Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligodendrocytes in Alzheimer’s disease pathophysiology

Abstract

Our understanding of Alzheimer’s disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology. Oligodendrocytes undergo a functional transition to a disease-associated state, engaging in immune modulation, stress responses and cellular survival. Far from being inert players, they appear to serve a dual role in AD pathogenesis, potentially offering defense mechanisms against pathology while also contributing to disease progression. This Review explores recent advancements in understanding the roles of oligodendrocytes and their myelin sheaths in the context of AD, shedding light on their complex interactions within the disease pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oligodendrocyte response at different stages of AD pathology.
Fig. 2: Functions of oligodendrocytes.
Fig. 3: Oligodendrocyte and myelin damage in AD.
Fig. 4: Oligodendrocyte response in AD.
Fig. 5: Link between myelination and AD pathology progression.

Similar content being viewed by others

References

  1. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

  3. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fagan, A. M. et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med. 6, 226ra230 (2014).

    Google Scholar 

  6. Frisoni, G. B. et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat. Rev. Neurosci. 23, 53–66 (2022).

    CAS  PubMed  Google Scholar 

  7. Rollo, J., Crawford, J. & Hardy, J. A dynamical systems approach for multiscale synthesis of Alzheimer’s pathogenesis. Neuron 111, 2126–2139 (2023).

    CAS  PubMed  Google Scholar 

  8. Simons, M., Levin, J. & Dichgans, M. Tipping points in neurodegeneration. Neuron 111, 2954–2968 (2023).

    CAS  PubMed  Google Scholar 

  9. De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    PubMed  Google Scholar 

  10. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).

  13. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    CAS  PubMed  Google Scholar 

  14. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Falcao, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Timmler, S. & Simons, M. Grey matter myelination. Glia 67, 2063–2070 (2019).

    PubMed  Google Scholar 

  17. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018).

  18. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fard, M. K. et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci. Transl. Med. 9, eaam7816 (2017).

  20. Simons, M., Misgeld, T. & Kerschensteiner, M. A unified cell biological perspective on axon–myelin injury. J. Cell Biol. 206, 335–345 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergles, D. E., Roberts, J. D. B., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  22. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Paez, P. M. & Lyons, D. A. Calcium signaling in the oligodendrocyte lineage: regulators and consequences. Annu. Rev. Neurosci. 43, 163–186 (2020).

    CAS  PubMed  Google Scholar 

  25. Chen, T. J. et al. In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep. 25, 852–861 (2018).

    CAS  PubMed  Google Scholar 

  26. Li, J., Miramontes, T. G., Czopka, T. & Monk, K. R. Synaptic input and Ca2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nat. Neurosci. 27, 219–231 (2024).

    CAS  PubMed  Google Scholar 

  27. Lin, S.-c & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    CAS  PubMed  Google Scholar 

  28. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    PubMed  PubMed Central  Google Scholar 

  29. Lu, T.-Y. et al. Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nat. Neurosci. 26, 1739–1750 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiore, F. et al. Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nat. Commun. 14, 8122 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Knowles, J. K. et al. Maladaptive myelination promotes generalized epilepsy progression. Nat. Neurosci. 25, 596–606 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Bonetto, G., Belin, D. & Karadottir, R. T. Myelin: a gatekeeper of activity-dependent circuit plasticity? Science 374, eaba6905 (2021).

    PubMed  Google Scholar 

  34. Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41, 61–76 (2018).

    CAS  PubMed  Google Scholar 

  35. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nave, K. A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).

    CAS  PubMed  Google Scholar 

  37. Snaidero, N. et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep. 18, 314–323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Looser, Z. J. et al. Oligodendrocyte–axon metabolic coupling is mediated by extracellular K+ and maintains axonal health. Nat. Neurosci. 27, 433–448 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukherjee, C. et al. Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain. Cell Metab. 32, 259–272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022).

    CAS  PubMed  Google Scholar 

  45. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Haile, Y. et al. Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J. Neuroinflammation 12, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    CAS  PubMed  Google Scholar 

  53. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073–1081 (2018).

    CAS  PubMed  Google Scholar 

  55. Park, H. et al. Single-cell RNA-sequencing identifies disease-associated oligodendrocytes in male APP NL-G-F and 5XFAD mice. Nat. Commun. 14, 802 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Andrews, S. J. et al. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine 90, 104511 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    CAS  PubMed  Google Scholar 

  58. Bateman, R. J. et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther. 3, 1 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Serrano-Pozo, A., Das, S. & Hyman, B. T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20, 68–80 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  62. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sasmita, A. O. et al. Oligodendrocytes produce amyloid-β and contribute to plaque formation alongside neurons in Alzheimer’s disease model mice. Nat. Neurosci. 27, 1668–1674 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajani, R. M. et al. Selective suppression of oligodendrocyte-derived amyloid β rescues neuronal dysfunction in Alzheimer’s disease. PLoS Biol. 22, e3002727 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  70. Ulrich, J. D., Ulland, T. K., Colonna, M. & Holtzman, D. M. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248 (2017).

    CAS  PubMed  Google Scholar 

  71. Lewcock, J. W. et al. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron 108, 801–821 (2020).

    CAS  PubMed  Google Scholar 

  72. Kaneko, M., Sano, K., Nakayama, J. & Amano, N. Nasu–Hakola disease: the first case reported by Nasu and review: the 50th anniversary of Japanese Society of Neuropathology. Neuropathology 30, 463–470 (2010).

    PubMed  Google Scholar 

  73. McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

    CAS  PubMed  Google Scholar 

  74. Djannatian, M. et al. Myelination generates aberrant ultrastructure that is resolved by microglia. J. Cell Biol. 222, e202204010 (2023).

  75. Munro, D. A. D. et al. Microglia protect against age-associated brain pathologies. Neuron 112, 2732–2748 (2024).

    CAS  PubMed  Google Scholar 

  76. Chadarevian, J. P. et al. Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy. Neuron 112, 2686–2707 (2024).

    CAS  PubMed  Google Scholar 

  77. Blanchard, J. W. et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611, 769–779 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng, G. W.-Y. et al. Apolipoprotein E ε4 mediates myelin breakdown by targeting oligodendrocytes in sporadic Alzheimer disease. J. Neuropathol. Exp. Neurol. 81, 717–730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).

    CAS  PubMed  Google Scholar 

  80. Camargo, N. et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 15, e1002605 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Dean, D. C. 3rd et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 74, 41–49 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Protas, H. D. et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 70, 320–325 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl Acad. Sci. USA 101, 284–289 (2004).

    CAS  PubMed  Google Scholar 

  84. Nasrabady, S. E., Rizvi, B., Goldman, J. E. & Brickman, A. M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 6, 22 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Moghekar, A. et al. Cerebral white matter disease is associated with Alzheimer pathology in a prospective cohort. Alzheimers Dement. 8, S71–S77 (2012).

    PubMed  Google Scholar 

  86. Roseborough, A., Ramirez, J., Black, S. E. & Edwards, J. D. Associations between amyloid β and white matter hyperintensities: a systematic review. Alzheimers Dement. 13, 1154–1167 (2017).

    PubMed  Google Scholar 

  87. Brickman, A. M. et al. Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch. Neurol. 69, 1621–1627 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Araque Caballero, M. Á. et al. White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer’s disease. Brain 141, 3065–3080 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Tosto, G., Zimmerman, M. E., Carmichael, O. T., Brickman, A. M. & Alzheimer’s Disease Neuroimaging Initiative. Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities. JAMA Neurol. 71, 872–877 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Brickman, A. M. et al. APOE ε4 and risk for Alzheimer’s disease: do regionally distributed white matter hyperintensities play a role? Alzheimers Dement. 10, 619–629 (2014).

    PubMed  Google Scholar 

  91. Lee, S. et al. White matter hyperintensities are a core feature of Alzheimer’s disease: evidence from the Dominantly Inherited Alzheimer Network. Ann. Neurol. 79, 929–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ryan, N. S. et al. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer’s disease. Neurobiol. Aging 36, 3140–3151 (2015).

    CAS  PubMed  Google Scholar 

  93. Brun, A. & Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann. Neurol. 19, 253–262 (1986).

    CAS  PubMed  Google Scholar 

  94. Simpson, J. E. et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol. Appl. Neurobiol. 33, 410–419 (2007).

    CAS  PubMed  Google Scholar 

  95. Behrendt, G. et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61, 273–286 (2013).

    PubMed  Google Scholar 

  96. Gagyi, E. et al. Decreased oligodendrocyte nuclear diameter in Alzheimer’s disease and Lewy body dementia. Brain Pathol. 22, 803–810 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Desai, M. K., Guercio, B. J., Narrow, W. C. & Bowers, W. J. An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-β-induced oligodendrocyte dysfunction. Glia 59, 627–640 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Chen, J. F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sowell, E. R. et al. Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 (2003).

    CAS  PubMed  Google Scholar 

  100. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol. 11, 157–165 (2015).

    PubMed  Google Scholar 

  102. Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Peters, A. The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31, 581–593 (2002).

    PubMed  Google Scholar 

  105. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 25, 5–18 (2004).

    CAS  PubMed  Google Scholar 

  106. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 4230 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Collins-Praino, L. E. et al. Soluble amyloid β levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque severity. Acta Neuropathol. Commun. 2, 83 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Depp, C. et al. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 618, 349–357 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaji, S. et al. Apolipoprotein E aggregation in microglia initiates Alzheimer’s disease pathology by seeding β-amyloidosis. Immunity 57, 2651–2668 (2024).

  111. Schäffner, E. et al. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Nat. Neurosci. 26, 1218–1228 (2023).

    PubMed  PubMed Central  Google Scholar 

  112. Groh, J. et al. Microglia-mediated demyelination protects against CD8+ T cell-driven axon degeneration in mice carrying PLP defects. Nat. Commun. 14, 6911 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Traka, M., Podojil, J. R., McCarthy, D. P., Miller, S. D. & Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 19, 65–74 (2016).

    CAS  PubMed  Google Scholar 

  114. Kedia, S. et al. T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis. Nat. Neurosci. 27, 1468–1474 (2024).

  115. Kang, S. H. et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16, 571–579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferreira, S. et al. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J. Neurosci. Res. 98, 1905–1932 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  118. Braak, H. & Del Tredici, K. Alzheimer’s disease: pathogenesis and prevention. Alzheimers Dement. 8, 227–233 (2012).

    CAS  PubMed  Google Scholar 

  119. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife 5, e15784 (2016).

  121. Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rubinski, A. et al. Higher levels of myelin are associated with higher resistance against tau pathology in Alzheimer’s disease. Alzheimers Res. Ther. 14, 139 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bechler, M. E., Swire, M. & Ffrench-Constant, C. Intrinsic and adaptive myelination—a sequential mechanism for smart wiring in the brain. Dev. Neurobiol. 78, 68–79 (2018).

    PubMed  Google Scholar 

  124. Knowles, J. K., Batra, A., Xu, H. & Monje, M. Adaptive and maladaptive myelination in health and disease. Nat. Rev. Neurol. 18, 735–746 (2022).

    CAS  PubMed  Google Scholar 

  125. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  126. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Xiao, L. et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19, 1210–1217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the German Research Foundation (408885537-TRR 274, SyNergy Excellence Cluster, EXC2145, Projekt ID390857198), the ERC (Advanced Grant), the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Chan Zuckerberg Initiative grant.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and S.K. conceived the theme, scope and structure of the Review, wrote the manuscript and drafted the figures.

Corresponding author

Correspondence to Mikael Simons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Siddharthan Chandran, Evan Macosko, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedia, S., Simons, M. Oligodendrocytes in Alzheimer’s disease pathophysiology. Nat Neurosci 28, 446–456 (2025). https://doi.org/10.1038/s41593-025-01873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-025-01873-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy