Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus

Abstract

A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the MZT.
Fig. 2: Regulating the stability and translation of maternally deposited transcripts.
Fig. 3: Molecular mechanisms governing maternal transcript clearance.
Fig. 4: Transcriptional competency is achieved by nuclear remodelling.
Fig. 5: Elapsed developmental time is the key regulator of ZGA onset timing.

Similar content being viewed by others

References

  1. Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development 10, 622–640 (1962).

    CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  3. Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, dev161471 (2019).

    CAS  PubMed  Google Scholar 

  4. Despic, V. & Neugebauer, K. M. RNA tales—how embryos read and discard messages from mom. J. Cell Sci. 131, jcs201996 (2018).

    PubMed  Google Scholar 

  5. Wu, Q. & Bazzini, A. A. Translation and mRNA stability control. Annu. Rev. Biochem. 92, 227–245 (2023).

    CAS  PubMed  Google Scholar 

  6. Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

    CAS  PubMed  Google Scholar 

  7. Zhang, Y. & Xie, W. Building the genome architecture during the maternal to zygotic transition. Curr. Opin. Genet. Dev. 72, 91–100 (2022).

    CAS  PubMed  Google Scholar 

  8. Ing-Simmons, E., Rigau, M. & Vaquerizas, J. M. Emerging mechanisms and dynamics of three-dimensional genome organisation at zygotic genome activation. Curr. Opin. Cell Biol. 74, 37–46 (2022).

    CAS  PubMed  Google Scholar 

  9. Collart, C. et al. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 141, 1927–1939 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heyn, P. et al. The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep. 6, 285–292 (2014).

    PubMed  Google Scholar 

  11. Owens, N. D. L. et al. Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep. 14, 632–647 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwasnieski, J. C., Orr-Weaver, T. L. & Bartel, D. P. Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res. 29, 1188–1197 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    CAS  PubMed  Google Scholar 

  14. Knowland, J. & Graham, C. RNA synthesis at the two-cell stage of mouse development. Development 27, 167–176 (1972).

    CAS  Google Scholar 

  15. Vassena, R. et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138, 3699–3709 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 10, 622 (2018).

    Google Scholar 

  17. Leesch, F. et al. A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature 613, 712–720 (2023). This study uses mass spectrometry and cryo electron microscopy to establish that the low translational activity in oocytes and early embryos is caused by the action of four factors that maintain ribosomes in a ‘dormant’ state.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi, W. et al. Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition. Nat. Struct. Mol. Biol. 31, 757–766 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Michael, A. K. et al. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 368, 1460–1465 (2020).

    CAS  PubMed  Google Scholar 

  20. Echigoya, K. et al. Nucleosome binding by the pioneer transcription factor OCT4. Sci. Rep. 10, 11832 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lerner, J., Katznelson, A., Zhang, J. & Zaret, K. S. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep. 42, 112748 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Sarmiento, J. A., Cosma, M. P. & Lakadamyali, M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep. 43, 114170 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia, H. G., Tikhonov, M., Lin, A. & Gregor, T. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23, 2140–2145 (2013).

    CAS  PubMed  Google Scholar 

  24. Lucas, T. et al. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23, 2135–2139 (2013).

    CAS  PubMed  Google Scholar 

  25. Hoppe, C. et al. Modulation of the promoter activation rate dictates the transcriptional response to graded BMP signaling levels in the Drosophila embryo. Dev. Cell 54, 727–741 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pimmett, V. L. et al. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nat. Commun. 12, 4504 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dufourt, J. et al. Imaging translation dynamics in live embryos reveals spatial heterogeneities. Science 372, 840–844 (2021).

    CAS  PubMed  Google Scholar 

  28. Vinter, D. J., Hoppe, C., Minchington, T. G., Sutcliffe, C. & Ashe, H. L. Dynamics of hunchback translation in real-time and at single-mRNA resolution in the Drosophila embryo. Development 148, dev196121 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023). This study describes a new ChromExM method providing higher-resolution insights into nuclear organization and describes the ‘kiss-and-kick’ model of transcriptional activation, where transcriptional elongation kicks (displaces) enhancers away from the promoter.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat, P. et al. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep. 42, 112070 (2023).

    CAS  PubMed  Google Scholar 

  31. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    CAS  PubMed  Google Scholar 

  32. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

    CAS  PubMed  Google Scholar 

  34. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

    CAS  PubMed  Google Scholar 

  35. Wu, Y. et al. N6-Methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat. Cell Biol. 24, 917–927 (2022).

    CAS  PubMed  Google Scholar 

  36. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381.e20 (2017).

    CAS  PubMed  Google Scholar 

  38. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    CAS  PubMed  Google Scholar 

  39. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kronja, I. et al. Widespread changes in the posttranscriptional landscape at the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495–1508 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Chen, L. et al. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome Biol. 15, R4 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Eichhorn, S. W. et al. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. eLife 5, e16955 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Xiang, K. & Bartel, D. P. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife 10, e66493 (2021). This paper demonstrates that the limited levels of PABPC in early embryos provide a molecular explanation for the strong correlation between poly(A) tail length and translational efficiency during early embryonic development, as originally described by Subtelny et al. (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013). This study, through ribosome footprinting, discovers three TFs that are highly translated in the early zebrafish embryo and demonstrates that collectively these factors activate a large subset of the first zygotic genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, C., Wang, M., Li, Y. & Zhang, Y. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci. Adv. 8, eabj3967 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong, Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat. Cell Biol. 24, 968–980 (2022).

    CAS  PubMed  Google Scholar 

  48. Zou, Z. et al. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science 378, abo7923 (2022). This study employs low-input ribosome profiling to investigate the translatome in human oocytes and early embryos, identifying TRPX family TFs as key regulators of human ZGA.

    PubMed  Google Scholar 

  49. Lorenzo-Orts, L. et al. eIF4E1b is a non-canonical eIF4E protecting maternal dormant mRNAs. EMBO Rep. 25, 404–427 (2023).

    PubMed  PubMed Central  Google Scholar 

  50. Shan, L.-Y. et al. LSM14B controls oocyte mRNA storage and stability to ensure female fertility. Cell. Mol. Life Sci. 80, 247 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, J., Yan, L., Shen, W. & Meng, A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 145, dev166587 (2018).

    PubMed  Google Scholar 

  52. Bouvet, P. & Wolffe, A. P. A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell 77, 931–941 (1994).

    CAS  PubMed  Google Scholar 

  53. Medvedev, S., Pan, H. & Schultz, R. M. Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the transcriptome1. Biol. Reprod. 85, 575–583 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivshina, M., Lasko, P. & Richter, J. D. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 1–23 (2014).

    Google Scholar 

  55. Voeltz, G. K., Ongkasuwan, J., Standart, N. & Steitz, J. A. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    CAS  PubMed  Google Scholar 

  57. Voeltz, G. K. & Steitz, J. A. AUUUA sequences direct mRNA deadenylation uncoupled from decay during xenopus early development. Mol. Cell. Biol. 18, 7537–7545 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, K., Cho, K., Morey, R. & Cook-Andersen, H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep. 43, 113710 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gillian-Daniel, D. L., Gray, N. K., Åström, J., Barkoff, A. & Wickens, M. Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell. Biol. 18, 6152–6163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, S., Williams, C. J., Wormington, M., Stevens, A. & Peltz, S. W. Monitoring mRNA decapping activity. Methods 17, 46–51 (1999).

    PubMed  Google Scholar 

  61. Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202 (2019).

    CAS  PubMed  Google Scholar 

  62. Liu, J. et al. Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals. Nat. Commun. 13, 2484 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    CAS  PubMed  Google Scholar 

  64. Lim, J., Lee, M., Son, A., Chang, H. & Kim, V. N. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 30, 1671–1682 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aanes, H. et al. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res. 21, 1328–1338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Piqué, M., López, J. M., Foissac, S., Guigó, R. & Méndez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    PubMed  Google Scholar 

  67. Winata, C. L. et al. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 145, dev159566 (2017).

    Google Scholar 

  68. Sheets, M. D., Ogg, S. C. & Wickens, M. P. Point mutations in AAUAAA and the poly(A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18, 5799–5805 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sheets, M. D., Fox, C. A., Hunt, T., Woude, G. V. & Wickens, M. The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 8, 926–938 (1994).

    CAS  PubMed  Google Scholar 

  70. Xiang, K., Ly, J. & Bartel, D. P. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev. Cell 59, 1058–1074 (2024).

    CAS  PubMed  Google Scholar 

  71. Aoki, F., Hara, K. T. & Schultz, R. M. Acquisition of transcriptional competence in the 1‐cell mouse embryo: requirement for recruitment of maternal mRNAs. Mol. Reprod. Dev. 64, 270–274 (2003).

    CAS  PubMed  Google Scholar 

  72. Liu, Y. et al. Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat. Struct. Mol. Biol. 30, 200–215 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ulitsky, I. et al. Extensive alternative polyadenylation during zebrafish development. Genome Res. 22, 2054–2066 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Takada, Y. et al. Mature mRNA processing that deletes 3′ end sequences directs translational activation and embryonic development. Sci. Adv. 9, eadg6532 (2023).

    PubMed  PubMed Central  Google Scholar 

  75. Lim, J. et al. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361, 701–704 (2018).

    CAS  PubMed  Google Scholar 

  76. Wang, M. et al. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition. eLife 6, e27891 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Hara, M. et al. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition. eLife 7, e33150 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Lorenzo-Orts, L. & Pauli, A. The molecular mechanisms underpinning maternal mRNA dormancy. Biochem. Soc. Trans. 52, 861–871 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bashirullah, A. et al. Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J. 18, 2610–2620 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tadros, W. et al. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev. Cell 12, 143–155 (2007). This study shows that the SMAUG RBP facilitates the destabilization of maternal transcripts in D. melanogaster, demonstrating how a single RBP can broadly influence global mRNA levels during the MZT.

    CAS  PubMed  Google Scholar 

  81. Giraldez, A. J. et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  82. Lund, E., Liu, M., Hartley, R. S., Sheets, M. D. & Dahlberg, J. E. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15, 2351–2363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Baia Amaral, D., Egidy, R., Perera, A. & Bazzini, A. A. miR-430 regulates zygotic mRNA during zebrafish embryogenesis. Genome Biol. 25, 74 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA 104, 9667–9672 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moretti, F., Thermann, R. & Hentze, M. W. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 16, 2493–2502 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Strayer, E. C. et al. NaP-TRAP, a novel massively parallel reporter assay to quantify translation control. Preprint at bioRxiv https://doi.org/10.1101/2023.11.09.566434 (2023).

  88. Kloosterman, W. P., Wienholds, E., Ketting, R. F. & Plasterk, R. H. A. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32, 6284–6291 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bushati, N., Stark, A., Brennecke, J. & Cohen, S. M. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr. Biol. 18, 501–506 (2008).

    CAS  PubMed  Google Scholar 

  90. Hadzhiev, Y. et al. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev. Cell 58, 155–170 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tani, S., Kusakabe, R., Naruse, K., Sakamoto, H. & Inoue, K. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development. Gene 449, 41–49 (2010).

    CAS  PubMed  Google Scholar 

  92. Jiménez-Ruiz, C. A. et al. miR-430 microRNA family in fishes: molecular characterization and evolution. Animals 13, 2399 (2023).

    PubMed  PubMed Central  Google Scholar 

  93. Suh, N. et al. microRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, S., Aksoy, M., Shi, J. & Houbaviy, H. B. Evolution of the miR-290–295/miR-371–373 cluster family seed repertoire. PLoS ONE 9, e108519 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Medeiros, L. A. et al. miR-290–295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc. Natl Acad. Sci. USA 108, 14163–14168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Suh, M.-R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498 (2004).

    CAS  PubMed  Google Scholar 

  97. Houbaviy, H. B., Murray, M. F. & Sharp, P. A. Embryonic stem cell-specific microRNAs. Dev. Cell 5, 351–358 (2003).

    CAS  PubMed  Google Scholar 

  98. Judson, R. L., Babiarz, J. E., Venere, M. & Blelloch, R. Embryonic stem cell–specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, J.-M. et al. Argonaute 2 is a key regulator of maternal mRNA degradation in mouse early embryos. Cell Death Discov. 6, 133 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stoeckius, M. et al. Global characterization of the oocyte‐to‐embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 33, 1751–1766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Quarato, P. et al. Germline inherited small RNAs facilitate the clearance of untranslated maternal mRNAs in C. elegans embryos. Nat. Commun. 12, 1441 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Barckmann, B. et al. Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep. 12, 1205–1216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kontur, C., Jeong, M., Cifuentes, D. & Giraldez, A. J. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33, 108598 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivanova, I. et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yao, H. et al. scm6A-seq reveals single-cell landscapes of the dynamic m6A during oocyte maturation and early embryonic development. Nat. Commun. 14, 315 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Y. et al. The RNA m6A landscape of mouse oocytes and preimplantation embryos. Nat. Struct. Mol. Biol. 30, 703–709 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Despic, V. et al. Dynamic RNA–protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res. 27, 1184–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vejnar, C. E. et al. Genome wide analysis of 3′-UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res. 29, 1100–1114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Paillard, L. et al. EDEN and EDEN‐BP, a cis element and an associated factor that mediate sequence‐specific mRNA deadenylation in Xenopus embryos. EMBO J. 17, 278–287 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Semotok, J. L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    CAS  PubMed  Google Scholar 

  113. Laver, J. D. et al. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol. 16, 94 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. De Renzis, S., Elemento, O., Tavazoie, S. & Wieschaus, E. F. Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol. 5, e117 (2007).

    PubMed  PubMed Central  Google Scholar 

  115. D’Agostino, I., Merritt, C., Chen, P.-L., Seydoux, G. & Subramaniam, K. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev. Biol. 292, 244–252 (2006).

    PubMed  Google Scholar 

  116. Rabani, M., Pieper, L., Chew, G.-L. & Schier, A. F. A massively parallel reporter assay of 3′ UTR sequences identifies in vivo rules for mRNA degradation. Mol. Cell 68, 1083–1094 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Audic, Y., Omilli, F. & Osborne, H. B. Embryo deadenylation element-dependent deadenylation is enhanced by a cis element containing AUU repeats. Mol. Cell. Biol. 18, 6879–6884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ramos, S. B. V. et al. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131, 4883–4893 (2004).

    CAS  PubMed  Google Scholar 

  119. Detivaud, L., Pascreau, G., Karaïskou, A., Osborne, H. B. & Kubiak, J. Z. Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. J. Cell Sci. 116, 2697–2705 (2003).

    CAS  PubMed  Google Scholar 

  120. Haugen, R. J. et al. Regulation of the Drosophila transcriptome by Pumilio and the CCR4-NOT deadenylase complex. RNA 30, 866–890 (2024).

    CAS  PubMed  Google Scholar 

  121. Liu, Y. et al. BTG4 is a key regulator for maternal mRNA clearance during mouse early embryogenesis. J. Mol. Cell Biol. 8, 366–368 (2016).

    CAS  PubMed  Google Scholar 

  122. Yu, C. et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 23, 387–394 (2016).

    CAS  PubMed  Google Scholar 

  123. Zhao, L. et al. PABPN1L mediates cytoplasmic mRNA decay as a placeholder during the maternal‐to‐zygotic transition. EMBO Rep. 21, e49956 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pinder, B. D. & Smibert, C. A. microRNA‐independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA‐binding protein. EMBO Rep. 14, 80–86 (2013).

    CAS  PubMed  Google Scholar 

  125. Nelson, M. R., Leidal, A. M. & Smibert, C. A. Drosophila Cup is an eIF4E‐binding protein that functions in Smaug‐mediated translational repression. EMBO J. 23, 150–159 (2004).

    CAS  PubMed  Google Scholar 

  126. Zheng, W. et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am. J. Hum. Genet. 107, 24–33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Reimão-Pinto, M. M., Castillo-Hair, S. M., Seelig, G. & Schier, A. F. The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis. Preprint at bioRxiv https://doi.org/10.1101/2023.11.23.568470 (2023).

  128. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chang, H. et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol. Cell 70, 72–82 (2018).

    CAS  PubMed  Google Scholar 

  130. Liu, Y., Nie, H., Liu, H. & Lu, F. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10, 5292 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Sha, Q.-Q. et al. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 48, 879–894 (2020).

    CAS  PubMed  Google Scholar 

  132. Sha, Q.-Q. et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun. 11, 4917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Morgan, M. et al. mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal‐to‐zygotic transition. EMBO J. 35, 2087–2103 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mishima, Y. & Tomari, Y. Codon usage and 3′ UTR length determine maternal mRNA stability in zebrafish. Mol. Cell 61, 874–885 (2016). Together with Bazzini et al. (2016), this work identifies codon optimality as a key regulator of transcript stability during the MZT in zebrafish and many other species.

    CAS  PubMed  Google Scholar 

  137. Buschauer, R. et al. The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science 368, eaay6912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Medina-Muñoz, S. G. et al. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol. 22, 14 (2021).

    PubMed  PubMed Central  Google Scholar 

  139. Rappol, T. et al. tRNA expression and modification landscapes, and their dynamics during zebrafish embryo development. Nucleic Acids Res 52, 10575–10594 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Reimão-Pinto, M. M. et al. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J. https://doi.org/10.1038/s44318-024-00265-4 (2024).

  141. Chen, K. Y., Park, H. & Subramaniam, A. R. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. Nucleic Acids Res 52, 7171–7187 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Burke, P. C., Park, H. & Subramaniam, A. R. A nascent peptide code for translational control of mRNA stability in human cells. Nat. Commun. 13, 6829 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Johnstone, T. G., Bazzini, A. A. & Giraldez, A. J. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J. 35, 706–723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chan, L. Y., Mugler, C. F., Heinrich, S., Vallotton, P. & Weis, K. Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. eLife 7, e32536 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. May, G. E. et al. Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning. eLife 12, e69611 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jia, L. et al. Decoding mRNA translatability and stability from the 5′ UTR. Nat. Struct. Mol. Biol. 27, 814–821 (2020).

    CAS  PubMed  Google Scholar 

  149. Chew, G.-L., Pauli, A. & Schier, A. F. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat. Commun. 7, 11663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Musaev, D. et al. UPF1 regulates mRNA stability by sensing poorly translated coding sequences. Cell Rep. 43, 114074 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pickering, B. M., Mitchell, S. A., Spriggs, K. A., Stoneley, M. & Willis, A. E. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol. Cell. Biol. 24, 5595–5605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kozak, M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134–5142 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Beaudoin, J.-D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Jentoft, I. M. A. et al. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 186, 5308–5327 (2023). This paper shows that cytoplasmic lattice structures in mouse oocytes are essential for stabilizing maternally deposited proteins, a process required for proper embryonic development.

    CAS  PubMed  Google Scholar 

  156. Mitchell, L. E. Maternal effect genes: update and review of evidence for a link with birth defects. Hum. Genet. Genom. Adv. 3, 100067 (2021).

    Google Scholar 

  157. Zhang, H. et al. Stable maternal proteins underlie distinct transcriptome, translatome, and proteome reprogramming during mouse oocyte-to-embryo transition. Genome Biol. 24, 166 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Peshkin, L. et al. On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev. Cell 35, 383–394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cao, W. X. et al. Precise temporal regulation of post-transcriptional repressors is required for an orderly Drosophila maternal-to-zygotic transition. Cell Rep. 31, 107783 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Nguyen, T. et al. Differential nuclear import sets the timing of protein access to the embryonic genome. Nat. Commun. 13, 5887 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ryu, S., Holzschuh, J., Erhardt, S., Ettl, A.-K. & Driever, W. Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc. Natl Acad. Sci. USA 102, 18467–18472 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zavortink, M. et al. The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition. eLife 9, e53889 (2020).

    PubMed  PubMed Central  Google Scholar 

  163. Yang, Y. et al. The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal‐to‐zygotic transition. EMBO Rep. 18, 205–216 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Shen, W. et al. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 185, 4954–4970 (2022). Together with Nguyen et al. (2022) (X. laevis), this work (zebrafish) shows that the nuclear import of maternally deposited factors plays a pivotal role in initiating ZGA.

    CAS  PubMed  Google Scholar 

  165. Chen, K. et al. A global change in RNA polymerase II pausing during the Drosophila midblastula transition. eLife 2, e00861 (2013).

    PubMed  PubMed Central  Google Scholar 

  166. Abe, K. et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J. 34, 1523–1537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Cvetesic, N. et al. Global regulatory transitions at core promoters demarcate the mammalian germline cycle. Preprint at bioRxiv https://doi.org/10.1101/2020.10.30.361865 (2020).

  168. Zaret, K. S. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54, 1–19 (2020).

    Google Scholar 

  169. Liang, H.-L. et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400 403 (2008). This paper is the first to identify a sequence-specific TF regulating ZGA in any organism, identifying Zelda as a key ZGA regulator in D. melanogaster.

    PubMed  PubMed Central  Google Scholar 

  170. Nien, C.-Y. et al. Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet. 7, e1002339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Harrison, M. M., Li, X.-Y., Kaplan, T., Botchan, M. R. & Eisen, M. B. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet. 7, e1002266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Leichsenring, M., Maes, J., Mössner, R., Driever, W. & Onichtchouk, D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341, 1005–1009 (2013).

    CAS  PubMed  Google Scholar 

  173. Miao, L. et al. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol. Cell 82, 986–1002 (2022). This study demonstrates how the PFs Nanog, Pou5f3 and Sox19b collaborate in zebrafish to make chromatin accessible for ZGA, while also showing that histone acetylation can bypass the need for these factors in initiating transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Riesle, A. J. et al. Activator-blocker model of transcriptional regulation by pioneer-like factors. Nat. Commun. 14, 5677 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Gao, M. et al. Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat. Commun. 13, 788 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Gentsch, G. E., Spruce, T., Owens, N. D. L. & Smith, J. C. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat. Commun. 10, 4269 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Charney, R. M. et al. Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program. Dev. Cell 40, 595–607 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Paraiso, K. D. et al. Endodermal maternal transcription factors establish super-enhancers during zygotic genome activation. Cell Rep. 27, 2962–2977 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Gaskill, M. M., Gibson, T. J., Larson, E. D. & Harrison, M. M. GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo. eLife 10, e66668 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Duan, J. et al. CLAMP and Zelda function together to promote Drosophila zygotic genome activation. eLife 10, e69937 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Colonnetta, M. M., Abrahante, J. E., Schedl, P., Gohl, D. M. & Deshpande, G. CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics 219, iyab107 (2021).

    PubMed  PubMed Central  Google Scholar 

  182. Soluri, I. V., Zumerling, L. M., Parra, O. A. P., Clark, E. G. & Blythe, S. A. Zygotic pioneer factor activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation network. eLife 9, e53916 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. Koromila, T. et al. Odd-paired is a pioneer-like factor that coordinates with Zelda to control gene expression in embryos. eLife 9, e59610 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ji, S. et al. OBOX regulates mouse zygotic genome activation and early development. Nature 620, 1047–1053 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Golbus, M. S., Calarco, P. G. & Epstein, C. J. The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J. Exp. Zool. 186, 207–216 (1973).

    CAS  PubMed  Google Scholar 

  186. Maeso, I. et al. Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals. BMC Biol. 14, 45 (2016).

    PubMed  PubMed Central  Google Scholar 

  187. Gassler, J. et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 378, 1305–1315 (2022).

    CAS  PubMed  Google Scholar 

  188. Festuccia, N. et al. Nr5a2 is dispensable for zygotic genome activation but essential for morula development. Science 386, eadg7325 (2024).

    CAS  PubMed  Google Scholar 

  189. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).

    CAS  PubMed  Google Scholar 

  190. Lai, F. et al. NR5A2 connects zygotic genome activation to the first lineage segregation in totipotent embryos. Cell Res. 33, 952–966 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao, Y. et al. Nr5a2 ensures inner cell mass formation in mouse blastocyst. Cell Rep. 43, 113840 (2024).

    CAS  PubMed  Google Scholar 

  192. Li, L. et al. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat. Struct. Mol. Biol. 31, 950–963 (2024).

    CAS  PubMed  Google Scholar 

  193. Lu, F. et al. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Choi, S. H. et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 44, 5161–5173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. Whiddon, J. L., Langford, A. T., Wong, C.-J., Zhong, J. W. & Tapscott, S. J. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 49, 935–940 (2017). Together with Ji et al. (2023), Gassler et al. (2022), Lu et al. (2016), Hendrickson et al. (2017) and De Iaco et al. (2017), this work identifies important sequence-specific TFs contributing to chromatin accessibility and activation of early expressed genes in mouse embryos; however, these and subsequent studies suggest redundancy among some of these TFs in activating the earliest ZGA genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Chen, Z. & Zhang, Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat. Genet. 51, 947–951 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. De Iaco, A., Verp, S., Offner, S., Grun, D. & Trono, D. DUX is a non-essential synchronizer of zygotic genome activation. Development 147, dev177725 (2019).

    Google Scholar 

  200. Guo, Y. et al. Obox4 promotes zygotic genome activation upon loss of Dux. eLife 13, e95856 (2024).

    PubMed  PubMed Central  Google Scholar 

  201. Frederick, M. A. et al. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 30, 31–37 (2023).

    CAS  PubMed  Google Scholar 

  202. Kubinyecz, O. N. et al. Maternal SMARCA5 is required for major ZGA in mouse embryos. Preprint at bioRxiv https://doi.org/10.1101/2023.12.05.570276 (2023).

  203. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, X.-Y., Harrison, M. M., Villalta, J. E., Kaplan, T. & Eisen, M. B. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition. eLife 3, e03737 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. Cho, C.-Y. & O’Farrell, P. H. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription. Nat. Commun. 14, 4848 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Schulz, K. N. et al. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res. 25, 1715–1726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Sun, Y. et al. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res. 25, 1703–1714 (2015). Together with Schulz et al. (2015), this work reports studies in D. melanogaster which established that the ZGA-initiating TF Zelda can open regions of closed nucleosomal chromatin, a hallmark of pioneer factors, paving the way for subsequent research on genome activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Veil, M., Yampolsky, L., Gruening, B. & Onichtchouk, D. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res. 29, 383–395 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Pálfy, M., Schulze, G., Valen, E. & Vastenhouw, N. L. Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation. PLoS Genet. 16, e1008546 (2020).

    PubMed  PubMed Central  Google Scholar 

  210. Xu, Z. et al. Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev. 28, 608–621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Brennan, K. J. et al. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev. Cell 58, 1898–1916 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Yamada, S. et al. The Drosophila pioneer factor Zelda modulates the nuclear microenvironment of a dorsal target enhancer to potentiate transcriptional output. Curr. Biol. 29, 1387–1393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Hansen, J. L., Loell, K. J. & Cohen, B. A. A test of the pioneer factor hypothesis using ectopic liver gene activation. eLife 11, e73358 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Li, L. et al. Multifaceted SOX2–chromatin interaction underpins pluripotency progression in early embryos. Science 382, eadi5516 (2023).

    CAS  PubMed  Google Scholar 

  215. Gibson, T. J., Larson, E. D. & Harrison, M. M. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat. Struct. Mol. Biol. 31, 548–558 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pluta, R. et al. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat. Commun. 13, 7279 (2022).

    PubMed  PubMed Central  Google Scholar 

  217. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhu, F. et al. The interaction landscape between transcription factors and the nucleosome. Nature 562, 76–81 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Fernandez Garcia, M. et al. Structural features of transcription factors associating with nucleosome binding. Mol. Cell 75, 921–932.e6 (2019).

    CAS  PubMed  Google Scholar 

  220. Sönmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267.e6 (2021).

    PubMed  Google Scholar 

  221. Larson, E. D., Marsh, A. J. & Harrison, M. M. Pioneering the developmental frontier. Mol. Cell 81, 1640–1650 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sinha, K. K., Bilokapic, S., Du, Y., Malik, D. & Halic, M. Histone modifications regulate pioneer transcription factor cooperativity. Nature 619, 378–384 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, S., Zheng, E. B., Zhao, L. & Liu, S. Nonreciprocal and conditional cooperativity directs the pioneer activity of pluripotency transcription factors. Cell Rep. 28, 2689–2703 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Li, D. et al. Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819–833 (2017).

    CAS  PubMed  Google Scholar 

  227. Gaskill, M. M. et al. Localization of the Drosophila pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression. Dev. Cell 58, 1610–1624 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Zou, Z., Wang, Q., Wu, X., Schultz, R. M. & Xie, W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep. 25, 4113–4130 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Akdogan-Ozdilek, B., Duval, K. L. & Goll, M. G. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res. 9, 299 (2020).

    CAS  Google Scholar 

  230. Veenstra, G. J. C. Dynamics of chromatin remodeling during embryonic evelopment. In Xenopus: From Basic Biology to Disease Models in the Genomic Era (eds Fainsod, A. & Moody, S. A.) 173–184 (CRC, 2022).

  231. Wilkinson, A. L., Zorzan, I. & Rugg-Gunn, P. J. Epigenetic regulation of early human embryo development. Cell Stem Cell 30, 1569–1584 (2023).

    CAS  PubMed  Google Scholar 

  232. Harrison, M. M., Marsh, A. J. & Rushlow, C. A. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 225, iyad142 (2023).

    PubMed  PubMed Central  Google Scholar 

  233. Potok, M. E., Nix, D. A., Parnell, T. J. & Cairns, B. R. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Veenstra, G. J. C. & Wolffe, A. P. Constitutive genomic methylation during embryonic development of Xenopus. Biochim. Biophys. Acta. 1521, 39–44 (2001).

    CAS  PubMed  Google Scholar 

  236. Dimitrov, S., Almouzni, G., Dasso, M. & Wolffe, A. P. Chromatin transitions during early xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol. 160, 214–227 (1993).

    CAS  PubMed  Google Scholar 

  237. Dworkin-Rastl, E., Kandolf, H. & Smith, R. C. The maternal histone H1 variant, H1M (B4 Protein), is the predominant H1 histone in Xenopus pregastrula embryos. Dev. Biol. 161, 425–439 (1994).

    CAS  PubMed  Google Scholar 

  238. Freedman, B. S. & Heald, R. Functional comparison of H1 histones in xenopus reveals isoform-specific regulation by Cdk1 and RanGTP. Curr. Biol. 20, 1048–1052 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Pérez-Montero, S., Carbonell, A., Morán, T., Vaquero, A. & Azorín, F. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev. Cell 26, 578–590 (2013).

    PubMed  Google Scholar 

  240. Hergeth, S. P. & Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16, 1439–1453 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Funaya, S., Ooga, M., Suzuki, M. G. & Aoki, F. Linker histone H1FOO regulates the chromatin structure in mouse zygotes. FEBS Lett. 592, 2414–2424 (2018).

    CAS  PubMed  Google Scholar 

  242. Henn, L. et al. Alternative linker histone permits fast paced nuclear divisions in early Drosophila embryo. Nucleic Acids Res. 48, 9007–9018 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Brykczynska, U. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687 (2010).

    CAS  PubMed  Google Scholar 

  245. Loppin, B. et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–1390 (2005).

    CAS  PubMed  Google Scholar 

  246. Lin, C.-J., Koh, F. M., Wong, P., Conti, M. & Ramalho-Santos, M. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev. Cell 30, 268–279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Inoue, A. & Zhang, Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21, 609–616 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Szenker, E., Lacoste, N. & Almouzni, G. A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep. 1, 730–740 (2012).

    CAS  PubMed  Google Scholar 

  249. Ishiuchi, T. et al. Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nat. Struct. Mol. Biol. 28, 38–49 (2021).

    CAS  PubMed  Google Scholar 

  250. Wen, D. et al. Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc. Natl Acad. Sci. USA 111, 7325–7330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Cheloufi, S. et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528, 218–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Ibarra-Morales, D. et al. Histone variant H2A.Z regulates zygotic genome activation. Nat. Commun. 12, 7002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell 172, 993–1006 (2018).

    CAS  PubMed  Google Scholar 

  254. Hurton, M. D., Miller, J. M. & Lee, M. T. H3K4me2 distinguishes a distinct class of enhancers during the maternal-to-zygotic transition. Preprint at bioRxiv https://doi.org/10.1101/2024.08.26.609713 (2024).

  255. Liu, X. et al. Hierarchical accumulation of histone variant H2A.Z regulates transcriptional states and histone modifications in early mammalian embryos. Adv. Sci. 9, 2200057 (2022).

    CAS  Google Scholar 

  256. Zhang, B. et al. Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition. Mol. Cell 72, 673–686 (2018).

    PubMed  Google Scholar 

  257. Akkers, R. C. et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in xenopus embryos. Dev. Cell 17, 425–434 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhu, W., Xu, X., Wang, X. & Liu, J. Reprogramming histone modification patterns to coordinate gene expression in early zebrafish embryos. BMC Genomics 20, 248 (2019).

    PubMed  PubMed Central  Google Scholar 

  259. Hörmanseder, E. et al. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143 (2017).

    PubMed  PubMed Central  Google Scholar 

  260. Mazzetto, M., Gonzalez, L. E., Sanchez, N. & Reinke, V. Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis. Genome Res. 34, 57–69 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Lindeman, L. C. et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev. Cell 21, 993–1004 (2011).

    CAS  PubMed  Google Scholar 

  263. Hontelez, S. et al. Embryonic transcription is controlled by maternally defined chromatin state. Nat. Commun. 6, 10148 (2015).

    CAS  PubMed  Google Scholar 

  264. Haberle, V. et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507, 381 (2014). This study shows that maternal and zygotic transcripts in zebrafish utilize distinct TSSs, highlighting the differences in promoter grammar between the maternal and zygotic states.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Clouaire, T. et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26, 1714–1728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. van Heeringen, S. J. et al. Principles of nucleation of H3K27 methylation during embryonic development. Genome Res. 24, 401–410 (2014).

    PubMed  PubMed Central  Google Scholar 

  267. Zenk, F. et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357, 212–216 (2017).

    CAS  PubMed  Google Scholar 

  268. Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

    CAS  PubMed  Google Scholar 

  269. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat. Genet. 53, 551–563 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Samata, M. et al. Intergenerationally maintained histone H4 lysine 16 acetylation is instructive for future gene activation. Cell 182, 127–144 (2020).

    CAS  PubMed  Google Scholar 

  272. Chan, S. H. et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation. Dev. Cell 49, 867–881 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Gupta, R., Wills, A., Ucar, D. & Baker, J. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus. Dev. Biol. 395, 38–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Sato, Y. et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development 146, dev179127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Wang, M., Chen, Z. & Zhang, Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J. 41, e112012 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Sakamoto, M. et al. Detection of newly synthesized RNA reveals transcriptional reprogramming during ZGA and a role of Obox3 in totipotency acquisition. Cell Rep. 43, 114118 (2024).

    CAS  PubMed  Google Scholar 

  277. Ciabrelli, F. et al. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci. Adv. 9, eadf2687 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Zhou, J. J. et al. Histone deacetylase 1 maintains lineage integrity through histone acetylome refinement during early embryogenesis. eLife 12, e79380 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Theis, A. & Harrison, M. M. Reprogramming of three-dimensional chromatin organization in the early embryo. Curr. Opin. Struct. Biol. 81, 102613 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Zenk, F. et al. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature 593, 289–293 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017). This study is the first to examine 3D genome architecture throughout embryo development in any organism, revealing that chromatin architecture formation in D. melanogaster coincides with ZGA, although it is not dependent on zygotic transcription.

    CAS  PubMed  Google Scholar 

  285. Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J.-M. & Cavalli, G. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol. Cell 71, 73–88 (2018).

    CAS  PubMed  Google Scholar 

  286. Niu, L. et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 53, 1075–1087 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306–310 (2019).

    CAS  PubMed  Google Scholar 

  288. Wike, C. L. et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res. 31, 981–994 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Laue, K., Rajshekar, S., Courtney, A. J., Lewis, Z. A. & Goll, M. G. The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo. Nat. Commun. 10, 1551 (2019).

    PubMed  PubMed Central  Google Scholar 

  291. Acemel, R. D., Maeso, I. & Gómez‐Skarmeta, J. L. Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. WIREs Dev. Biol. 6, e265 (2017).

    Google Scholar 

  292. Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genom. Hum. Genet. 17, 1–27 (2015).

    Google Scholar 

  293. Nègre, N. et al. A comprehensive map of insulator elements for the Drosophila fenome. PLoS Genet. 6, e1000814 (2010).

    PubMed  PubMed Central  Google Scholar 

  294. Lupiáñez, D. G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    PubMed  Google Scholar 

  295. Zhang, K. et al. Analysis of genome architecture during SCNT reveals a role of cohesin in impeding minor ZGA. Mol. Cell 79, 234–250 (2020).

    CAS  PubMed  Google Scholar 

  296. Olbrich, T. et al. CTCF is a barrier for 2C-like reprogramming. Nat. Commun. 12, 4856 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Gao, T. et al. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Res. 17, 135–150 (2007).

    CAS  PubMed  Google Scholar 

  298. Sun, F. et al. Nuclear reprogramming: the zygotic transcription program is established through an “erase-and-rebuild” strategy. Cell Res. 17, 117–134 (2007).

    CAS  PubMed  Google Scholar 

  299. Zhu, Y. et al. Relaxed 3D genome conformation facilitates the pluripotent to totipotent-like state transition in embryonic stem cells. Nucleic Acids Res. 49, 12167–12177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Espinola, S. M. et al. cis-Regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat. Genet. 53, 477–486 (2021).

    CAS  PubMed  Google Scholar 

  301. Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Ing-Simmons, E. et al. Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat. Genet. 53, 487–499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Despang, A. et al. Functional dissection of the Sox9–Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    CAS  PubMed  Google Scholar 

  305. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed  PubMed Central  Google Scholar 

  306. Mazzocca, M., Fillot, T., Loffreda, A., Gnani, D. & Mazza, D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem. Soc. Trans. 49, 1121–1132 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Kuznetsova, K. et al. Nanog organizes transcription bodies. Curr. Biol. 33, 164–173.e5 (2023).

    CAS  PubMed  Google Scholar 

  308. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  309. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    PubMed  PubMed Central  Google Scholar 

  311. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

    CAS  PubMed  Google Scholar 

  312. Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7, e40497 (2018).

    PubMed  PubMed Central  Google Scholar 

  313. Dufourt, J. et al. Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat. Commun. 9, 5194 (2018).

    PubMed  PubMed Central  Google Scholar 

  314. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Stasevich, T. J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    CAS  PubMed  Google Scholar 

  316. Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182 (2021).

    CAS  PubMed  Google Scholar 

  317. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    CAS  PubMed  Google Scholar 

  318. Bartman, C. R., Hsu, S. C., Hsiung, C. C.-S., Raj, A. & Blobel, G. A. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol. Cell 62, 237–247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Benabdallah, N. S. et al. Decreased enhancer–promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    PubMed  PubMed Central  Google Scholar 

  322. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Hilbert, L. et al. Transcription organizes euchromatin via microphase separation. Nat. Commun. 12, 1360 (2021). This study demonstrates that nascent mRNA in early zebrafish embryos undergoing ZGA can displace chromatin, revealing how transcription influences chromatin organization.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

    CAS  PubMed  Google Scholar 

  325. Edgar, B. A. & Datar, S. A. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program. Genes Dev. 10, 1966–1977 (1996).

    CAS  PubMed  Google Scholar 

  326. Shimuta, K. et al. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J. 21, 3694–3703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Dalle Nogare, D. E., Pauerstein, P. T. & Lane, M. E. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev. Biol. 326, 131–142 (2009).

    CAS  PubMed  Google Scholar 

  328. Farrell, J. A., Shermoen, A. W., Yuan, K. & O’Farrell, P. H. Embryonic onset of late replication requires Cdc25 down-regulation. Genes Dev. 26, 714–725 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Collart, C., Smith, J. C. & Zegerman, P. Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition. Dev. Cell 42, 82–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Zhang, M., Kothari, P., Mullins, M. & Lampson, M. A. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 13, 3828–3838 (2014).

    CAS  PubMed  Google Scholar 

  331. Farrell, J. A. & O’Farrell, P. H. Mechanism and regulation of Cdc25/twine protein destruction in embryonic cell-cycle remodeling. Curr. Biol. 23, 118–126 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Blythe, S. A. & Wieschaus, E. F. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160, 1169–1181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C. & Zegerman, P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341, 893–896 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Murphy, C. M. & Michael, W. M. Control of DNA replication by the nucleus/cytoplasm ratio in Xenopus. J. Biol. Chem. 288, 29382–29393 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Joseph, S. R. et al. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 6, 1328 (2017).

    Google Scholar 

  336. Amodeo, A. A., Jukam, D., Straight, A. F. & Skotheim, J. M. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc. Natl Acad. Sci. USA 112, E1086–E1095 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Chari, S., Wilky, H., Govindan, J. & Amodeo, A. A. Histone concentration regulates the cell cycle and transcription in early development. Development 146, dev177402 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Shindo, Y. & Amodeo, A. A. Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo. Curr. Biol. 31, 2633–2642 (2021).

    CAS  PubMed  Google Scholar 

  339. Almouzni, G. & Wolffe, A. P. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis. EMBO J. 14, 1752–1765 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Jevtić, P. & Levy, D. L. Both nuclear size and DNA amount contribute to midblastula transition timing in Xenopus laevis. Sci. Rep. 7, 7908 (2017).

    PubMed  PubMed Central  Google Scholar 

  341. Chen, H., Einstein, L. C., Little, S. C. & Good, M. C. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell 49, 852–866 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Jukam, D., Kapoor, R. R., Straight, A. F. & Skotheim, J. M. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr. Biol. 31, 4269–4281 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Syed, S., Wilky, H., Raimundo, J., Lim, B. & Amodeo, A. A. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. Proc. Natl Acad. Sci. USA 118, e2010210118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686 (1982).

    CAS  PubMed  Google Scholar 

  345. Lu, X., Li, J. M., Elemento, O., Tavazoie, S. & Wieschaus, E. F. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development 136, 2101–2110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Balachandra, S., Sarkar, S. & Amodeo, A. A. The nuclear-to-cytoplasmic ratio: coupling DNA content to cell size, cell cycle, and biosynthetic capacity. Annu. Rev. Genet. 56, 165–185 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Edgar, B. A., Kiehle, C. P. & Schubiger, G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365–372 (1986).

    CAS  PubMed  Google Scholar 

  348. Chen, H. & Good, M. C. Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis. Curr. Biol. 32, 4314–4324 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Edgar, B. A. & Schubiger, G. Parameters controlling transcriptional activation during early Drosophila development. Cell 44, 871–877 (1986).

    CAS  PubMed  Google Scholar 

  350. Strong, I. J. T., Lei, X., Chen, F., Yuan, K. & O’Farrell, P. H. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear–cytoplasmic ratio. PLoS Biol. 18, e3000891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  351. Blythe, S. A. & Wieschaus, E. F. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. eLife 5, e20148 (2016).

    PubMed  PubMed Central  Google Scholar 

  352. Veenstra, G. J. C., Destrée, O. H. J. & Wolffe, A. P. Translation of maternal TATA-binding protein mRNA potentiates basal but not activated transcription in Xenopus embryos at the midblastula transition. Mol. Cell. Biol. 19, 7972–7982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Larson, E. D. et al. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 12, jkac159 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Rother, F. et al. Importin α7 is essential for zygotic genome activation and early mouse development. PLoS ONE 6, e18310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  355. Forbes Beadle, L. et al. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5′ to 3′ degradation. PLOS Biol. 21, e3001956 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  356. Riemondy, K., Henriksen, J. C. & Rissland, O. S. Intron dynamics reveal principles of gene regulation during the maternal-to-zygotic transition. RNA 29, rna.079168.122 (2023).

    Google Scholar 

  357. Gentsch, G. E., Owens, N. D. L. & Smith, J. C. The spatiotemporal control of zygotic genome activation. iScience 16, 485–498 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  358. Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat. Commun. 12, 3358 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Boettiger, A. N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Stapel, L. C., Zechner, C. & Vastenhouw, N. L. Uniform gene expression in embryos is achieved by temporal averaging of transcription noise. Genes Dev. 31, 1635–1640 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Little, S. C., Tikhonov, M. & Gregor, T. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154, 789–800 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  362. Artieri, C. G. & Fraser, H. B. Transcript length mediates developmental timing of gene expression across Drosophila. Mol. Biol. Evol. 31, 2879–2889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  363. Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  364. Srinivasan, R. et al. Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. Sci. Adv. 6, eaaz9115 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  365. Lécuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    PubMed  Google Scholar 

  366. Kigami, D., Minami, N., Takayama, H. & Imai, H. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos1. Biol. Reprod. 68, 651–654 (2003).

    CAS  PubMed  Google Scholar 

  367. Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

    CAS  PubMed  Google Scholar 

  368. Percharde, M. et al. A LINE1–nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Li, X. et al. LINE-1 transcription activates long-range gene expression. Nat. Genet. 56, 1494–1502 (2024).

    CAS  PubMed  Google Scholar 

  370. Sakashita, A. et al. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat. Genet. 55, 484–495 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  371. Ge, S. X. Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genom. 18, 200 (2017).

    Google Scholar 

  372. Yang, J., Cook, L. & Chen, Z. Systematic evaluation of retroviral LTRs as cis-regulatory elements in mouse embryos. Cell Rep. 43, 113775 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  373. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  374. Vega-Sendino, M. et al. The homeobox transcription factor DUXBL controls exit from totipotency. Nat. Genet. 56, 697–709 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  375. Asimi, V. et al. Hijacking of transcriptional condensates by endogenous retroviruses. Nat. Genet. 54, 1238–1247 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Meng, F. W., Murphy, K. E., Makowski, C. E., Delatte, B. & Murphy, P. J. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 150, dev202338 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  377. Ugolini, M. et al. Transcription bodies regulate gene expression by sequestering CDK9. Nat. Cell Biol. 26, 604–612 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  378. Sugie, K. et al. Expression of Dux family genes in early preimplantation embryos. Sci. Rep. 10, 19396 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  379. Li, F. et al. mRNA isoform switches during mouse zygotic genome activation. Cell Prolif. 57, e13655 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  380. Nepal, C. et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res. 23, 1938–1950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  381. Atallah, J. & Lott, S. E. Evolution of maternal and zygotic mRNA complements in the early Drosophila embryo. PLoS Genet. 14, e1007838 (2018).

    PubMed  PubMed Central  Google Scholar 

  382. Kim, H. H.-S. & Lakadamyali, M. Microscopy methods to visualize nuclear organization in biomechanical studies. Curr. Opin. Biomed. Eng. 30, 100528 (2024).

    CAS  Google Scholar 

  383. Treen, N., Heist, T., Wang, W. & Levine, M. Depletion of maternal cyclin B3 contributes to zygotic genome activation in the ciona embryo. Curr. Biol. 28, 1150–1156 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. Calvo, L., Birgaoanu, M., Pettini, T., Ronshaugen, M. & Griffiths-Jones, S. The embryonic transcriptome of Parhyale hawaiensis reveals different dynamics of microRNAs and mRNAs during the maternal–zygotic transition. Sci. Rep. 12, 174 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Fukushima, H. S., Takeda, H. & Nakamura, R. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Genome Res. 33, 572–586 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  386. Wei, J. et al. Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids. Nat. Commun. 15, 2395 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Halstead, M. M., Ma, X., Zhou, C., Schultz, R. M. & Ross, P. J. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat. Commun. 11, 4654 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  388. Zhou, C., Halstead, M. M., Bonnet‐Garnier, A., Schultz, R. M. & Ross, P. J. Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development. EMBO Rep. 24, e55726 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  389. Phelps, W. A. et al. Hybridization led to a rewired pluripotency network in the allotetraploid Xenopus laevis. eLife 12, e83952 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Avilés-Pagán, E. E. & Orr-Weaver, T. L. Activating embryonic development in Drosophila. Semin. Cell Dev. Biol. 84, 100–110 (2018).

    PubMed  PubMed Central  Google Scholar 

  391. Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  392. Nagaraj, R. et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 168, 210–223.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Li, W. et al. Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat. Commun. 13, 7414 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Li, J. et al. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci. Rev. 11, nwad295 (2023).

    PubMed  PubMed Central  Google Scholar 

  395. Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O. & Herschlag, D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 4487–4492 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Zhao, L.-W. et al. Nuclear poly(A) binding protein 1 (PABPN1) mediates zygotic genome activation-dependent maternal mRNA clearance during mouse early embryonic development. Nucleic Acids Res. 50, 458–472 (2021).

    PubMed Central  Google Scholar 

  397. Zhang, J. et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515–524 (1998).

    CAS  PubMed  Google Scholar 

  398. Pritchard, D. K. & Schubiger, G. Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev. 10, 1131–1142 (1996).

    CAS  PubMed  Google Scholar 

  399. Ali-Murthy, Z., Lott, S. E., Eisen, M. B. & Kornberg, T. B. An essential role for zygotic expression in the pre-cellular Drosophila embryo. PLoS Genet. 9, e1003428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  400. Asami, M. et al. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell 29, 209–216 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  401. Kane, D. A. & Kimmel, C. B. The zebrafish midblastula transition. Development 119, 447–456 (1993).

    CAS  PubMed  Google Scholar 

  402. Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

    CAS  PubMed  Google Scholar 

  403. Jukam, D., Shariati, S. A. M. & Skotheim, J. M. Zygotic genome activation in vertebrates. Dev. Cell 42, 316–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  404. O’Farrell, P. H. Growing an embryo from a single cell: a hurdle in animal life. Cold Spring Harb. Perspect. Biol. 7, a019042 (2015).

    PubMed  PubMed Central  Google Scholar 

  405. Foe, V. E. & Alberts, B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61, 31–70 (1983).

    CAS  PubMed  Google Scholar 

  406. Niakan, K. K., Han, J., Pedersen, R. A., Simon, C. & Pera, R. A. R. Human pre-implantation embryo development. Development 139, 829–841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  407. Aiken, C. E. M., Swoboda, P. P. L., Skepper, J. N. & Johnson, M. H. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction 128, 527–535 (2004).

    CAS  PubMed  Google Scholar 

  408. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713–716 (1996).

    CAS  PubMed  Google Scholar 

  409. Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  410. Kedde, M. et al. RNA-binding protein dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    CAS  PubMed  Google Scholar 

  411. Siddiqui, N. U. et al. Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol. 13, R11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  412. Kane, D. A. et al. The zebrafish epiboly mutants. Development 123, 47–55 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Giraldez laboratory for critical feedback, particularly D. Musaev, S. Krishna, F. Sievers, H. Lee, L. Miao, E. Strayer and G. Jaschek. This work was funded by the Jane Coffin Childs Foundation postdoctoral fellowship #61-1730 (to M.L.K.), the Human Frontiers postdoctoral fellowship LT0073/2022-L and EMBO long-term postdoctoral fellowship ALTF #794-2021 (to C.H.), and National Institutes of Health (NIH) grants R01 HD100035 and R35 GM122580 (to A.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

M.L.K. and C.H. researched the literature. M.L.K., C.H. and A.J.G. contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Antonio J. Giraldez.

Ethics declarations

Competing interests

A.J.G. is the founder and CEO of, and has an equity interest in, RESA Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Ken Cho, Melissa Harrison, Ferenc Mueller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CCR4–NOT complex

During maternal-to-zygotic transition (MZT), this multiprotein complex plays a critical role in regulating gene expression by controlling mRNA deadenylation.

Cleavage cycles

The series of rapid mitotic cell divisions that occur in the early embryo following fertilization, essential for increasing cell numbers in the embryo while maintaining a constant overall size, except for Drosophila spp. where cleavage cycles occur in a syncytium resulting in a growing number of nuclei in a shared cytoplasm.

Deadenylation

The process by which the poly(A) tail of an mRNA molecule is shortened or removed by deadenylating enzymes, which regulates the stability and lifespan of the mRNA molecule.

Erase and rewrite

A developmental strategy that involves the removal (erase) of maternal signatures to a naive state, followed by the establishment (rewrite) of zygotic signatures.

Histone acetylation

Acetyl groups on histone tails that modify the functional properties of DNA, added by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs).

Maternal decay

(M-decay). Refers to the degradation of maternally deposited mRNAs before zygotic genome activation (ZGA) or independent of zygotically produced factors.

Maternal-to-zygotic transition

(MZT). The transition period during embryogenesis when control of embryonic development transitions from maternal factors to zygotic factors.

Mid-blastula transition

(MBT). A transition phase in embryonic development, characterized by lengthening cell cycles, acquisition of cell motility and, in Drosophila spp., cellularization.

Nuclear-to-cytoplasmic volume ratio

(N:C ratio). The relative nuclear-to-cytoplasmic ratio within a cell. During embryogenesis (zygote to gastrulation) the size of the embryo does not change; cell sizes are halved with every cleavage cycle.

ORF-mediated decay

A decay pathway driven by the protein Upf1, whereby the translation status of the main open reading frame (ORF), affected by upstream ORFs and ORF length, influences decay dynamics.

Pioneer transcription factors

(PFs). Specialized transcription factors (TFs) with the unique ability to bind to condensed or inaccessible regions of chromatin, promoting chromatin opening and making these regions accessible for other regulatory proteins.

Protamines

Small proteins that replace histones in sperm (except in zebrafish) and help to compact the sperm genome.

Re-adenylation

(Cytoplasmic polyadenylation). Lengthening of poly(A) tails by specialized poly(A) polymerases in the cytoplasm, which leads to translational upregulation.

Totipotent

The ability of a cell to give rise to all cell types in an organism, including both embryonic and extra-embryonic tissues.

Zygote

Describes a fertilized egg and the earliest developmental stage of a multicellular organism.

Zygotic decay

(Z-decay). Refers to the clearance of maternally deposited mRNAs dependent on zygotically produced factors.

Zygotic genome activation

(ZGA). The process during embryogenesis where the zygotic genome becomes transcriptionally active.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, M.L., Hoppe, C. & Giraldez, A.J. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 26, 245–267 (2025). https://doi.org/10.1038/s41576-024-00792-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-024-00792-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy