Atropos: Effective Fuzzing of Web Applications for Server-Side Vulnerabilities

Emre Giiler!, Sergej Schumilo', Moritz Schloegel?, Nils Bars?, Philipp Gorz?, Xinyi Xu?,
Cemal Kaygusuz', and Thorsten Holz?

'Ruhr University Bochum
2CISPA Helmholtz Center for Information Security

Abstract

Server-side web applications are still predominantly imple-
mented in the PHP programming language. Even nowadays,
PHP-based web applications are plagued by many different
types of security vulnerabilities, ranging from SQL injection
to file inclusion and remote code execution. Automated se-
curity testing methods typically focus on static analysis and
taint analysis. These methods are highly dependent on ac-
curate modeling of the PHP language and often suffer from
(potentially many) false positive alerts. Interestingly, dynamic
testing techniques such as fuzzing have not gained acceptance
in web applications testing, even though they avoid these com-
mon pitfalls and were rapidly adopted in other domains, e. g.,
for testing native applications written in C/C++.

In this paper, we present ATROPOS, a snapshot-based,
feedback-driven fuzzing method tailored for PHP-based web
applications. Our approach considers the challenges asso-
ciated with web applications, such as maintaining session
state and generating highly structured inputs. Moreover, we
propose a feedback mechanism to automatically infer the
key-value structure used by web applications. Combined with
eight new bug oracles, each covering a common class of vul-
nerabilities in server-side web applications, ATROPOS is the
first approach to fuzz web applications effectively and effi-
ciently. Our evaluation shows that ATROPOS significantly
outperforms the current state of the art in web application
testing. In particular, it finds, on average, at least 32% more
bugs, while not reporting a single false positive on different
test suites. When analyzing real-world web applications, we
identify seven previously unknown vulnerabilities that can be
exploited even by unauthenticated users.

1 Introduction

The number of web applications we interact with and rely
upon daily is constantly growing. With 77.6%, a large major-
ity of the top ten million most visited websites still rely on
PHP as the language for their server-side applications [62].
Prominent examples include Wikipedia, Etsy, WordPress,

Baidu, and Tumblr. Given the widespread adoption and contin-
ued popularity of the PHP language, security testing is critical
to identify potential vulnerabilities as early as possible.

Given the typical size of web applications, manual source
code audits prove impractical. Instead, state-of-the-art ap-
proaches typically rely on static analysis techniques [6, 12,13,
15,21]. By accurately modeling the PHP language, particu-
larly its built-in functions, and applying a taint analysis-based
approach, these tools aim to identify a wide range of vul-
nerabilities ranging from SQL injection to file inclusion and
remote code execution. Despite all efforts to modeling the
PHP language faithfully, existing methods often suffer from
(potentially many) false positives. We have found empirically
that this observation still holds for modern approaches (see
Section 5.2). Noteworthy, this problem is not specific to PHP,
but plagues most static analysis efforts [30, 54]. A high num-
ber of false positives is counterproductive, misleading devel-
opers to ignore actual findings or to waste their time chasing
non-existent vulnerabilities [24]. Furthermore, static analysis
is typically unsuitable for effectively producing test cases that
assist developers in debugging the problem at hand [7].

Instead of trying to avoid false positives by improving
the model’s accuracy, we can explore other approaches. In
testing native applications, a dynamic approach to uncovering
faults has recently proven particularly effective: feedback-
driven fuzzing [4,16,20,67]. This method provides a simple
but fast method for testing a variety of (slightly mutated)
inputs against a target program and uncovers inputs that lead
to actual program faults. The crashing inputs provide the
developer with a primitive that allows reproducibilty and aids
in debugging.

Intuitively, fuzzing web applications may sound like a
promising approach. Unfortunately, modern fuzzers are op-
timized for a specific type of program and rely on several
properties that are not available in the context of web applica-
tions. First, their targets expose a relatively simple interface
(e. g., stdin or files), whereas a web application expects input
from the web server, which in turn receives its input from
a web browser via HTTP(s). Second, typical fuzz targets do

not maintain an extensive state and can be reset by simply
recreating the process (which contributes to the fuzzers’ main
advantage, their performance), e. g., using fork (). In con-
trast, web applications maintain a lot of state, as the web
server, browser, sessions, databases, and similar aspects need
to be considered. Third, standard fuzzing targets operate on
byte-stream oriented inputs, i. e., flipping bits and bytes often
succeeds in exploring new program behavior. Instead, web
applications are text-oriented and expect highly structured
input, usually containing developer-defined identifiers. These
challenges make classical fuzzing approaches inefficient for
testing web applications. Even worse, fuzzers are typically
unable to detect when a server-side fault has been triggered,
as they only check for crashes caused by memory access vio-
lations. However, typical web application bugs, such as SQL
injections, server-side request forgery (SSRF), or command
injection, do not crash the interpreter. So even if the fuzzer
successfully triggers a bug, it would not recognize it as such.

While a few web fuzzing approaches have been proposed in
previous work, they fail to solve the outlined challenges and
have a limited scope. WEBFUZZ [46] uses coverage-guided
feedback but can only detect client-side stored and reflective
cross-site scripting (XSS) vulnerabilities. Similarly, CEFUZZ
[69] is limited to remote code execution and command in-
jection vulnerabilities. Instead of fuzzing the web applica-
tion directly, both tools send HTTP requests to a web server,
which forwards them to the actual web application. This per-
formance limitation is shared by virtually all tools focusing
on dynamically testing web applications, including those used
in industry such as WFUzz [31]. This tool is an advanced
blackbox fuzzer capable of sending and mutating payloads
specified by a human domain expert. However, it is not fully
automated, lacks awareness of the state maintained by the
web application, has no access to coverage information, and
generally has no bug oracles for server-side vulnerabilities.
Concurrent to our work, Trickel et al. proposed WITCHER
[58], a coverage-guided fuzzer that implements fault escala-
tion to detect SQL and command injection vulnerabilities.
Similar to other grey-box fuzzers, the state space is explored
by tracking code coverage. The output of the web application
is analyzed to guide the mutation process. However, their
approach is limited to just two types of vulnerabilities.

In this work, we present a fuzzing method capable of ef-
fectively and efficiently testing web applications for different
types of security vulnerabilities. Our approach is specifically
designed to account for the stateful nature of web applications
by using snapshots. Furthermore, we propose a novel feed-
back mechanism tailored to web applications that allows our
fuzzer to generate inputs bypassing the shallow parsing stages
of the tested web application and effectively exploring deeper
program parts. Last, we introduce eight new bug oracles, each
capable of detecting a particular category of server-side PHP
web application bugs. We implemented a prototype of the
proposed approach in a tool called ATROPOS. The evaluation

demonstrates that our dynamic approach significantly outper-
forms static analysis approaches: We find 32% more bugs than
the best performing static analysis approach while at the same
time reporting zero false positives on the test suites. In terms
of coverage, we cover on average between 50% and 230%
more code compared to WEBFUZZ and WFUZZ, respectively.
In summary, we make the following main contributions:

e We present ATROPOS, a novel feedback-guided,
snapshot-based fuzzing method for web applications that
can detect eight types of server-side vulnerabilities.

* We introduce a novel feedback mechanism that extracts
relevant runtime information directly from the inter-
preter, which informs the random mutator. As our eval-
uation shows, this approach can achieve deeper code
coverage than state-of-the-art web application fuzzers.

* We present eight new bug oracles that can efficiently
detect different types of server-side vulnerabilities, fea-
turing high detection rates and few false positives. More-
over, our approach does not require heavyweight pro-
gram analysis techniques or complex instrumentations.

To foster further research in this area, we open-source
our implementation of ATROPOS at https://github.com/
cispa-syssec/atropos-legacy. An extended version of
this work is available as technical report [19].

2 Challenges

Traditional fuzzing approaches [3, 8, 16,20, 65, 67] that have
proven effective for languages that compile to native binaries
are not directly applicable to server-side web applications
written in interpreted languages such as PHP. In particular,
we identify three main challenges that must be addressed to
enable efficient and effective fuzzing of such applications.

2.1 Challenge 1: Complex Interface

The first challenge is the complex interfaces of server-side
web applications. Instead of passing an input stream via
stdin or files—as with most native binaries—we need to
replicate the environment provided by the web server for the
interpreter that is executing the target application (i. e., the
web application that is accessed with a web browser). More
specifically, we need to replace the web browser and the HTTP
web server with an agent that directly communicates with the
interpreter, reducing unnecessary overhead.

Once the fuzzer can pass inputs to the web application, it
needs to generate meaningful inputs to the target’s applica-
tion logic. A full specification of the interface is usually not
available, and hence we cannot use grammar-based fuzzing ap-
proaches. Similarly, random byte sequences, as generated by
traditional fuzzing methods, are unlikely to match the input of
the web application and are therefore rejected in the early pars-
ing stages. Typically, web applications use semantically com-
plex identifiers that are set by developers. For instance, when

https://github.com/cispa-syssec/atropos-legacy
https://github.com/cispa-syssec/atropos-legacy

submitting a form, each field is assigned a string descriptor
set by the developer (e. g., password). Thus, these descriptors
carry a semantic meaning that humans can use, but hinders
traditional fuzzing approaches: To pass this form, the fuzzer
must generate a string password=value, where password is
the correct identifier associated with the form, and value must
be a valid value for this field. Such semantic tokens (in the
form of key-value pairs) are not only used to retrieve data
from forms but also for session attributes (e. g., cookies), URL
parameters, or JSON inputs sent to REST APIs. Noteworthy,
this problem is a form of the magic byte problem [4, 8,42],
where the fuzzer must set particular bytes to a specific value
to pass a check. Previous research suggested two common
solutions: generating a dictionary before the fuzzing process
starts or using LAF-INTEL-style [26] instrumentation that
provides feedback even on partial solutions, i.e., an input
of “passw” would give positive feedback indicating that the
fuzzer is getting closer to the correct solution. While both so-
lutions are helpful, they are limited to static strings and fail for
strings generated at runtime. Another common obstacle with
the second solution is the number of intermediate stepping
stones that are generated (i. e., inputs added to the corpus)
for each single comparison, which can overwhelm the seed
scheduler for large applications with many such comparisons.

2.2 Challenge 2: Stateful Environment

Modern web applications maintain an extensive state for a
user session. Usually, this starts with authenticating the user
to access protected or user-specific resources. Moreover, web
applications heavily rely on databases or persistent storage to
maintain state. This leads to two problems: First, the state is
scattered across many components, which we must take into
account. Second, the persistent nature of the state impacts any
subsequent execution (e. g., deleting a file or database entry
will prevent future inputs from accessing it).

There are two approaches to dealing with the state problem.
The naive way is to ignore the state for most interactions
with the web application, e. g., creating a new entry in the
database. For critical operations that affect later runs and are
difficult to revert (e. g., logging out or deleting data), a human
domain expert must identify the appropriate code and place
it on a block list. This approach is used by WEBFUZZ [46].
However, this requires a human expert and does not allow
for testing the complete functionality of the web application.
Additionally, overlooked interactions may silently impede the
fuzzing progress. The second approach for dealing with state
is to track all changes (e. g., additions to the database) and
implement special logic to eventually revert all changes (e. g.,
by deleting the new data from the database). However, doing
so for each input is a potentially costly procedure.

2.3 Challenge 3: Bug Oracles

Unlike common fuzzing approaches that test memory-unsafe
programs, application bugs in interpreted languages such as
PHP or JavaScript typically do not manifest as memory safety
violations and thus cannot be observed using standard bug
oracles that rely on crash signals. Instead, the following eight
bug classes represent typical security challenges for PHP:

1) SQL Injection: This bug class occurs when unsanitized
input is used in an SQL query, allowing an attacker to execute
arbitrary SQL commands (e. g., to extract or modify sensitive
information in a database) [39].

2) Remote Code Execution: A bug allowing an attacker
to inject and execute arbitrary PHP code; this happens, for
example, when the attacker controls the input to eval () [34].

3) Remote Command Execution: Also called command
injection, this enables the adversary to execute arbitrary shell
commands on the server [35].

4) Local and Remote File Inclusion: To include another
file (e. g., a module), PHP provides multiple directives. A
local or remote file inclusion vulnerability allows attackers to
parse and execute arbitrary local files or remote resources as
PHP code and, thereby, gain remote code execution [11].

5) PHP Object Injection: PHP data and objects can be con-
verted to a stream of bytes via serialize () and converted
back via unserialize (). If the web application allows users
to manipulate the stream of bytes ending up in the latter func-
tion, arbitrary PHP objects can be injected. This introduces
a variety of other vulnerabilities, such as SQL injections or
remote code execution [13,36,41].

6) Server-side Request Forgery (SSRF): PHP provides
many functions to access remote resources, €. g., to query a
REST API. Gaining control of the destination used to access
such resources allows an attacker to forge requests in the name
of the web server. This allows bypassing countermeasures
such as firewalls that normally isolate the server’s private
network from the Internet [37].

7) Arbitrary File Read and Write: These bugs enable an
attacker to read or write arbitrary files on the web server.

8) File Upload: Many web applications allow users to
upload files, e. g., to set a profile picture. However, if the
uploaded file(-name) is not properly sanitized or checked
against an allowlist, potentially malicious files can be up-
loaded, which may ultimately lead to the execution of arbi-
trary code (e. g., by uploading PHP files) [40].

In summary, web applications are challenging to test for
traditional fuzzing approaches because they exhibit a complex
interface, maintain an extensive state, and contain software
faults that traditional bug oracles cannot detect.

3 Design

To address the challenges outlined above, we present the de-
sign of ATROPOS, a novel fuzzing method for testing web

B [V

Virtual Machine
A~
PHP Interpreter -
Web Application
<?php 7|
%p = $_GET['page']; 4///
if($p == "login")

y @ input: abc=xyz

missing key: page

@ input: page=xyz

ATROPOS

N
xyz = login { =
login(Q); —T> ‘
© input: page=login } <
i 7>

i -
\ L J
> e A
Take/ Res_t‘o‘re;\/M_S';a;—)‘shots

Figure 1: High-level overview of ATROPOS’s architecture.

-

applications. We focus on PHP-based web applications, but
the techniques described below can be applied to other types
of web frameworks as well.

3.1 Architecture Overview

Figure 1 provides a high-level overview of ATROPOS’ archi-
tecture. Generally speaking, we want to fuzz a web application
that consists of multiple processes, i. e., the PHP interpreter
executes the application and interacts with a database, the
filesystem, and potentially other components. All components
are highly dependent on their state and environment, which
requires them to run in an isolated system (e. g., a virtual
machine), to allow snapshots to be taken and state to be reset.

To guide the fuzzing process, we instrument the PHP inter-
preter to provide coverage feedback and introspection capa-
bilities. Internally, ATROPOS works similar to fuzzers such
as AFL++ [16]. In fact, ATROPOS uses the same algorithm,
called explore [16], as AFL++ for seed selection and pri-
oritization. We also include its typical byte-oriented muta-
tions, such as bitflips. To enable fuzzing of web applications,
we propose a number of changes that address the unique
challenges in the web context. First, as a web application
can consist of multiple PHP files—all known a priori to the
fuzzer—ATROPOS selects one randomly for each fuzzing it-
eration. Second, each fuzzing input can contain more than
one request, allowing the fuzzer to run two or more files se-
quentially in one fuzzing iteration. As each request to a web
application is highly structured, ATROPOS features a custom
mutator reflecting the key-value-oriented structure of inputs
and executes the target and all associated processes in a VM
so that it can efficiently restore the entire environment via a
fast full-system snapshot mechanism. In addition, we design
eight custom bug oracles tailored to server-side vulnerabil-
ities. ATROPOS explicitly avoids costly operations such as
static analysis or taint analysis to maintain high throughput,
and its bug oracles are designed to keep the number of false
positives low.

3.2 Advanced Feedback Mechanisms

A web application is usually executed by an interpreter (e. g., a
PHP interpreter), which receives its input from the web server,
which in turn receives its input from the web browser. To
reduce overhead and increase testing performance, we replace
the web browser and the web server with the FastCGI [43]
interface as a more direct means of communication. However,
PHP web applications still expect highly structured inputs
because they make heavy use of semantic tokens in the form
of key-value pairs. Traditional fuzzing tools such as AFL
[67] apply random mutations to the input. In contrast, our
design is based on a web application-aware representation
of the input and involves a number of techniques to generate
meaningful key-value pairs, e. g., we identify parts of the
input structure that the web application expects and provide
them to the fuzzer in the form of a dictionary, which can
be used to precisely mutate specific keys and values. The
following techniques constitute our PHP web application-
specific advanced feedback mechanisms that complement the
fuzzer’s coverage feedback.

3.2.1 Inferring Application-specific Keys

When the web application receives a request, several global
maps (e.g., $_GET, $_POST, or $_SERVER) that can be ac-
cessed by the web application are populated according to the
web browser’s request. Thus, our fuzzer must also populate
the keys that are accessed by the web application. These are
usually complex semantic tokens that a fuzzer is unlikely to
generate randomly by chance. To solve this problem, we take
advantage of having full control over the execution environ-
ment: ATROPOS hooks into the PHP interpreter’s process of
accessing these global maps. When it observes a new access,
our hook provides the accessed key as feedback to the fuzzer.
This allows ATROPOS to set the expected key for the next
fuzzing iteration. For example, consider input @ in Figure 1:
While processing our initial random fuzzing input abc=xyz,
the web application accesses key page, and our hook reports
it to the fuzzer as a missing key. This way, ATROPOS can set
the key in our subsequent request @. Notably, this works for
all keys, even those that are dynamically generated at runtime.

3.2.2 Inferring Expected Values

To test deeper parts of the application, the fuzzer not only need
the correct key, but also a specific value, e. g., page=login.
Our fuzzer can generically infer all values that the web ap-
plication uses during runtime. Traditionally, this can be done
in several ways: (1) taint analysis, (2) symbolic execution, or
(3) heuristic-based techniques. The former two techniques
suffer from state explosion and significant overhead and are
comparably costly to implement. Thus, in our design, we use
heuristics similar to input-to-state correspondence [4] but tai-
lored to the domain of web applications. The intuitive insight
is that in many cases (parts of) the input is directly compared

with a specific value. As the input to the web application is
based on strings, we can hook all string comparison func-
tions in the PHP interpreter, e. g., zend_string_equal_val.
When ATROPOS encounters a string comparison, our hook
passes the information to the fuzzer as feedback. Then, AT-
ROPOS can randomly replace occurrences of “wrong” values
with the expected one. In Figure 1, the if clause in line 3 of
the web application compares our random input, xyz, to the
expected value, 1ogin. Receiving the correct value as feed-
back, the fuzzer can replace xyz with login and thus send
the valid input page=1ogin in the third fuzzing iteration, ©,
to unlock deeper parts of the application’s logic.

We emphasize that this inference process is not limited to
full string comparisons but also covers partial comparisons.
Empirically, we observed that ATROPOS was able to manipu-
late highly-structured input values like JSON and even gener-
ate a valid HTTP header from scratch when the parsing itself
was implemented in PHP, thus providing relevant information
via these advanced feedback mechanisms. Notably, this ap-
proach even works for CSRF tokens, since ATROPOS uses full
system snapshots, such that CSRF tokens are deterministic.

While the input-to-state correspondence approach seems to
work well in practice, more extreme changes to the input, such
as cryptographic hashing and base64 encoding, are indeed
challenging. However, this is true for fuzzing in general [4,42].
For example, when the input is hashed before being compared
to a SHA256 hash, it is not possible for ATROPOS to solve
this check. While it would certainly be possible to add support
for encodings such as BASE64, we have yet to see a need for
this in practice. Less extreme input transformations such as
STRTOUPPER or STR_REPLACE should be solvable, as the
resulting runtime strings are extracted and used during input
generation.

ATROPOS uses an abstract representation of these key-value
pairs for fuzzing purposes, which are only converted to HTTP
(or FastCGI) input in the form of a=b&c=d in the last step
when feeding it into PHP. We emphasize that the difficulty is
not in generating and maintaining the HTTP input format, but
in deriving the correct key-value pairs.

3.2.3 Inferring Values for Regular Expressions

A direct comparison (of parts) of the input with a string does
not cover all scenarios. In practice, web applications often
check whether an input matches a regular expression, e. g.,
to verify whether an input is a valid e-mail address or phone
number (see Listing 1). In these cases, ATROPOS uses the
mechanism outlined above and pass the observed regular
expression as feedback to the fuzzer. The fuzzer can then
derive a random string conforming to this regular expression
with the help of existing techniques (e. g., we use XEGER
[10] in our prototype).

oW o =

if (preg_match('/"\S+@\S+\.\S+S$/", $_GET['email'])
echo "address looks correct";

Listing 1: The regex is observed when executed and then
passed back as feedback for the fuzzer.

<form action="login.php">

<input name="user" />
<input name="passwd" type="password"/>
</form>

Listing 2: Example for an HTML login form.

3.2.4 Inferring Keys from HTML

As an optimization technique, ATROPOS parses the HTML
output generated by the application to extract potentially use-
ful keys or key-value pairs. For example, the login form in
Listing 2 would yield the keys user and passwd. This is a
simple form of crawling, we do not explicitly request further
pages.

This step is optional and a pure optimization step: Our
generic identification mechanism can potentially find all keys
and values used but requires multiple fuzzing iterations, as
the web application must access the key or value at least
once to trigger the feedback. Using this “crawling”, the fuzzer
can discover allstatic keys embedded in the HTML output
in a single pass, but not the dynamically generated keys. For
the latter, it still needs the regular identification mechanism
presented above.

3.2.5 Performance Overhead

Since collecting and returning this feedback information to
the fuzzer is costly, ATROPOS executes the dynamic advanced
feedback mechanisms only once for each new input that
yielded new coverage. As a result, this is a one-time cost
per seed file with negligible overhead compared to the whole
fuzzing campaign.

In summary, this web application-specific feedback mecha-
nism enables us to effectively and efficiently explore deeper
states of the application under test. Next, we need to address
the extensive state the web application maintains.

3.3 Stateful Environment

To address the need for the web application to maintain a com-
plex state (e. g., sessions, database, filesystem, etc.) without
compromising fuzzing efficiency, we run the web application
in an isolated environment suitable for snapshots and restores.
This differs from other web application fuzzers like WEB-
Fuzz [46], which manually harness the targeted application,
e. g., by preventing the fuzzer from executing a code region
related to logging out the user. Such an approach has three
main drawbacks. First, it requires a human domain expert to
harness the target. Second, the harnessing is error-prone: Skip-
ping code may alter the functionality of the web application or

render bugs invisible to the fuzzer. Third, the lack of isolation
between executions leads to situations where the executed
code changes the filesystem (e. g., modifies files), alters the
database (e. g., changes or deletes entries), or mutates the user
session (e. g., a user can change their e-mail address, log out,
or log in as a different user). All these actions have profound
effects on subsequent executions and may make triggered
bugs non-reproducible. Even running the same input twice
may result in different behavior, making the entire process
highly non-deterministic.

If the fuzzer instead runs the web application in an isolated
environment, it can use fast snapshots optimized for fuzzing
to conveniently recover the entire system state after process-
ing each input. This way, the web application’s functionality
is not limited, and we maintain a high fuzzing performance.
Moreover, the bugs found are guaranteed to be reproducible.
Snapshots ensure that not only the file system is restored, but
also user sessions and even memory, including the state of
the database. As neither the database nor any applications
running in the background have to be restarted after a restore,
ATROPOS avoids a long initialization phase at startup. To al-
low for fast snapshot restores of the filesystem and all running
processes, we build ATROPOS on top of NYX [47]. As a
base strategy, ATROPOS takes a snapshot after initialization
of all assets, such as the database, and restore to this snapshot
after every fuzzing iteration, i. e., after the web application
processed the fuzzing input or reached the one second timeout
while doing so.

Note that some bugs might require the chaining of multiple
inputs without resetting the state between executions, €. g.,
a bug that occurs only when the database has thousands of
entries, requiring many inputs to first populate the database
before some input can then trigger the bug. A fuzzer that
always resets the state will not be able to detect this bug.
This can be addressed by not resetting the state after every
input but only after every n inputs. However, even a single
fuzzing input can already contain multiple requests to the web
application, allowing our fuzzer to find such vulnerabilities in
principle. The more complex the bugs are and the more state
must be accumulated, the less likely the fuzzer is to craft an
input triggering the bug. In general, finding bugs depending
on a complex state is challenging.

In summary, running the web application in an isolated
environment allows us to use snapshots to skip costly ini-
tialization and ensure reproducibility of bugs. As a last step,
we need to address the discrepancy between traditional bug
oracles and typical server-side web vulnerabilities.

3.4 Bug Oracles Beyond Memory Corruption

Many types of software faults in web applications do not
manifest themselves in memory safety violations and hence
in a crash that a fuzzer can recognize as a bug. Based on this
insight, we propose a set of custom bug oracles to identify

eight common bugs in server-side web applications.
Principles. At their core, our proposed heuristics rely on
two generic conditions to identify vulnerabilities. (i) A poten-
tially unsafe function shows unusual or suspicious behavior,
often producing a warning or an error. (ii) This behavior
was triggered by an attacker-controlled input. If both condi-
tions are met, the bug oracle reports a found vulnerability for
specific PHP functions. Our underlying insight is that a ma-
jority of common bugs are caused by a few critical functions,
e.g., mysqli_query () or unserialize (). By instrument-
ing these functions in the PHP interpreter, we can convert
them into bug oracles sensitive to a particular class of bugs.
Instead of modeling the whole PHP program (i. e., for static
analysis), we instrument only critical sinks and execute the
web application with different inputs. In contrast to taint anal-
ysis, we do not need to track the user input but instead monitor
the sink for suspicious behavior, which is likely to be caused
by user input. In Listing 3a, the fuzzer may generate an in-
put that is passed to mysgli_query (), resulting in an invalid
SQL query. This will raise a syntax error and is a strong
indication that user input is passed unsanitized as part of a
query (which could make the web application vulnerable),
since properly sanitized input is unlikely to break the query
syntax. Empirically, we find that unsanitized random inputs,
such as generated by a fuzzer, are likely to provoke a PHP
error or warning since many security sensitive functions re-
quire structured inputs. While this meets our first condition
(suspicious function behavior), it does not necessarily imply
that the attacker (i.e., fuzzer) has control over the query and,
thus, could exploit the bug. Using our lightweight inference
process outlined in Section 3.2.2, ATROPOS can insert a spe-
cial string into the input and observe if this string appears in
the query. If it does, we conclude that the attacker controls
the query, making it vulnerable to SQL injection. With both
criteria, (i) and (ii), met, we report a vulnerability. We discuss
potential shortcomings of our heuristics in Section 6.
Novelty. While techniques using errors as feedback for
manual code reviews have been known for a long time, to the
best of our knowledge, we are the first to combine this with a
lightweight inference of checking whether attacker-controlled
input arrives at the particular sink in an automated fashion. To
do so efficiently, we avoid known but costly techniques such
as taint analysis and use a form of input-to-state correspon-
dence tailored to web applications. Concurrent to our work,
WITCHER [58] proposes the concept of fault escalation to
turn SQL and command injection vulnerabilities into a signal
a fuzzer can detect. Compared to their work, we provide ora-
cles for eight bug types and locate our bug oracles within the
PHP interpreter. In doing so, we sense bugs even when the
tested web application disables printing of errors or warnings.
Bug triggers. To speed up the process of finding inputs
that trigger errors, ATROPOS contains a list of potential bug
trigger strings, €. g., a string containing different quotation
marks that are often required to break out of strings in an

a) SQL injection vulnerability
$id = $_GET['id'];
Squery = "SELECT name FROM users WHERE id='$id';";
Sresult = mysqli_query(Smysqgl, Squery)

b) remote code execution vulnerability
eval ("$var = "'. $_COOKIE['a'])

c) remote command execution vulnerability
shell_exec('ping ' . $_POST['ip']);

d) local / remote file inclusion vulnerabilities
include ("1lib/" . $_GET['page']); LFI
include ($_GET|['page']); RFI

e) PHP object injection vulnerability
unserialize ($_COOKIE['session']);

f) SSRF vulnerability
file_get_contents ("http://".$_POST['host']);

g) arbitrary read vulnerability
$file = $_POST['file'];
echo file_get_contents($file);

h) file upload vulnerability
if($_FILES['f']['type'] == "image/png")
move_uploaded_file ($_FILES['f']['tmp_name'],

S_FILES['f']['name']);
Listing 3: Code examples for eight vulnerability types.

SQL query. This is similar to the way fuzzers like AFL insert
magic values into the input [66], e. g., —1 or 255, with the goal
of triggering integer overflows. For most of our bug oracles,
random mutations of the input alone are sufficient (e. g., to
add quotation marks), but we found that trigger strings still
speed up this process. Although heuristics like these may
appear limited, they work well in practice, as demonstrated
in our evaluation (see Section 5). In particular, we found no
false positives on the test suites, while catching significantly
more bugs than existing analysis tools.

New bug oracles. In total, we propose custom bug oracles
for the eight types of server-side web application vulnerabili-
ties discussed in Section 2.3. In particular, they differ in the
fact how suspicious function behavior is identified and how
the fuzzing input is tracked to the vulnerable sink.

1) SQL Injection. This bug oracle reports a vulnerability
if an input causes a syntax error when processing an SQL
query that contains a fuzzer-controlled input. Intuitively, only
unsanitized inputs should be able to break the syntax of the
SQL query by changing the query such that it eludes the
intended constraints (quotation marks, etc.).

2) Remote Code Execution. The oracle reports a vulnera-
bility if a fuzzer-controlled input raises a syntax error while
compiling dynamic PHP code, e. g., during a call to eval ().
Similar to the SQL injection oracle, there is a high probability
that a syntax error will occur if an attacker-controlled input
happens to be interpreted, as most random inputs are invalid

PHP code. Listing 3b provides a brief example for the eval ()
function. Additionally, ATROPOS injects valid PHP code that
reports back a vulnerability when executed, as an attacker
should not be able to run custom code within the context of
the web application.

3) Remote Command Execution. Identifying a remote
command execution, such as the one shown in Listing 3c, is
more difficult, as we do not have an explicit error message.
Instead, this oracle monitors for attempts to execute non-
existent binaries, which is the case if the binary name is under
the attacker’s control. Additionally, the fuzzer tries to inject a
command that attempts to execute a custom binary we placed
in the VM that automatically triggers this oracle.

4) Local and Remote File Inclusion. A file inclusion vul-
nerability is reported if a call to file-related functions such as
include () or require () results in an error indicating that
the file does not exist, while the file path contains input con-
trolled by the fuzzer (examples are shown in Listing 3d). In
some cases, applications check whether the file exists before
including it. To identify file inclusion vulnerabilities, even
if they are guarded by such a check for existence, ATROPOS
occasionally inserts a path to a file that reports back a file
inclusion vulnerability when included.

5) PHP Object Injection. An object injection vulnerability
is reported if attacker-controlled input ends up in a deserial-
ization call (unserialize (), cf. Listing 3e). Since serialized
data is a structured input, parsing errors can be used to detect
suspicious behavior, similar to the SQL injection oracle.

6) Server-Side Request Forgery. If a resource re-
quest can be made pointing into private address ranges
(e.g.,http://192.168.0.1), while also containing fuzzer-
controlled input, this oracle reports an SSRF vulner-
ability (e.g., by controlling the host of a call to
file_get_contents (), see Listing 3f).

7) Arbitrary File Read and Write. As it is difficult to
determine whether some observed file operation is malicious,
we conservatively constrain this bug oracle to PHP files. This
oracle is triggered if the web application tries to read, write,
delete, or rename a PHP file while also containing fuzzer-
controlled input in the filename (cf. Listing 3g). Additionally,
ATROPOS tries to supply a canary PHP file that triggers the
oracle and reports a bug according to the file operation applied
to it.

8) File Upload. This category is also highly context-
dependent: Uploading certain files might be allowed for one
application but constitute a vulnerability for another. We de-
fensively consider only uploading PHP files (i. e., files ending
with . php) a security issue, as this is the least ambiguous vio-
lation. If uploading a PHP file via the respective hooked func-
tion succeeds (e. g., move_uploaded_file () in Listing 3h),
we consider this bug as triggered.

In summary, these custom bug oracles are sensitive to spe-
cific server-side web application vulnerabilities. Combining
these bug oracles with our fuzzer’s ability to infer both keys

and values used by the web application, as well as its snapshot-
based design, we can efficiently fuzz web applications.

4 Implementation

We implement our design in a prototype called ATROPOS in
about 3,700 lines of C, Python, and Nim code. ATROPOS is
split into two components: (1) the frontend, which generates
inputs and decides which seed in the corpus to fuzz next,
and (2) the backend, which runs the web application inside a
virtual machine. Both components exchange information via
shared memory and hypercalls. Moreover, the implementation
of ATROPOS revolves around the primary fuzzing execution
loop, which needs to (1) generate and mutate inputs, (2) re-
ceive feedback on which code regions of the web application
were executed, (3) report back any vulnerabilities, and (4)
restore the environment to its original state.

General Setup. Before the fuzzing run can start, the web
application and all components must be installed. We use
Docker containers to prepare the environment to simplify this
process. This allows manual preparations such as logging
into the target web application as a user, so that the fuzzer is
provided with an initial set of capabilities.

Generating Inputs. Unlike binary targets, PHP web appli-
cations expect the input to be in the form of key-value pairs.
The main functionality of the ATROPOS frontend is imple-
mented as a custom mutator for AFL++, where the key and
value inputs can be mutated individually, using our advanced
feedback methods explained in Section 3.2. Before each in-
put is executed, it is converted into FastCGI parameters and
passed to the agent inside the VM on the backend.

As stated earlier, web applications rarely access these in-
puts directly. Instead, the PHP interpreter converts these pa-
rameters into an easily accessible associative array consisting
of key-value pairs. There are four major types of external
input sources that we can fuzz: (1) the $_GET superglobal
contains all inputs passed via the URL, (2) $_POST mainly
contains inputs sent via an HTML form, (3) $_COOKIE allows
access to cookies, and (4) $_SERVER provides a variety of
information, e. g., hostname, user-agent, etc.

Executing Inputs. As explained in the design (see Sec-
tion 3), full-system virtualization is crucial for our approach.
While there are multiple virtualization solutions available, we
chose to build ATROPOS on top of the NYX framework [47]
because it provides fast snapshot restores [48, 49] (about
6,000 to 10,000 reloads per second), which even allows it to
be used in the context of native application fuzzing.

In our prototype implementation, we use Ubuntu 22.04 as
the guest operating system. An application called agent runs
inside the virtual machine and can create or restore snapshots
via specific hypercalls. It also governs the processing of input
passed to the VM from the ATROPOS frontend and forwards
that input to the web application. The agent is written in
Nim and communicates with the PHP interpreter via FastCGIL.

Essentially, the agent mimics the communication between
a web browser and a web server and, in the role of the web
server, communicates with the web application. In addition
to the actual web application, we need to run an SQL server
in the background to allow the SQL queries to succeed. At
the moment, we support both MySQL and SQLite databases,
but adding new database support is a straightforward one-
time engineering effort. Once the web application finishes the
execution of one input, the agent requests to restore the full
system to its initial state via the snapshot mechanism.

PHP Interpreter and Code Coverage. Our bug oracles
require certain hooks to be installed (for a full list, refer to
Table 5 in the appendix). We modify the PHP interpreter to
execute our corresponding code when specific PHP functions
are called, e. g., move_uploaded_file () for file upload vul-
nerabilities. We instrumented PHP 7.4, as 71.5% of all PHP
websites use PHP version 7 [62]. It also showed the best com-
patibility and performance with the code coverage module
pcov [61], which we use to retrieve coverage feedback. We
patched pcov to provide feedback via an AFL-compatible
bitmap that is shared with the fuzzer outside the VM.

Runtime Feedback. Besides the coverage feedback re-
trieved via pcov, ATROPOS implements our advanced feed-
back that allows us to infer keys and values. This feedback
is mainly implemented in the PHP interpreter and the pcov
module, such that they return information on failed compar-
isons, missing keys, and regular expression executions. The
advanced feedback is primarily communicated via a NYX
hypercall, which transfers results from inside the VM to the
frontend via a shared memory file. This file can be read by
the custom AFL++ mutator from the outside. Since advanced
feedback is only recorded once per seed file, the overhead of
the hypercall is negligible.

Performance Improvements. Before creating the initial
snapshot, we use PHP’s Opcache [44] to compile all PHP files
once to avoid re-compilation on each execution. Additionally,
we patch the PHP interpreter to prevent functions such as
sleep () from slowing down the execution.

5 Evaluation

We evaluate our prototype implementation of ATROPOS in
three experiments. First, we check if ATROPOS can detect
more bugs in various benchmarks than state-of-the-art tools
and how it compares to them in terms of false positives. Sec-
ond, we analyze the code coverage of our fuzzer compared to
existing work. Last, we study whether ATROPOS manages to
find new vulnerabilities in real-world PHP web applications.

5.1 Setup

We use five machines with Intel Xeon Gold 6230 @ 2.10GHz
processors (40 physical cores) and 192GB RAM, backed by
SSD storage, if not declared otherwise.

Test Suites. To compare the bug-finding capabilities of
ATROPOS, its false positive rate, and its coverage against
state-of-the-art tools, we select a ground truth of three popular
test suites specifically designed to be vulnerable, covering a
wide range of bug types:

e Damn Vulnerable Web Application (DVWA) [63]: We
use 16 of the provided bugs as ground truth.

* Xtreme Vulnerable Web Application (XVWA) [57]: An
alternative to DV WA that provides nine relevant bugs.

* buggy web application (bWAPP) [32]: It offers 27 vul-
nerabilities relevant for our evaluation. We use a custom
version adapted to run on newer PHP versions [33].

Crucially, these projects provide a ground truth, which we
can use to calculate accurate true positive and false positive
rates. In total, the three test suites contain 177,000 lines of
code and 52 server-side vulnerabilities that are relevant for
our evaluation, covering all eight of our supported vulnera-
bility types (see Table 4 in the appendix for details). For the
evaluation, we do not consider vulnerability classes that are
outside of the scope of our work, e. g., client-side Cross-Site
Scripting (XSS) vulnerabilities.

Experimental Setup. To better assess the capabilities of
ATROPOS, we consider two scenarios: Running ATROPOS
on a single core, which we use as a baseline, and running
ATROPOS on 40 physical CPU cores, which is a more realistic
scenario in practice [9, 18,28, 50]. This distinction allows us
to measure how ATROPOS scales given additional resources.

For our experiment, we follow the guidelines established
by Klees et al. [25] for evaluating fuzzers. Since fuzzing is an
inherently random process, we run our fuzzer ten times for 24
hours for the single-core mode (as suggested). For the 40-core
mode, we complete only three runs, as a single run already
requires 960 CPU hours. ATROPOS always starts with an
empty seed. For comparison with web scanners and the static
analyzers, which need to be run only once, we use the median
of the number of bugs (rounded down to the nearest number).
We calculate the true positive rate (i. e., the proportion of
reported actual bugs within all bugs) and precision (i. e., the
proportion of actual bugs within reported bugs). For a fair
comparison, we kept the parameters identical for all targets. In
particular, we did not adjust the toolset or configuration flags
to perform better on specific targets. We explain the concrete
configurations on our GitHub page available at https://
github.com/cispa-syssec/atropos-legacy.

5.2 Experiment 1: Finding Bugs

In the first experiment, we assess the capability of identifying
bugs in the three test suites and measure the number of false
positives. As a baseline for static analyzers, we select four that
(1) work on modern PHP versions, (2) support the detection
of (most) vulnerabilities relevant to our work, and (3) have
been actively maintained over the last four years. The selected
tools are:

* SONARQUBE [52]: A commercial product where the
PHP module was previously known as RIPS [12,13]. We
use the https://SonarCloud.io interface.

* PROGPILOT [14]: A static analysis tool specifically
designed to find security vulnerabilities.

e PSALM [59]: A static analysis tool developed by Vimeo,
which uses taint analysis to find security vulnerabilities.

* PHPCS-SECURITY-AUDIT [55]: A set of security vul-
nerability rules for the PHP_CODESNIFFER tool, which
checks if the provided PHP project adheres to a previ-
ously defined coding standard.

In addition, we also evaluate against the popular web vul-
nerability scanners ZED ATTACK PROXY (ZAP) [68] and
WAPITI [56]'. In contrast to ATROPOS, these tools do not use
coverage-guided fuzzing; instead, they rely on web crawling
and scanning the output for hints of security vulnerabilities. In
terms of fuzzers, we compare against WITCHER [58], which
uses feedback-driven fuzzing but is limited to SQL injections
and remote code execution bugs, WFUZZ, a simple fuzzer
that replaces a keyword by the value of a given payload, and
CEFUZZ, which combines static analysis and fuzzing to check
for remote code/command execution bugs. We provide all
tools with valid sessions (or login credentials) and a list of all
accessible PHP files.

In the best-case scenario, an automated bug-finding tool
would discover all bugs while reporting no false positives, i. e.,
it should have both a high frue positive rate (also called recall)
and a high precision. In practice, the purpose of automated
bug-finding tools is to reduce a security analyst’s manual
workload. False positives increase the amount of work without
providing any benefit. In addition, many false positives may
Iull developers into a false sense of security, causing them to
ignore critical findings or postpone their investigation.

Results. Table | and Figure 2 summarize the results of this
experiment. We observe that ATROPOS finds more bugs in
total compared to the tested static analysis tools (overall, AT-
ROPOS finds 75% of all possible bugs in single-core mode and
94% of all bugs when run with 40 cores in parallel). Further-
more, only ATROPOS, SONARQUBE and WITCHER report
no false positives, but at the same time, ATROPOS also finds
more bugs than the other two combined. Moreover, our ap-
proach finds 23% more bugs than the best static analyzer we
tested against (in terms of bugs discovered), namely PHPCS-
SECURITY-AUDIT. The three web scanners ZAP, WAPITI
and WFUZz lag clearly behind and find only a few bugs in
total. Their poor performance is an inherent limitation: Web
scanners rely on the application’s output to find key-value
pairs and explore the application. Vulnerability detection is
limited to what the application exposes in its output or in

'The free version of BURP SUITE [45], a popular web scanner, does not
feature automated scanning functionality. Instead we select the open-source
WAPITI.

https://github.com/cispa-syssec/atropos-legacy
https://github.com/cispa-syssec/atropos-legacy
https://SonarCloud.io

Table 1: Evaluation of ATROPOS against state-of-the-art analysis tools. True positives (7P) is the number of actual vulnerabilities
found. False positives (FP) is the number of falsely reported vulnerabilities. Precision is the percentage of the vulnerability
reports that are actual vulnerabilities. The true positive rate (TPR) is the percentage of actual vulnerabilities that were found (in
total, 52 vulnerabilities exist). Except for false positives (FP), larger values are better. Bold values highlight the best results.

DVWA XVWA bWAPP ..

TP EP TP FP TP FP Precision TPR
ATROPOS (40 cores) 15 0 7 0 27 0 100% (49/49) 94% (49/52)
ATROPOS (1 core) 14 0 6 0o 19 0 100% (39/39) 75% (39/52)
SONARQUBE 5 0 4 0 20 0 100% (29/29) 56% (29/52)
PROGPILOT 12 2 4 0 18 5 83% (34/41) 65% (34/52)
PSALM 7 1 6 0o 22 5 85% (35/41) 67% (35/52)
PHPCS-SECURITY-AUDIT 13 28 5 2 19 29 39% (37/96) 71% (37/52)!
WITCHER 0 0 3 0 0 0 100% (3/3) 6% (3 /52)2
ZAP 2 4 2 1 3 6 39% (71 18) 13% (7152)
WAPITI 0 17 4 15 0 2 11% (4 /38) 8% (4152)
WEUzz 0 0 - 0 - - 0% (0/52)
CEFUZZ 3 - - - 5 - - 15%(8/52)

! PHPCS-SECURITY-AUDIT does not support PHP object injection and file inclusion bugs. If excluding the six bugs of these types, its adjusted TPR is 80% (37 / 46).
2 WITCHER only supports SQL and command injection bugs. The adjusted TPR is 8% (3 / 38)
3 CEFUZZ only supports remote command/code execution bugs. We compare against the results they report for DVWA and bBWAPP. They do not report on false positive numbers.

Excluding the 46 bugs it does not support, CEFUZZ’s adjusted TPR is 100% (8 / 8).

Atropos

‘Web Scanners
& Fuzzers

1
31 13

2,

Static Analyzers
Figure 2: Venn diagram of bugs found in Experiment 1. We
combine the results of all web scanners and fuzzers as well
as all static analyzers. Still, ATROPOS found five bugs which
not a single one of the static analyzers or web scanners could
find. All static analyzers combined found two upload vulnera-
bilities ATROPOS missed (we discuss them in Section 5.2).

measurable behavioral changes. ATROPOS’ advanced feed-
back mechanism and introspection capabilities allow for a
more effective and efficient program exploration and vulner-
ability detection. Verifying our results for ZAP on DVWA,
we find ZAP explores files containing the bugs, yet it does
not set a key required to reach the vulnerable code section.
Additionally, ZAP seems to be unable to change the difficulty
level automatically (low, medium, high, impossible) and is
thus limited to vulnerabilities of a single level. Even when
manually setting a security level as pointed out in ZAP’s FAQ,
it only finds two bugs.

WFUZZ is unable to find any of the vulnerabilities because
its crawling and bug finding capabilities are severely limited
unless it is manually directed to a specific target URL with
the correct key-value pairs setting GET, POST, and cookie

parameters. Letting it fuzz on its own does not uncover any
bugs. WITCHER is limited to SQL injections and remote
code execution vulnerabilities; for these two, it finds three
vulnerabilities in XVWA but fails to find any in the other
two test suites. We believe this is not an inherent limitation of
WITCHER but rather due to the limited nature of its academic
prototype. However, WITCHER further confirms the notion
that fuzzers are less likely to report false positives. Compared
to the results reported for CEFUZZ [69], which finds all eight
remote command/code execution bugs in both DVWA and
bWAPP, we find that ATROPOS achieves the same result (but
we also cover additional classes of bugs). As CEFUZZ does
not report false positives, we cannot calculate the precision.

Missed bugs. Noteworthy, ATROPOS’ median run with 40
cores only missed three bugs, two of which are upload-related
vulnerabilities (in DVWA and XVWA) and the third is a
remote command execution in XVWA. The latter could po-
tentially be discovered given more time or better scheduling
(manual inspection showed that ATROPOS did not fully cover
the respective file). One of the missed upload vulnerabilities
is likely due to the fact that HTTP uploads require a special
Content-Type header, along with five additional key-value
pairs to trigger an upload; in these cases, ATROPOS might
have lacked a good seed to discover all the necessary keys
to trigger the upload. This could be improved with a better
feedback mechanism. The other upload-related vulnerabil-
ity requires the input to pass a rarely seen check involving
getimagesize (), which the application uses to detect if the
upload looks like an image. We verified that ATROPOS passed
the check and triggered this vulnerability by providing it with
a seed input involving a short GIF89 header. This shows the
importance of a good seed corpus, which is orthogonal to our
work. We used empty seeds for evaluation purposes.

100 1
80
60
40

20 1

Relative BB Coverage (%)

Atropos
ZAP
Wapiti
Wfuzz
WebFuzz

Figure 3: Basic block coverage relative to the best performing tool per target after 24h (some tools may terminate earlier).
Single-page applications are marked with an asterisk (*). Numbers on top of the bars are the median basic block coverage.

Second-order vulnerability. Interestingly, one of the vul-
nerabilities in DVWA is a second-order vulnerability, which
requires an attacker to first execute one PHP file and set a
value stored inside a session, and then execute another PHP
file where this value is used without sanitization in an SQL
query. ATROPOS was able to trigger this vulnerability suc-
cessfully. Of the static analysis and web scanning tools, only
PHPCS-SECURITY-AUDIT detected this vulnerability; how-
ever, it also falsely considered many SQL queries in general as
vulnerable. While PHPCS-SECURITY-AUDIT found all seven
SQL injections in DVWA,, it also reported an additional 27
false positives for this vulnerability class. A likely explana-
tion is that ATROPOS does not need to perform taint analysis
to track input across multiple execution steps, making this
vulnerability class hard for the static-analysis tools to detect.

In summary, ATROPOS not only succeeds in finding signif-
icantly more bugs than state-of-the-art static analysis tools,
but also has no false positives on all test suites.

5.3 Experiment 2: Code Coverage Evaluation

We evaluate against the coverage-guided fuzzer WEBFUZZ
[46] and the black box web application fuzzer WFUzz [31] as
a baseline. We further measure coverage for ZAP and WAPITI
to compare against web crawlers. As targets, we select the
three intentionally vulnerable web applications as well as
ten real-world web applications, including three single-page
applications (SPAs)”.

Setup. To make the code coverage results comparable be-
tween the tools, we use WEBFUZZ’s instrumentation for all
tools. The main reason is that WEBFUZZz modifies the source
code of the application under test for instrumentation. There-
fore, the line numbers are not comparable to ATROPOS’ cov-
erage data. We modify WEBFUZZ’s instrumentation to dump
code coverage information (filename and line number) into

2For the SPAs, we picked the three PHP-based SPAs with most stars from
https://github.com/topics/single-page-application.

a file for later processing. This process allows for an tool-
agnostic instrumentation, which enables a fair comparison.
WFUZz, a black box web application fuzzer, replaces the FUZZ
keyword with payloads from a dictionary, requiring further
action. We let WFUZZ run in two stages: (1) visit all possible
PHP files once, then (2) fuzz all possible key-value pairs for
$_POST for all possible PHP files using the provided dictio-
nary consisting of common words. For all tools but ATROPOS,
we manually remove the files responsible for logging out or
resetting the database to avoid issues with maintaining state.
ATROPOS does not require any such manual preprocessing.
We keep the initial seed minimal, as per the recommendations
of Klees et al. [25]. All tools have access to a list of acces-
sible PHP files for the target and the cookies of a logged-in
user. The web scanners ZAP and Wapiti are configured with
the respective user login credentials. For ZAP, we select the
Crawljax crawler for the three single-page applications (es-
poCRM, AtroPIM and down_52_pojie hereafter referred to as
down5?2), as these are heavily dependent on JavaScript, and
we use the default crawler for the remaining web applications.
Unlike continuously running fuzzers, web scanners terminate
as soon as they have nothing left to process, causing runs to
end prematurely before the 24h timeout is reached.

We run all tools ten times for 24h on a single core and use
the Mann-Whitney U test for a statistical significance anal-
ysis. We derive the average improvement by calculating the
geomean over all relative improvements per web application.

Results. As visible in Figure 3, ATROPOS achieves the
highest code coverage in 12 of 13 web applications; for one
application, it is identical to the second-best tool.

On average, ATROPOS reaches 63% more basic blocks
than ZAP, 46% more than WAPITI, 80% more than WFUZZ,
and 50% more than WEBFUZZ. The differences in coverage
are statistically significant at a significance level of p < 0.05
according to the Mann-Whitney-U test, except in the case of
DOWNS52, where nearly all tools and runs saturated the code
coverage.

This experiment demonstrates that trying all possible in-

https://github.com/topics/single-page-application

Table 2: Static analysis tools and their performance on the real-world web application vulnerabilities. We indicate whether the
vulnerabilities found by Atropos were within these reports (v') or not (X). Oom denotes that the tool ran out of memory during
analysis, fo indicates that it did not terminate within 24 hours, and “-” that the tool does not support the bug type.

Web Application ATROPOS SONARQUBE PROGPILOT PSALM PHPCS-SECURITY-AUDIT Witcher wfuzz ZAP Wapiti
AltoCMS v X X X X - X X to
nextCloud v v X v X - X X X
Invoice Ninja v v X v X X X X
Tubenda v X X v v - X X X
lodel v X X X X X X X X
MaxSite v v oom v X - X X X
phpwems v v X v 4 - X X X

puts is severely limited, as shown with WFUZz, while simple
web crawling mechanisms are more helpful as seen for ZAP,
WAPITI and WEBFUZZ. The more critical factor is the ability
to solve conditions typical for web applications (e. g., string
comparisons) and discover keys and values not directly em-
bedded in the HTML output. The design of ATROPOS enables
us to do both, resulting in a significantly larger coverage.

Execution Throughput. Beyond code coverage, we have
measured the number of executions performed by WEBFUZZ
and ATROPOS on a sample basis for bWAPP and calculated
that ATROPOS executed 2.3 times as many inputs as WEB-
Fuzz in the same time frame, despite the significant slow-
down introduced by the additional WEBFUZZ instrumentation.
Furthermore, WEBFUZZ is configured to use eight concurrent
worker threads on a single core (while ATROPOS uses just
one) and makes no attempt at restoring the environment. This
demonstrates how avoiding HTTP requests (and thus the web
server) in the fuzzing pipeline yields significant performance
gains that allow us to perform other heavy-lifting tasks, such
as restoring snapshots after each execution.

5.4 Experiment 3: Finding Real-world Bugs

We also investigate the capability of ATROPOS to identify
software vulnerabilities in real-world code. We select projects
by filtering for web applications that run on PHP 7.4, that
were updated at least once in the last four years, and that
have either acquired more than 100 stars on GitHub or are
otherwise considered popular (e. g., they report a high number
of users or are an established product for an extended period of
time), for example in niche categories with a limited audience
but widespread adoption among this audience. Table 6 in the
appendix lists the tested applications.

We automated the testing process and fuzzed a total of 56
web applications. Overall, we found seven security-critical
vulnerabilities and disclosed them to the developers in a co-
ordinated way. We note that one of the projects has issued a
CVE. These bugs affect four CMS platforms, one invoicing
software, one WordPress plugin, and one common extension
of a file-hosting software (see Table 6 in the appendix for de-
tails). One of the vulnerabilities is in a popular PHP module
with more than 900, 000 installs. We looked at a sample of

products that import this module and found at least one addi-
tional vulnerable popular project, an invoicing solution with
200,000 active users. To verify whether the static analysis
and web scanning tools find the same bugs or ATROPOS has
an advantage, we run the tools on all targets and check if they
find the bug reported by ATROPOS. We find that ATROPOS is
the only tool to uncover all bugs, with the static analysis tools
finding only about 40% of them on average. ZAP, WAPITI,
and WFUZZ find none of the bugs. Witcher by design could
potentially only find the bug in lodel, but also fails to do so.
The full details are reported in Table 2.

Case Study. We discuss a remote code execution vulnera-
bility with complex input handling that all four static analysis
tools from the previous experiment failed to detect. ATRO-
POS has identified this vulnerability while fuzzing a CMS
designed for scientific publishing. The web application pro-
vides a template system where the designer can place macros
to be replaced later, as shown in Listing 4 in the appendix.

The template system does not only allow data to be placed
at these specific points, but automatically identifies and exe-
cutes PHP code by scanning for a PHP opening tag. While
this approach to templating enables dynamic web design, the
implementation also allows arbitrary macros to be set by user
input. Critically, only $_GET variables are sanitized by strip-
ping HTML and PHP tags, while $_POST data is inherited
as is. This bug allows an unauthenticated user to overwrite
the CSSDATA macro by setting the input via $_POST and thus
execute it as PHP code. Importantly, no static analysis tool
detected this vulnerability, most likely due to the complexity
involved in tracking the input to the sink using their taint anal-
ysis. PHPCS-SECURITY-AUDIT notes that the eval () func-
tion should be avoided in general, but does not indicate a
vulnerability.

This example demonstrates the interplay between our feed-
back mechanism and the ability to find vulnerabilities trig-
gered by hard-to-track inputs through different layers for taint
analysis. First, there is no reference to CSSDATA in any PHP
file, only in the template macro, which most static string ex-
tractions are likely to miss since it is a custom format. In
contrast, our feedback mechanism extracts these keys, as they
are processed at runtime. Second, there are multiple steps

Table 3: Results of the ablation study for bWAPP, 24h runtime,
three runs. Shown numbers are the median results.

Bugs #BB Coverage

ATROPOS,, 0 1,096
ATROPOS 0 1,109
ATROPOS iy 22 1,650
ATROPOS pjye 23 1,714
ATROPOSpyer 24 1,742

from the POST data to the final destination in the template,
none of which had to be computed by taint analysis in our
tool. Instead, if a user-supplied input triggered a Remote Code
Execution (RCE) vulnerability, it was detected by our bug
oracle at runtime.

False Positives. During our fuzzing campaigns, ATROPOS
reported three false positives. In two of the cases, ATROPOS
reported a vulnerability where the behavior was explicitly de-
sired, allowing administrators to issue arbitrary SQL queries
(PHPMYADMIN) and upload arbitrary files (E107). In the
third case, certain inputs caused the web application to trigger
invalid SQL queries that resulted in a syntax error. While
this is a bug, it was not related to the sanitization of attacker-
controlled input and was not security-relevant.

5.5 Experiment 4: Ablation Study

We investigate the impact that individual components of AT-
ROPOS contribute to its overall success. More specifically,
we devise a baseline version of ATROPOS with all advanced
feedback mechanisms deactivated (ATROPOS),) and then add
one feature after another. This way, we can measure the im-
pact of the key extraction (ATROPOSy), value identification
(ATROPOS,), crawling optimization (ATROPOS,c), and
our regular expression handling (ATROPOS). We further
study the overhead of our string comparisons, as hooking po-
tentially costs a lot of performance, and disable this method
in a variant (ATROPOS,,,). This ablation study allows us to
analyze the effectiveness of individual components and their
impact on ATROPOS’ performance.

We select bWAPP for this case study, as it comes with a
ground truth and contains the most vulnerabilities of the test
suites. We run all variants three times for 24h and measure
the number of bugs discovered and the median code coverage
achieved. We run this experiment on five Intel Xeon Gold
5320 CPU @ 2.20 GHz with 52 cores and 252GB of RAM.

Results. We observe that the number of errors found gen-
erally increases with the number of activated feedback mech-
anisms (see Table 3). ATROPOS; and ATROPOS; both find
zero bugs, while ATROPOSy,, reports 22 bugs, ATROPOS pjy¢
finds 23, and ATROPOSy,, locates 24 bugs. The largest im-
pact is observable for the baseline ATROPOS, where all ad-
vanced feedback mechanisms were removed. Here, we see a
drop from 24 found bugs in ATROPOS ¢, to zero. Deactivat-

ing the key-value extraction also lead to a significant reduction
in terms of coverage, as randomly generated strings are un-
likely to explore deeper parts of the application and, hence,
cannot trigger bugs hidden there. In fact, the median code
coverage difference between ATROPOS;, and ATROPOSpiycr
is +59%. While the relative difference between ATROPOSy,,
ATROPOS e and ATROPOSp,¢ are in the single-digit area
percentage-wise, the effect may vary depending on the web
application, i.e., one making heavy use of regular expres-
sions will be impacted more by the removal of that advanced
feedback mechanism. At the same time, the number of exe-
cutions of the median run after 24h drops from 19,032,817
(ATROPOS;) to 16,721,061 (ATROPOS), indicating the per-
formance overhead of our instrumentation is 12% in terms
of total executions. We believe the higher code coverage and
bug finding capability justifies this performance decrease.

Running ATROPOS on bWAPP for one hour, we find that
the difference to ATROPOS,, . is less than 1% in terms of
total executions: ATROPOS,, , achieves roughly 720,000
executions and ATROPOS only about 715, 000. This is because
we use the advanced feedback only once for new queue entries
and not for every execution.

6 Discussion and Limitations

Some of ATROPOS’ aspects warrant further discussion.

Resource Usage. A significant difference between static
analysis and dynamic approaches—especially fuzzing—are
the resources required for the latter. While tools such as
PSALM complete their analysis of evaluated test suites in less
than a minute, ATROPOS requires several hours to produce
comparable results. Although this may limit security analysts
who need fast results, we argue that, in most scenarios, run-
ning an automated process, even with 40 CPU cores for 24
hours, is still significantly cheaper than hiring a security ana-
lyst to evaluate the reported results manually. This aspect is
especially true for false positives, where a human analyst must
spend significant time reviewing and rejecting the reported
vulnerabilities. In contrast, ATROPOS provides the security
analyst with a concrete input (e. g., as a curl command) that
triggers the vulnerability, saving time that would otherwise
be spent manually searching for inputs that reach a specific
vulnerable line of code. Additionally, our evaluation shows
that ATROPOS outperforms competing tools while running on
a single core (see Table 1).

Other Vulnerability Classes. Currently, ATROPOS sup-
ports eight classes of server-side vulnerabilities. There are
certain limitations to the oracles themselves, e. g., our upload
oracle conservatively only detects whether arbitrary PHP files
can be uploaded, but other extensions could also be consid-
ered dangerous. Furthermore, there are other vulnerability
classes like session fixation [38] or XML external entity [53]
that ATROPOS currently cannot detect. However, these vul-
nerabilities are less common, and we focused on covering the

most common vulnerability types. The engineering effort to
add support for new bug oracles varies depending on the ora-
cle type and its complexity. Most of our bug oracles require
only small changes to the interpreter, limiting the engineering
effort required to implement them. In addition, we ignored
client-side vulnerabilities such as XSS, as these would require
a client-side component. Recent work covers such bugs [46].

Beyond these bug classes, applications may contain logi-
cal faults specific to their functionality, e. g., a user with low
privileges should not be able to read profile information from
administrator accounts. ATROPOS cannot detect these viola-
tions because they are specific to a particular application.

Improper Sanitization. Our bug oracles are based on the
insight that inputs may end up essentially unchanged as argu-
ments for functions. Hence we can efficiently detect whether
an input ends up in a sink without needing expensive taint anal-
ysis. Although this approach empirically seems to work well,
improper sanitization attempts may change the input to an un-
recognizable degree. We argue that in most cases, there is only
one way to sanitize user input for a particular use case, e. g.,
shell arguments must be escaped with escapeshellarg()
before they are executed. None of the sanitization solutions in
PHP we examined changed the alphanumeric magic trigger
string to an undetectable degree. Note that DVWA exhibited
some non-standard custom sanitization attempts, but ATRO-
POS was still able to track the input to the sink. Theoretically,
there could be cases where PHP developers perform their
custom sanitization that renders our methods ineffective. We
have not been able to observe this behavior ourselves.

Execution Speed. Since we need to run the web application
with (informed) random inputs, the application must execute
as fast as possible. While web applications like DVWA can
achieve 200-400 exec/s on a single CPU core (which scales
to 4,000 exec/s distributed over 40 cores), we have found that
heavyweight applications are particularly slow, e. g., WORD-
PRESS took about 800 ms to process a single request (even
without ATROPOS). Complex web applications like this would
require many CPU cores to achieve a desirable number of
executions per second. While the same problem applies to
binary fuzzing (e. g., fuzzing complex applications like web
browsers), we believe there is room for improvement by us-
ing incremental snapshots to skip the initialization part of
the web application [49] or focusing only on fuzzing specific
functions, similar to LIBFUZZER [29].

False Negatives and False Positives. Checking whether
the attacker-controlled input is contained in the sink, which is
the second precondition all our oracles use for bug detection,
may lead to false positives or false negatives. False positives
happen when, for example, attacker-controlled input is sani-
tized, yet the sanitized string still causes a warning or error
to be generated. In this case, our oracles would observe both
suspicious function behavior (generated error) and attacker-
controllable input in the sink, even though the input may have
been sanitized properly. Empirically, we found only a single

occurrence of such a false positive across all 59 tested targets.

False negatives may occur due to our conservative report-
ing: We only report arbitrary read/write bugs when PHP files
are involved, as web applications may write other files during
normal processing; however, this means, we may not report
such bugs when only specific, non-PHP files can be writ-
ten/read by an attacker. Similarly, we only report a file upload
vulnerability if a PHP file can be uploaded. This means, we
may miss bugs limited to other file types.

Web Scanners. Compared to web scanners based on crawl-
ing, such as ZAP [68], WAPITI [56], or BURP SUITE [45],
using fuzzing has a fundamental advantage: Instead of hav-
ing to crawl the web application’s output to find further web
pages, our approach can directly test all PHP files via FastCGI.
Other than web scanners, it is not driven by exploring new
pages but by exploring new code coverage, which is a more
fine-granular distinction as a single web page may contain
multiple code paths. Our evaluation shows that fuzzing is
more effective in uncovering bugs in web applications than
web scanners. The advantage of Atropos is that it can explore
different functions of a web application, which existing ap-
proaches may fail at. Figure 3 also shows that Atropos has a
higher overall code coverage. However, Atropos may suffer
from analyzing code that is deeply embedded and triggered
only by several state-dependent page redirections because the-
oretically, the analysis time could be exponential in the worst
case. For example, if a web application contains a bug that is
only triggered if a user adds hundreds of different items to a
shopping cart before proceeding to checkout, Atropos may
fail to uncover the bug. Similarly, a bug might not be found
if it is hidden after a complex setup wizard of an application,
which connects many files that must be traversed in the cor-
rect order. In these cases, web crawlers may be more efficient
at traversing the page redirections, as they are designed to
efficiently follow page connections. In the future, Atropos
can be improved to use HTML crawling to dump relevant
information and just use it for the next fuzzing input.

7 Related Work

In the past decade, there has been much research on securing
web applications. Previous research mainly focused on static
analysis methods [6, 12, 13,15,23,51,60,64], while several
dynamic methods were proposed [1,2,5,17,22,46,58,69].
The latter category is more closely related to our approach:
WEBFUZZ [46] uses grey-box fuzzing methods to instrument
and control its mutations but focuses only on XSS and re-
flected XSS vulnerabilities. Moreover, our evaluation shows
that WEBFUZZ does not reach deeper parts of code because
its mutation strategy lacks critical runtime information that
ATROPOS has access to due to our advanced feedback mech-
anism. Another work is CEFUZZ [69], which first performs
static analysis and then uses fuzzing methods to find remote
command/code execution vulnerabilities. Both approaches

do not use snapshots to preserve the state of the web applica-
tion, suffer from the overhead of running a web server, and
focus on only one or two bug classes. Closest to our work is
WITCHER, a concurrent fuzzer that, just as ATROPOS, com-
bines coverage feedback with custom bug oracles. While
WITCHER supports web applications in multiple languages,
it only supports two bug types, SQL injections and remote
code execution vulnerabilities. ATROPOS, on the other hand,
focuses on PHP but supports eight vulnerability types and
proposes advanced feedback mechanisms, extracting useful
information directly from the PHP interpreter. The differ-
ence of focus translated also to the respective architectures:
WITCHER achieves generality by using a web server as a
proxy to the web application. Instead of deploying advanced
feedback to infer keys or values, it ships an HTTP mutator,
allowing it to make informed mutations. In contrast, ATRO-
POS focuses exclusively on PHP, allowing us to deploy our
advanced feedback mechanism to the interpreter and placing
our bug oracles within the interpreter. ATROPOS further uses
snapshots and directly communicates with the web applica-
tion to reduce the overhead.

Concerning file upload vulnerabilities, several works fo-
cus exclusively on this class of bugs, e. g., UCHECKER [21],
FUSE [27], or UFUZZER [22]. While UCHECKER uses sym-
bolic execution and SMT solvers, FUSE sends actual upload
requests to the web server. UFUZZER uses static analysis to
find the vulnerability and then applies fuzzing to confirm the
results. This combination reduces the false positive rate to
zero, further confirming that the actual execution of the input
via fuzzing can be used to reduce false positive results.

Other work, including BackREST [17] and RESTler [5], fo-
cus on testing the APIs exposed by a web application, making
them an orthogonal approach to Atropos. RESTler analyzes
the API specification and derives sequences of requests to test
them, whereas ATROPOS uses feedback to infer interesting
inputs for the web applications. Similar to ATROPOS, closed-
source BackREST uses a feedback-driven fuzzer but addi-
tionally relies on taint tracking, which ATROPOS avoids for
performance reasons. BackREST uses a state-aware crawler
to explore JavaScript-heavy Node.JS applications and test a
maximum number of endpoints. ATROPOS does not focus
on API testing and has no crawler; it could be interesting
future work to combine ATROPOS with API inference and
state-aware crawling.

8 Conclusion

In this work, we have shown how binary fuzzing principles
can be extended and adapted to be used in the context of web
applications to effectively and efficiently detect server-side
vulnerabilities. Our work provides a practical alternative to
static analysis for detecting vulnerabilities in web applica-
tions.

Acknowledgements

This work was funded by the European Research Council
(ERC) under the consolidator grant RS> (101045669) and the
German Federal Ministry of Education and Research under
the grant KMU-Fuzz (16KIS1898). This work was supported
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy —
EXC-2092 CASA —390781972.

References

[1] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and
VN Venkatakrishnan. Chainsaw: Chained Automated
Workflow-based Exploit Generation. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[2] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
VN Venkatakrishnan. NAVEX: Precise and Scalable Exploit
Generation for Dynamic Web Applications. In USENIX Secu-
rity Symposium, 2018.

[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz,
Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert.
Nautilus: Fishing for Deep Bugs with Grammars. In Sym-
posium on Network and Distributed System Security (NDSS),
2019.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing with
Input-to-State Correspondence. In Symposium on Network and
Distributed System Security (NDSS), 2019.

[5] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk.
RESTIer: Stateful REST API fuzzing. In International Confer-
ence on Software Engineering (ICSE), 2019.

[6] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock,
and Fabian Yamaguchi. Efficient and Flexible Discovery of
PHP Application Vulnerabilities. In European Symposium on
Security and Privacy (EuroS&P), 2017.

[7] Frank Busse, Pritam Gharat, Cristian Cadar, and Alastair F
Donaldson. Combining Static Analysis Error Traces with
Dynamic Symbolic Execution (Experience Paper). In Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
2022.

[8] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Prin-
cipled Search. In IEEE Symposium on Security and Privacy
(S&P), 2018.

[9] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe
Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. EnFuzz: Ensemble
Fuzzing with Seed Synchronization among Diverse Fuzzers.
In USENIX Security Symposium, 2019.

[10] Colm O’Connor. Library to generate random strings from reg-
ular expressions. https://github.com/crdoconnor/xeger.
Accessed: October 9, 2023.

[11] CWE Content Team. CWE-98: Improper Control of Filename
for Include/Require Statement in PHP Program ("PHP Re-
mote File Inclusion’) (4.8). https://cwe.mitre.org/data/
definitions/98.html. Accessed: October 9, 2023.

https://github.com/crdoconnor/xeger
https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/98.html

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

Johannes Dahse and Thorsten Holz. Simulation of Built-in
PHP Features for Precise Static Code Analysis. In Symposium
on Network and Distributed System Security (NDSS), 2014.

Johannes Dahse and Thorsten Holz. Static Detection of Second-
Order Vulnerabilities in Web Applications. In USENIX Secu-
rity Symposium, 2014.

Design Security. A Static Analysis Tool for Security. https:
//github.com/designsecurity/progpilot. Accessed: Oc-
tober 9, 2023.

Yong Fang, Shengjun Han, Cheng Huang, and Runpu Wu. TAP:
A Static Analysis Model for PHP Vulnerabilities based on
Token and Deep Learning Technology. PloS one, 2019.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc
Heuse. AFL++: Combining Incremental Steps of Fuzzing
Research. In USENIX Workshop on Offensive Technologies
(WOOT), 2020.

Frangois Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-
Smith, Trong Nhan Mai, Max Schliiter, and Micah Williams.
Experience: Model-Based, Feedback-Driven, Greybox Web
Fuzzing with BackREST. In European Conference on Object-
Oriented Programming (ECOOP), 2022.

Emre Giiler, Philipp Gorz, Elia Geretto, Andrea Jemmett,
Sebastian Osterlund, Herbert Bos, Cristiano Giuffrida, and
Thorsten Holz. Cupid: Automatic Fuzzer Selection for Collab-
orative Fuzzing. In Annual Computer Security Applications
Conference (ACSAC), 2020.

Emre Giiler, Sergej Schumilo, Moritz Schloegel, Nils Bars,
Philipp Gorz, Xinyi Xu, Cemal Kaygusuz, and Thorsten Holz.
Technical Report: Effective Fuzzing of Web Applications for
Server-side Vulnerabilities. , 2023.

Security-oriented Fuzzer with Powerful Analysis Options.
https://github.com/google/honggfuzz. Accessed: Oc-
tober 9, 2023.

Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. UChecker: Au-
tomatically Detecting PHP-based Unrestricted File Upload
Vulnerabilities. In Conference on Dependable Systems and
Networks (DSN), 2019.

Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and Rui Dai.
UFuzzer: Lightweight Detection of PHP-Based Unrestricted
File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis.
In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2021.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy:
A Static Analysis Tool for Detecting Web Application Vulner-
abilities. In IEEE Symposium on Security and Privacy (S&P),
2006.

Hong Jin Kang, Khai Loong Aw, and David Lo. Detecting
False Alarms from Automatic Static Analysis Tools: How Far
Are We? In International Conference on Software Engineering
(ICSE), 2022.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and
Michael Hicks. Evaluating Fuzz Testing. In ACM Conference
on Computer and Communications Security (CCS), 2018.

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

Circumventing Fuzzing Roadblocks with Compiler Transfor-
mations. https://lafintel.wordpress.com/. Accessed:
October 9, 2023.

Taekjin Lee, Seongil Wi, Suyoung Lee, and Sooel Son. FUSE:
Finding File Upload Bugs via Penetration Testing. In Sym-
posium on Network and Distributed System Security (NDSS),
2020.

Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin
Zhou, and Jiaguang Sun. Pafl: Extend Fuzzing Optimizations
of Single Mode to Industrial Parallel Mode. In ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE),
2018.

LibFuzzer. https://www.llvm.org/docs/LibFuzzer.html.
Accessed: October 9, 2023.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner.
An Empirical Study on the Effectiveness of Static C Code Ana-
lyzers for Vulnerability Detection. In International Symposium
on Software Testing and Analysis (ISSTA), 2022.

Xavi Mendez. Wfuzz: The Web fuzzer.
www.wfuzz.io. Accessed: October 9, 2023.

https://

Malik Mesellem. bWAPP, a buggy web application. http:
//www.itsecgames.com/. Accessed: October 9, 2023.

Larisa Moroz. bWAPP latest modified for PHP7. https:
//github.com/1lmoroz/bWAPP. Accessed: October 9, 2023.

OWASP Foundation. Code Injection. https://owasp.org/
www-community/attacks/Code_Injection. Accessed: Oc-
tober 9, 2023.

OWASP Foundation. Command
https://owasp.org/www-community/attacks/
Command_Injection. Accessed: October 9, 2023.

OWASP Foundation. OWASP Top Ten 2017.
A8:2017-Insecure Deserialization. https://
owasp.org/www-project-top-ten/2017/A8_2017-
Insecure_Deserialization. Accessed: October 9, 2023.

OWASP Foundation. Server Side Request Forgery.
https://owasp.org/www-community/attacks/
Server_Side_Request_Forgery. Accessed: October
9,2023.

Injection.

OWASP Foundation. Session Fixation. https://owasp.org/
www-community/attacks/Session_fixation. Accessed:
October 9, 2023.

OWASP Foundation. SQL Injection. https://owasp.org/
www-community/attacks/SQL_Injection. Accessed: Oc-
tober 9, 2023.

OWASP Foundation. Unrestricted File Upload.
https://owasp.org/www-community/vulnerabilities/
Unrestricted_File_Upload. Accessed: October 9, 2023.

Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. Fu-
gio: Automatic Exploit Generation for PHP Object Injection
Vulnerabilities. In USENIX Security Symposium, 2022.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz:
Fuzzing by Program Transformation. In IEEE Symposium on
Security and Privacy (S&P), 2018.

https://github.com/designsecurity/progpilot
https://github.com/designsecurity/progpilot
https://github.com/google/honggfuzz
https://lafintel.wordpress.com/
https://www.llvm.org/docs/LibFuzzer.html
https://www.wfuzz.io
https://www.wfuzz.io
http://www.itsecgames.com/
http://www.itsecgames.com/
https://github.com/lmoroz/bWAPP
https://github.com/lmoroz/bWAPP
https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Session_fixation
https://owasp.org/www-community/attacks/Session_fixation
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

(51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

(591

PHP. FastCGI Process Manager (FPM). https://
www.php.net/manual/en/install.fpm.php. Accessed: Oc-
tober 9, 2023.

PHP. PHP: OPcache - Manual. https://www.php.net/
manual/en/book.opcache.php. Accessed: October 9, 2023.

PortSwigger Ltd. Burp Suite. https://portswigger.net/
burp, 2003.

Orpheas van Rooij, Marcos Antonios Charalambous, Demetris
Kaizer, Michalis Papaevripides, and Elias Athanasopoulos.
webFuzz: Grey-Box Fuzzing for Web Applications. In Eu-
ropean Symposium on Research in Computer Security (ES-
ORICS), 2021.

Sergej Schumilo and Cornelius Aschermann. Nyx Framework.
https://github.com/nyx-fuzz, 2021. Accessed: October
9,2023.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon
Worner, and Thorsten Holz. Nyx: Greybox Hypervisor Fuzzing
using Fast Snapshots and Affine Types. In USENIX Security
Symposium, 2021.

Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali
Abbasi, and Thorsten Holz. Nyx-Net: Network Fuzzing with
Incremental Snapshots. In European Conference on Computer
Systems (EuroSys), 2022.

Kostya Serebryany. OSS-Fuzz-Google’s Continuous Fuzzing
Service for Open Source Software, 2017.

Sooel Son and Vitaly Shmatikov. SAFERPHP: Finding Seman-
tic Vulnerabilities in PHP Applications. In ACM SIGPLAN
Workshop on Programming Languages and Analysis for Secu-
rity (PLAS), 2011.

SonarSource. Code Quality and Code Security | SonarQube.
https://www.sonarqube.org/. Accessed: October 9, 2023.

Christopher Spith, Christian Mainka, Vladislav Mladenov, and
Jorg Schwenk. SoK: XML Parser Vulnerabilities. In USENIX
Workshop on Offensive Technologies (WOOT), 2016.

SQLite Team. How SQLite Is Tested. https://
www.sglite.org/testing.html, 2022.

Squiz Labs. PHP_CodeSniffer tokenizes PHP files and de-
tects violations of a defined set of coding standards. https:
//github.com/squizlabs/PHP_CodeSniffer. Accessed:
October 9, 2023.

Nicolas Surribas. Wapiti: The Web-application Vulnerability
Scanner. https://wapiti-scanner.github.io/, 2006.

Sanoop Thomas. XVWA is a badly coded web application writ-
ten in PHP/MySQL that helps security enthusiasts to learn ap-
plication security. https://github.com/s4n7h0/xvwa. Ac-
cessed: October 9, 2023.

Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni
Vigna, Christopher Kruegel, Ruoyu Wang, Tiffany Bao, Yan
Shoshitaishvili, and Adam Doupé. Toss a Fault to your Witcher:
Applying Grey-box Coverage-guided Mutational Fuzzing to
Detect SQL and Command Injection Vulnerabilities. In /EEE
Symposium on Security and Privacy (S&P), 2023.

vimeo. Psalm - A Static Analysis Tool for PHP. https:
//psalm.dev/. Accessed: October 9, 2023.

[60] Gary Wassermann and Zhendong Su. Sound and Precise Anal-
ysis of Web Applications for Injection Vulnerabilities. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2007.

[61] Joe Watkins. PCOV: A self contained CodeCoverage compat-
ible driver for PHP. https://github.com/krakjoe/pcov.
Accessed: October 9, 2023.

[62] Web Technology Surveys. Usage statistics of PHP for web-
sites. https://w3techs.com/technologies/details/pl-
php. Accessed: October 9, 2023.

[63] Robin Wood. Damn Vulnerable Web Application (DVWA).
https://github.com/digininja/DVWA. Accessed: October
9,2023.

[64] Yichen Xie and Alex Aiken. Static Detection of Security
Vulnerabilities in Scripting Languages. In USENIX Security
Symposium, 2006.

[65] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo
Kim. QSYM: A Practical Concolic Execution Engine Tailored
for Hybrid Fuzzing. In USENIX Security Symposium, 2018.

[66] Michat Zalewski. AFL/config.h.
https://github.com/google/AFL/blob/
61037103ae3722c8060££7082994836a794£978e/
config.h#L229. Accessed: October 9, 2023.

[67] Michat Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/. Accessed: October 9, 2023.

[68] ZAP Dev Team. Zed Attack Proxy (ZAP). https://
www.zaproxy.org/, 2012.

[69] Jiazhen Zhao, Yuliang Lu, Kailong Zhu, Zehan Chen, and Hui
Huang. Cefuzz: An Directed Fuzzing Framework for PHP
RCE Vulnerability. Electronics, 11(5):758, 2022.

A Additional Information

We report versions of the test suites (Table 4), the functions
we hook (Table 5), and details on real-world apps (Table 6).

Table 4: Additional information on the used test suites.
Test Suite Commit Information

7 x SQL injection,

3 x Remote Command/Code Execution,
3 x File Inclusion,

3 x File Upload

DVWA #423ac7l

3 x Remote Code/Command Execution,
1 x PHP Object Injection,

1 x SSRF,

2 x SQL Injection,

1 x File Inclusion,

1 x File Upload

18 x SQL Injection,

5 x Remote Code/Command Execution,
bWAPP #£3f423c 2 x File Upload,

1 x Arbitrary Read,

1 x File Inclusion

XVWA #fb30fab

https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/book.opcache.php
https://www.php.net/manual/en/book.opcache.php
https://portswigger.net/burp
https://portswigger.net/burp
https://github.com/nyx-fuzz
https://www.sonarqube.org/
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://wapiti-scanner.github.io/
https://github.com/s4n7h0/xvwa
https://psalm.dev/
https://psalm.dev/
https://github.com/krakjoe/pcov
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://github.com/digininja/DVWA
https://github.com/google/AFL/blob/61037103ae3722c8060ff7082994836a794f978e/config.h#L229
https://github.com/google/AFL/blob/61037103ae3722c8060ff7082994836a794f978e/config.h#L229
https://github.com/google/AFL/blob/61037103ae3722c8060ff7082994836a794f978e/config.h#L229
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.zaproxy.org/
https://www.zaproxy.org/

B oW ow =

oW ow =

Table 5: Functions hooked by each bug oracle.

Bug Oracle

Hooked Functions

SQL Injection

We hook any query that goes through MYSQL (mysqli_query ()) or produces an error
in SQLite (_pdo_sqglite_error()).

Remote Code Execution

eval (), call_user_func() and call_user_func_array().

Remote Command Execution

We hook PHP’s internal php_exec_ex () function (which multiple PHP functions end up
calling, like system () and exec()) as well as proc_open () and shell_exec().

PHP Object Injection

unserialize ()

Local and Remote File Inclusion

‘We hook PHP’s internal error reporting functions to catch the filepath and the reports
indicating that the included file does not exist (php_verror () and php_error_cb()).

Server-side Request Forgery

file_get_contents(), socket_connect(), file_put_contents(), file(),

readfile (), php_if_open (), fsockopen () and stream_socket_client ().

Arbitrary File Read and Write

file_get_contents(), file_put_contents (), furite(), readfile (), rename and
copy ().

File Upload

move_uploaded_file().

Table 6: Overview of all web applications we have fuzzed with ATROPOS and the vulnerabilities we have discovered. Some

details have been anonymized and omitted due to responsible disclosure procedures.

Vulnerability Web Apps Web Technologies Notes
PHP Object Injection AltoCMS Multi-page CMS, MySQL, MVC Session cookie gets fed into unserialize without protection.
MaxSite Multi-page website-builder, MySQL ~ While one session cookie was protected with HMAC, another one was not.
phpwems Multi-page CMS, MySQL Information is transferred via serialize and unserialize instead of JSON.
Server-Side Request-Forgery — InvoiceNinja Laravel, Flutter, React 200k+ installs. Same vulnerability as “nextcloud” below.
Iubenda WordPress Plugin Popular GDPR compliance WordPress plugm with 100k+ active installs,
allows request to local network HTTP services.
CVE-2022-31132. Mail extension by Nextcloud, recommended after setup,
Nextcloud JavaScript-heavy, Vue contains an SSRF in a third-party module (csstidy, 800k+ downloads),
which also affects many other products, including Invoice Ninja above.
Remote Code Execution lodel Multi-Page, MySQL, Templating Template system executes user input as PHP code.
SQL Injection lodel A parameter is fed into an SQL query unsanitized.

No vulnerability detected

Ampache, AsgardCMS, b2evolution, Bigtree, Bolt, Carbon-forum, Chamilo, Cockpit, ConcreteCMS, CoreShop, CouchCMS,
Croogo, CubeCart, DaybydayCRM, DokuWiki, dolibarr, €107, ForkCMS, GetSimpleCMS, GLPI, grav, HotCRP, kanboard,

Kirby, LibreNMS, LimeSurvey, MantisBT, Matomo, MediaWiki, Microweber, MODX, MyBB, OpenEMR, PageKit, phpBB,

phpMyAdmin, pico, Piwigo, PrestaShop, qdPM, Serendipity, SimplePie, slimCMS, SPIP, SuiteCRM, SymphonyCMS, Thelia,

TypiCMS, WordPress, Zen Cart

<form action="<?php echo SPHP_SELF; ?>">
<IF CONDITION="[#CSSDATA]">
<style type="text/css">[#CSSDATA]</style>

</IF>

foreach ($_GET as $k=>$v)
macro_vars[$k] = strip_tags($v);

foreach ($_POST as S$Sk=>&S$v)
macro_vars|[$k] =& $v;

Listing 4: Sample macro file (top), simplified for readability,
and vulnerable PHP file (bottom).

	Introduction
	Challenges
	Challenge 1: Complex Interface
	Challenge 2: Stateful Environment
	Challenge 3: Bug Oracles

	Design
	Architecture Overview
	Advanced Feedback Mechanisms
	Inferring Application-specific Keys
	Inferring Expected Values
	Inferring Values for Regular Expressions
	Inferring Keys from HTML
	Performance Overhead

	Stateful Environment
	Bug Oracles Beyond Memory Corruption

	Implementation
	Evaluation
	Setup
	Experiment 1: Finding Bugs
	Experiment 2: Code Coverage Evaluation
	Experiment 3: Finding Real-world Bugs
	Experiment 4: Ablation Study

	Discussion and Limitations
	Related Work
	Conclusion
	Additional Information

