numpy.inner()



This function returns the inner product of vectors for 1-D arrays. For higher dimensions, it returns the sum product over the last axes.

Example

import numpy as np 
print np.inner(np.array([1,2,3]),np.array([0,1,0])) 
# Equates to 1*0+2*1+3*0

It will produce the following output −

2

Example

# Multi-dimensional array example 
import numpy as np 
a = np.array([[1,2], [3,4]]) 

print 'Array a:' 
print a 
b = np.array([[11, 12], [13, 14]]) 

print 'Array b:' 
print b 

print 'Inner product:' 
print np.inner(a,b)

It will produce the following output −

Array a:
[[1 2]
[3 4]]

Array b:
[[11 12]
[13 14]]

Inner product:
[[35 41]
[81 95]]

In the above case, the inner product is calculated as −

1*11+2*12, 1*13+2*14 
3*11+4*12, 3*13+4*14 
numpy_linear_algebra.htm
Advertisements
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy