553 [456, 640] 470 [441, 585] 0.09 
Genotype 
Heterozygous for DeltaF508 

24 (39.3%) 5 (45.5%) 
0.9 

Homozygous for DeltaF508 28 (45.9%) 5 (45.5%)   

Other than DeltaF508 9 (14.8%) 1 (9.1%)   

Pulmonary exacerbation (N of events) 32 5 0.9 
FEV1% 
Follow-up visits (n=210) 91.0 [81.0, 99.0] 90.0 [73.0, 95.0] (n=5) 0.4 

Pulmonary exacerbation (n = 14) 82.0 [58.0, 97.5] 71.0 [58.0, 85.75] (n = 8) 0.001 
Lung clearance index (LCI) 
Follow-up visits (n=194) 9.3 [8.2, 11.1] 10.75 [9.87, 13.50] 0.1 

Pulmonary exacerbation (n = 9) 9.7 [8.0, 12.8] 10.8 [10.4, 13.67] 0.006 

FEV1: Forced expiratory volume in 1 second  
LCI: The lung clearance index 
 

Table 2. Sensitivity and specificity of throat swabs compared to sputum for 
pathogen detection by 16S amplicon-based metagenomics. 

                                                                  Achromobacter spp.    H. influenzae    P. aeruginosa   S. aureus     S. maltophilia    
S.pneumoniae   

      EXP TS         
  

+ + 3 3 2 17 0 3 

+ - 2 4 2 1 1 2 

- + 0 0 3 3 0 0 

- - 17 13 15 1 21 21 

Sensitivity   60 56 50 94 0 100 

Specificity   100 100 83 25 100 100 

Kappa score   0.69 0.59 0.30 0.24 0            1 
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Figures 

 
Figure 1. Microbiome diversity and composition in throat and sputum samples.  (A, B) The box 

plot illustrates Chao1 and Shannon alpha diversity indices for each sample type in A. the MUCOVIB and B. 

paired sputum and throat swabs cohorts. The results of the Wilcoxon test (pairwise for paired samples) are 

indicated within the graphs. (C, D) Non-metric multidimensional scaling (NMDS) plot with Bray-Curtis 

distance at the ASV level for the complete and the sub-cohorts, respectively. Sputum samples were illustrated 

with green circles and throat swabs in orange triangles. Ellipses represent confidence intervals around clusters 

of sample types. Stress, dispersion, and PERMANOVA p-value indicate the goodness-of-fit, variability within 

groups, and the statistical significance of the observed clusters, respectively. Ten top abundant species are 

shown in the plots. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2024. ; https://doi.org/10.1101/2024.11.30.24318234doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.30.24318234
http://creativecommons.org/licenses/by/4.0/


 

Figure 2. Patient-specific microbial community dynamics across visits. (A) The hierarchical clustering 

dendrogram based on Jaccard similarities illustrates the similarity in microbial community composition at the 

ASV level across different patient visits. Each leaf in the dendrogram represents a patient visit, with the color 

denoting individual patients and the shade variations reflecting different visits. The height of the branches 

indicates the degree of dissimilarity between clusters. (B) NMDS plot with Jaccard distance at the ASV level. 

Each point represents a sample colored by a patient and samples from the same visits connected by a line. The 

type of the line presents the kind of the visit, detailing individual variations in microbial communities from 

sputum and throat swabs during regular follow-up (solid lines) and pulmonary exacerbation (dashed lines) 

visits. Points are shaped according to sample types, with sizes representing the average age of patients. This 

visualization illustrates potential age-related shifts in microbial composition. To ensure anonymity, the age 

data was shifted by a random factor between 0 and 6 months. (C) Redundancy Analysis (RDA) using Bray-

Curtis distance at the Species level. Each sample is represented with a shape indicating the type of the visit and 

its color represents the sample type. Dashed lines connect paired samples collected from the same visit. 

Arrows represent constrained variables with their direction and length indicating the strength and direction of 

their association with the microbial communities. 
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Figure 3. Community typing using Dirichlet multinomial mixture model (DMM) across sample types 
and clinical statuses. (A) Heatmap showing the relative abundance of the 15 most abundant species in the 

samples, grouped by clusters determined through DMM; Cluster 1 (n=10), Cluster 2 (n=8), Cluster 3 (n=4), 

with 'n' indicating the number of samples per cluster. Samples are further categorized by clinical status: 

Regular Follow-up (RF) and Pulmonary Exacerbation (PE). (B) Alpha diversity metrics, Observed species, 

and Shannon index, are compared across clusters. (C) Age distribution and (D) FEV1 percentage are presented 

for patients in each cluster. (E) Lung Clearance Index (LCI) values across clusters. (F) Distribution of CF 

genotypes within each cluster, showing proportions of Homozygous F508del, Heterozygous F508del, and 

Non-F508del mutations. Statistical significance is denoted as ns (not significant), * (p < 0.05), ** (p < 0.01), 

and **** (p < 0.0001), comparing the clinical statuses within each cluster. 
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Figure 4. Microbial interactions network of sputum and throat swabs. The estimated correlations using 

SparCC are transformed into dissimilarities via the “signed” distance metric and the corresponding similarities 

are used as edge weights. The mclr-transformed abundance was used for defining hubs and scaling node sizes. 

Clusters were determined using greedy modularity optimization, and nodes were colored based on the clusters. 

To facilitate the comparison across sample types, the color of clusters differ between networks when the 

clusters do not share at least two nodes. Green edges correspond to positive estimated bacterial associations 

and red edges to negative ones. Only nodes that are unconnected in both networks were removed. To enhance 

visual comparison and highlight distinctions effectively, the layout computed for the sputum network was 

applied consistently across both networks. Hub species are highlighted with a red label. 
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Figure 5. Beta-diversity distance between samples inter- and intra-visit. The average Bray-Curtis (A) and 
Jaccard (B) distances were calculated using GEE to account for intra-individual correlations. In both panels, 
orange boxes donate intra-visit comparisons, indicating the distance between throat swabs compared to sputum 
from the same visit, while blue boxes represent inter-visit comparisons, detailing the distance between samples 
from different visits. The median of each group is indicated by the central line within each box, with the box 
edges defining the interquartile range (IQR). The whiskers extend to the furthest points within 1.5 IQR from 
the box. Gray lines represent the 95% confidence intervals for each distance, providing insight into the 
variability and statistical certainty of the measurements. 
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