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ABSTRACT
Based on the performance requirements of modern spatio-temporal
data mining applications, in-memory database systems are often
used to store and process the data. To efficiently utilize the scarce
DRAM capacities, modern database systems support various tuning
possibilities to reduce the memory footprint (e.g., data compres-
sion) or increase performance (e.g., additional indexes). However,
the selection of cost and performance balancing configurations is
challenging due to the vast number of possible setups consisting of
mutually dependent individual decisions. In this paper, we intro-
duce a novel approach to jointly optimize the compression, sorting,
indexing, and tiering configuration for spatio-temporal workloads.
Further, we consider horizontal data partitioning, which enables
the independent application of different tuning options on a fine-
grained level. We propose different linear programming (LP) models
addressing cost dependencies at different levels of accuracy to com-
pute optimized tuning configurations for a given workload and
memory budgets. To yield maintainable and robust configurations,
we extend our LP-based approach to incorporate reconfiguration
costs as well as a worst-case optimization for potential workload
scenarios. Further, we demonstrate on a real-world dataset that our
models allow to significantly reduce the memory footprint with
equal performance or increase the performance with equal memory
size compared to existing tuning heuristics.
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1 INTRODUCTION
Large amounts of spatio-temporal data are continuously accumu-
lated through the wide distribution of location-acquisition tech-
nologies. Positioning systems such as GPS enable the tracking of
a broad-spectrum of moving objects [55]. Spatio-temporal data re-
flect the trajectories of moving objects and enable the analysis of
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movement patterns, which are increasingly used in various applica-
tions [19, 30, 39]. A moving object’s trajectory is represented by a
chronologically ordered sequence of observed locations (e.g., a set
of timestamped coordinates in a geographical reference system).
To store and process spatio-temporal data is not a trivial task due
to the massive volumes of continuously captured data, varying ac-
cess patterns and data characteristics for different applications, and
changing workloads based on environmental influences [52, 54].
Based on the required interactive response times in different appli-
cations, in-memory computing systems are widely used to provide
low latency query services [34, 49, 54].

In comparison to standalone storage systems specialized for
trajectory data, relational database systems enable a simplified in-
tegration of further data sources [42]. Consequently, modern data
management platforms are enhanced by engines for specific data
types (e.g., spatial and spatio-temporal data) [32, 47, 49, 53]. By
integrating spatio-temporal data management into relational data-
base systems, the data querying benefits from the optimized data
processing capabilities and advanced compression techniques [40].
Due to the relatively limited, expensive, and stagnating DRAM ca-
pacities of modern servers, the efficient utilization of the available
resources is necessary to lower the memory footprint and conse-
quently reduce the related total cost of ownership to store large
volumes of spatio-temporal data [6, 20]. There are different aspects
(e.g., auxiliary data structures or data compression) that impact
such systems’ memory footprint. While removing additional data
structures (e.g., indexes) or applying compression techniques with
higher compression rates reduce the memory footprint, they also
influence the runtime performance. Based on the broad spectrum
of tuning options (e.g., index structures [27]), the implications in a
specific use case a hard to estimate [11]. To balance the various as-
pects, rule-based heuristics depending on data characteristics (e.g.,
data size or specific timeframes) are applied by database adminis-
trators [42]. By dividing the data of a table into various partitions,
modern database systems enable fine-grained configuration deci-
sions [15, 26, 33, 35]. This approach enables the independent defini-
tion of different optimizations for each of these data partitions, such
as the sorting column, index configuration, data tiering, or applied
compression scheme. All single configuration decisions have an
impact on the overall memory consumption and runtime perfor-
mance. Furthermore, they mutually influence each other, which
makes the determination of performance-optimized and memory-
efficient configurations difficult [3, 46, 56].

This paper introduces a joint linear programming (LP)-based ap-
proach to determine fine-grained configurations for specific spatio-
temporal applications, which improves the cost-efficient storing of
trajectory data in relational databases. In existing work, there are
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several general approaches that optimize specific aspects like the
compression schema selection [1, 5]. Other research focuses on the
selection of optimized index structures [13, 43] or data placement
strategies [7, 48]. As the different configuration decisions mutually
influence each other, we seek to optimize the (i) compression, (ii)
index, (iii) ordering, and (iv) tiering configuration jointly to de-
termine the best runtime performance for a given workload and
memory budget. Note that each of those individual tuning prob-
lems is already challenging in general. We can still address a joint
optimization of these dimensions as we exploit the specific char-
acteristics of spatio-temporal data and applications, i.e., a limited
number of query types [39]. In contrast to business applications
with hundreds of attributes per table [7], in general, spatio-temporal
data has a manageable number of attributes, which enables us to
reduce the solution space. Further, to obtain a manageable problem
complexity, we focus on single-attribute indexes and discuss the
use of specific selected multi-attribute indexes based on domain
knowledge. Our contributions are the following:

• We develop three models to determine efficient fine-grained
table configurations for spatio-temporal data by jointly
optimizing (i) data compression, (ii) ordering, (iii) indexing,
and (iv) tiering with different dependencies (Section 3).

• We provide extensions to (i) also gain robustness against
different workload scenarios and (ii) to include modification
costs for optimized reconfigurations (Section 4).

• We evaluate our LP-based approaches on a real-world data-
set and demonstrate their applicability, effectiveness, and
scalability in end-to-end experiments (Section 5).

• We show that compared to existing rule-based heuristics
our configurations achieve an up to 70% better performance,
i.e., regarding either performance or required memory.

2 OPTIMIZING TABLE CONFIGURATIONS
This section introduces the architecture of the research database
Hyrise [16] and how its data partitioning concept enables fine-
grained database optimizations (Section 2.1). We describe the opti-
mization process (Section 2.2) and motivate the application-specific
optimization of table configurations by demonstrating the impact of
different tuning options on memory consumption and performance
(Section 2.3).

2.1 Fine-Grained Database Tuning Options
Hyrise is a columnar main memory-optimized database. Each ta-
ble in Hyrise is implicitly divided into horizontal partitions with a
predefined maximum size (see Figure 1). A partition, called chunk,
contains fragments of all columns of a table whereby the section of
a column stored in a chunk is referred to as a segment. There are
two types of chunks, mutable and immutable chunks. Only the most
recent chunk is mutable, and consequently, all insertions, as well
as MVCC-enabled updates, are appended to this unencoded chunk.
When this write-optimized chunk’s capacity is reached, it becomes
immutable, and a new mutable chunk is created. A disadvantage
of this approach is that we increase the memory footprint by ad-
ditionally storing per-chunk metadata and redundant information
(e.g., per-segment dictionaries for dictionary-encoded segments).
In exchange, the database system can benefit from pruning during
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Figure 1: Depiction of the storage layout for an exemplary
table configuration for two storage devices. Besides the al-
location decision, we are able to select for each segment a
compression, indexing, and sorting tuning option.

query execution, distribute the workload more efficiently, and apply
fine-grained optimizations of table configurations. For that reason,
similar concepts are applied by various databases [26, 33, 35].

Fine-grained table configurations enable the application of dif-
ferent tuning approaches for various data chunks and segments of
a table. Consequently, the configuration of different parts of the
data can be optimized for specific workloads and data characteris-
tics. Hyrise provides different tuning options, such as the sorting,
indexing, and compression configuration of a chunk [42]. Also,
Hyrise supports the tiering of entire chunks or segments to more
cost-effective storage devices (e.g., NVRAM, SSD, or disaggregated
memory, cf. [14, 51]). Hyrise uses C++’s polymorphic memory re-
sources to provide a uniform interface that allows allocating data in
DRAM, NVRAM, or on block devices using UMap [36, 37]. UMap is
a user-space page fault handler that allows – in contrast to mmap –
limiting the buffer size of cached pages. This enables the storing of
data on multiple storage devices. All these configuration decisions
have an impact on the system’s performance and memory con-
sumption. For in-memory databases, the used DRAM capacities are
an important cost factor [4, 31]. Concerning spatio-temporal data
volumes, minimizing the data footprint can significantly reduce the
system’s operating costs. Different tuning options reduce the mem-
ory consumption but also have implications on the performance,
which are difficult to estimate for database administrators [3, 8, 11].
Consequently, various vendors apply relatively simple threshold-
based approaches. Based on a defined threshold (e.g., data volume),
data partitions are transferred to lower-cost storage mediums.

2.2 Process Overview
The optimization process is made up of a controller, benchmark
engine, and configuration optimizer. The controller operates the
process and acts as intermediary between the target database man-
agement system (DBMS) and the configuration optimizer. It collects
the runtime and benchmark data from the target DBMS for the con-
figuration optimizer, which uses the data to recommend a new table
configuration based on the internal tuning models. Based on the se-
lected tuning model and workload, the benchmark engine executes
a set of benchmark queries on different table configurations.
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Figure 2: Optimization process - The controller collects the
workload information of the target DBMS. Based on thework-
load data, the benchmark manager executes a set of bench-
mark queries. The workload data and the benchmarkmetrics
are transferred to the configuration optimizer, which pro-
cesses the updated data and uses the selected algorithm to
generate an optimized table configuration. Then, the new
table configuration is applied to the DBMS.

The optimization of a table configuration can be triggered based
on specific metrics (e.g., time intervals, performance constraints) or
after a mutable chunk reached the defined maximum size. As shown
in Figure 2, in the first step 1○, the controller collects the workload
data from the target DBMS. During runtime, modern database sys-
tems track various parameters to optimize the performance of a
DBMS autonomously [25]. Here, the SQL plan cache is used to ex-
tract the query templates of the workload. Each template describes
a set of similar executed queries. Additionally, the segment access
statistics captured by Hyrise are collected for the different query
templates [14]. We can use min/max statistics of each segment to
determine the relevant chunks for a specific query template. These
workload statistics are used in various physical database tuning
tools [8]. Based on the query templates and the selected tuning
model, the benchmark engine 2○ creates a set of benchmark queries.
In step 3○, the benchmark consisting of isolated single column scan
executions is conducted on different configurations to get informa-
tion about the runtime performance and memory consumption of
different encoding types for each column.

Due to the limited number of attributes in spatio-temporal data
tables, the number of queries is manageable. Alternatively, esti-
mated cost models [6, 28] or what-if analysis [2, 10] could be used
to predict the runtime performance and memory consumption. By
determining the input parameters for the LP models based on the
stored trajectory data and queries, we can consider the application-
specific characteristics in the optimization process. The controller
4○ collects the benchmark results and 5○ transfers the results as
well as the workload data to the configuration optimizer. The config-
uration optimizer uses the data and its tuningmodels to 6○ calculate
an optimized configuration. Based on the recommended new table
configuration 7○, the controller 8○ applies the configuration on the
target DBMS. Here, each chunk’s determined configuration can be
applied asynchronously to reduce the overhead [16].

2.3 Implications of Configuration Decisions
To demonstrate the impact of different table configurations on the
memory consumption and the runtime of a scan operation, as well
as for the evaluation of our optimization approaches (see Section 5),
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Figure 3: Impact of different tuning decisions on memory
consumption and performance for ten million observed lo-
cations partitioned into ten chunks and specific scan oper-
ations: a LessThanEquals scan (selectivity: 0.01) on (I) the
driver id column, (II) the longitude column, and (III) a Be-
tween scan on the longitude column with a selectivity of 0.1.

we use the real-world dataset of a transportation network company
(TNC) as a running example. The dataset consists of 400 million
observed locations of drivers for three consecutive months in the
City of Dubai [41] (raw size 15.9 GB). In comparison to other passen-
ger transportation datasets (e.g., NYC Taxi Rides [44]), the dataset
has a significantly finer granularity as the position of a driver is
tracked multiple times per minute. Besides the timestamp, latitude,
longitude, and the driver’s identifier, a status attribute is tracked
for each observed location. The status indicates the driver’s current
state (free or occupied). All attributes are stored as integers. Based
on the insertion order, a certain temporal ordering of the sample
points exists, but we cannot guarantee that the timestamp column
is sorted due to transmission problems and delayed transmissions.

The selection of tuning configurations is a trade-off between
performance and costs (e.g., memory consumption). In Figure 3,
we visualize the implications of different tuning configurations
measured in the research database Hyrise, which has comparable
performance to other database systems [15]. We compare the mem-
ory consumption and runtime performance of isolated executed
table scan operations on a single column for the different chunk
ordering options (incl. unsorted) and encoding configurations (incl.
unencoded). The set of encodings includes the four compression
approaches (i) LZ4 encoding, (ii) dictionary encoding, (iii) frame-
of-reference encoding, and (iv) run-length encoding.

In Figure 3-I, we can observe that the different tuning options
significantly impact a scan operation’s performance and memory
consumption. For the LessThanEquals scan on the id column, the
tuning option with the lowest runtime is about 1 000 times faster
compared to the one with the highest runtime. Concerning the
memory consumption, we can observe that the tuning option with
the highest memory consumption needs about 500 timesmore space
compared to the one with the lowest data footprint. Additionally,
we can observe in A○ that the sorting of a column has an impact
on performance and, for some compression techniques (e.g., run-
length encoding), also on memory consumption. A scan operation
on a sorted column has a better performance compared to an un-
sorted one. Moreover, B○ demonstrates that the sorting order of
other columns can also have an impact on the data footprint and
performance. In Figure 3-II, the same scan operation is executed
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on the longitude column. Based on the changed data characteris-
tics, the runtime performance and memory consumption of several
tuning options changed C○. Consequently, we have to consider the
specific data characteristics of a column in the optimization process.
In Figure 3-III, we can observe that the given workload influences
the effectiveness of the different tuning options. Based on the mea-
surements, we can summarize that various aspects determine the
efficacy of specific tuning options. Overall, Figure 3 motivates that
the selection of suitable tuning options for a particular application
context can be highly beneficial for memory consumption and per-
formance. Further, the selection of performance and cost balancing
configurations consisting of mutually depending tuning options
is challenging due to the number of potential setups. Thus, it is
difficult for database administrators to estimate the impact of spe-
cific tuning decisions [11]. Especially for workloads with a mix of
different types of queries, the impact of individual choices is hard
to predict and hence, the overall tuning is hard to optimize.

3 PROBLEM DESCRIPTION AND LP-BASED
SOLUTION APPROACHES

In this section, we describe the problem of database systems to de-
termine memory-efficient table configurations for spatio-temporal
data (Section 3.1). In Section 3.2, we introduce a general linear pro-
gramming (LP) model that solves the specified problem. Further,
we present heuristic solutions based on segment-specific costs (Sec-
tion 3.3) using specialized LP models with (Section 3.4) and without
(Section 3.5) sorting dependencies. In Section 3.6, we show how our
models can be adapted to include database-specific restrictions.

3.1 Problem Definition
We consider a table with a set of attributes 𝑁 and a set of chunks𝑀
(cf. Section 2). The problem is to find a valid table configuration for
a given set of available storage units 𝐵 and a given workload consist-
ing of 𝑄 different query templates 𝑞, which occur with frequency
𝑓𝑞 , such that the overall performance is maximized by minimizing
the workload’s total execution time. A valid table configuration
consists of a (i) sorting, (ii) data placement, (iii) compression, and
(iv) index configuration for all columns 𝑛 within each chunk 𝑚.
Consequently, for each segment (𝑛,𝑚) with 𝑛 ∈ 𝑁,𝑚 ∈ 𝑀 , we
have to select a configuration from sets of available compression 𝐸,
indexing 𝐼 , storage 𝐵, and sorting 𝑂 options. Note, these sets also
include basic options, i.e., data can be unsorted, unencoded, or not
indexed. A notation table is provided in the Appendix.

As the required DRAM capacities of spatio-temporal data repre-
sent a significant cost factor or even exceed the available resources
of modern systems, partitions of the data have to be transferred to
slower and less expensive storage locations. To reflect these prop-
erties in the model, we assume a given storage budget 𝐺𝑏 for each
storage medium 𝑏 ∈ 𝐵, which must not be exceeded. The size of a
segment (𝑚,𝑛) with configuration 𝑒, 𝑜, 𝑖 (with 𝑒 ∈ 𝐸, 𝑜 ∈ 𝑂, 𝑖 ∈ 𝐼 ) is
described by the parameters 𝜙𝑚,𝑛,𝑒,𝑜,𝑖 under the assumption that
the used storage medium has no impact on the needed amount of
bytes to store a segment. Note, 𝜙𝑚,𝑛,𝑒,𝑜,𝑖 also includes the memory
consumed by the index (if an index is applied on the segment).

For a chunk𝑚 ∈ 𝑀 we consider potential joint configurations 𝑘
from a given set of feasible options 𝐾 . An option 𝑘 characterizes

combinations of configurations on a segment level, i.e., by 𝑒𝑚,𝑛,𝑘 ∈ 𝐸,
𝑜𝑚,𝑛,𝑘 ∈ 𝑂 , 𝑖𝑚,𝑛,𝑘 ∈ 𝐼 , and 𝑏𝑚,𝑛,𝑘 ∈ 𝐵 we denote encoding, sort,
index, and data placement decisions for column 𝑛 ∈ 𝑁 .

Further, as we are focusing on spatio-temporal range queries and
trajectory-based queries, each query template can be described as a
composition of various scan operations, where the set 𝑆𝑞 returns all
scan operations 𝑠 of a query template 𝑞, 𝑞 ∈ 𝑄 . For scan operation 𝑠
of template 𝑞 the corresponding costs for chunk𝑚 under a specific
tuning configuration 𝑘 are denoted by parameters 𝑐𝑞,𝑚,𝑠,𝑘 , 𝑠∈𝑆𝑞 ,
𝑞 ∈ 𝑄 ,𝑚 ∈ 𝑀 , 𝑘 ∈ 𝐾 .

3.2 General Model with Chunk-Based
Configuration Dependencies (CCD)

First, we consider a general model with chunk-based configura-
tion dependencies (CCD), which represents a solution approach
accounting for full cost dependencies within a chunk. In this model,
the costs associated with a segment can depend on all specific con-
figuration decisions of all other segments. This enables the model to
particularly include multi-attribute indexes (e.g., k-d tree on latitude
and longitude) or multi-attribute sorting options (e.g., space-filling
curves) as long as (i) the number of considered configurations is
tractable and (ii) the necessary data is at hand.

In the CCD model, we use the binary variables 𝑥𝑚,𝑘 , to express
whether for a chunk𝑚 ∈ 𝑀 the joint configuration 𝑘 ∈ 𝐾 is chosen.
The objective of the CCD model is to minimize the cost (runtime)
for a given workload, cf. 𝑄 , 𝑓 , over all 𝑥 variables (denoted by ®𝑥 )

𝑚𝑖𝑛 ®𝑥
∑︁

𝑚∈𝑀,𝑘∈𝐾 𝑥𝑚,𝑘 ·
∑︁

𝑞∈𝑄,𝑠∈𝑆𝑞
𝑓𝑞 · 𝑐𝑞,𝑚,𝑠,𝑘 (1)

subject to the |𝐵 | budget constraints, which guarantee that the
accumulated memory consumption of all segments (𝑚,𝑛) with
their selected configurations 𝑒, 𝑜, 𝑖, 𝑏 (cf. 𝜙𝑚,𝑛,𝑒,𝑜,𝑖 ) does not exceed
a tier’s budget 𝐺𝑏 , i.e., ∀𝑏 ∈ 𝐵 we use,∑︁

𝑚∈𝑀,𝑘∈𝐾 𝑥𝑚,𝑘 ·
∑︁

𝑛∈𝑁 :
𝑏𝑚,𝑛,𝑘=𝑏

𝜙𝑚,𝑛,𝑒𝑚,𝑛,𝑘 ,𝑜𝑚,𝑛,𝑘 ,𝑖𝑚,𝑛,𝑘
≤ 𝐺𝑏 . (2)

To get a unique configuration option for each chunk𝑚 we use∑︁
𝑘∈𝐾 𝑥𝑚,𝑘 = 1 ∀𝑚 ∈ 𝑀. (3)

The CCD model (1)-(3) is linear and can be optimally solved
using standard solvers. Naturally, the model’s complexity and the
required input is driven by the size of 𝐾 , which can quickly become
large when exhaustive combinations of tuning options are used. In
this context, we recall that the options within𝐾 should be chosen by
taking domain-knowledge into account such that only reasonable
configurations are considered. Moreover, we note that within these
options for a certain chunk we can reduce the number of options
|𝐾 | by excluding all options that are dominated by another option
(with smaller required memory and better scan costs).

The CCD model can be, e.g., used in specialized domain set-
tings, where it is crucial to be able to account for complex tuning
dependencies. In applications with less complex dependencies, sim-
pler models that rely on segment-based costs can be more suitable.
Those are discussed next.

3.3 Segment-based Cost Estimation
Cost estimations for different configurations are a crucial aspect. To
determine them on a segment level, we consider the scan operations
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of a query and their execution order, which is defined by the query
optimizer. Based on the Hyrise query optimizer implementation,
the order of the scan operations is determined by the operations’
selectivity value, starting with the lowest selectivity value. To con-
sider that a scan operation 𝑠 of a query template 𝑞 (executed after
a previous scan operation of the same query template) operates
only on a subset of the data, we introduce a scan factor 𝜔𝑞,𝑠 . This
factor 𝜔𝑞,𝑠 is determined by the ordered sequence of (consecutively
executed) scan operations of a query template. To determine 𝜔𝑞,𝑠 ,
we consider the selectivity factor of the 𝑗-th operation of a query
template 𝑞 denoted by �̃�𝑞,𝑗 . By default, the selectivity factor of
the first scan operation of a query template is defined as �̃�𝑞,1 = 1.
Accounting for the combined selectivities of consecutive operations
within a query template 𝑞 for its scan operation 𝑠 with operation
order 𝐽𝑞,𝑠 ∈ {1, ..., |𝑆𝑞 |} we obtain the scan factor, 𝑠 ∈ 𝑆𝑞 ,

𝜔𝑞,𝑠 =
∏

𝑗=1,...,𝐽𝑞,𝑠
�̃�𝑞,𝑗 . (4)

Besides the selectivity, each scan operation 𝑠 of query template 𝑞,
𝑞 ∈ 𝑄 , 𝑠 ∈ 𝑆𝑞 , has the following attributes: (i) the scanned column
𝑛𝑞,𝑠 , (ii) the frequency 𝑓𝑞 , and (iii) the type of the scan operation
(e.g., between scan, less than equal scan, equal scan). The costs of
the scan operations on segment 𝑛 of chunk𝑚 (aggregated over all
scan operations 𝑠 that access 𝑛, i.e., 𝑠 ∈ 𝑆𝑞 : 𝑛𝑞,𝑠 = 𝑛, and weighted
by the associated query frequency 𝑓𝑞 ) are denoted by 𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 and
determined by the segment’s encoding 𝑒 ∈ 𝐸 and index decision
𝑖 ∈ 𝐼 as well as the data placement decision 𝑏 ∈ 𝐵 and ordering
decision 𝑜 ∈ 𝑂 := {0} ∪ 𝑁 , where 𝑂 includes all columns of the
table plus the unsorted option (’0’). For𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑜 ∈
𝑂, 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵, we define:

𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 :=
∑︁

𝑞∈𝑄,𝑠∈𝑆𝑞 :
𝑛𝑞,𝑠=𝑛

𝑓𝑞 ·𝑝𝑞,𝑠,𝑒,𝑜,𝑖 ·𝑎𝑚,𝑞,𝑠 ·𝜔𝑞,𝑠 ·𝑢𝑞,𝑠,𝑒 ·𝜏𝑒,𝑖,𝑏 . (5)

The parameter 𝑝𝑞,𝑠,𝑒,𝑜,𝑖 defines the measured performance of the
scan operation 𝑠 ∈ 𝑆𝑞 of query 𝑞 ∈ 𝑄 executed as isolated scan
operation on column 𝑛𝑞,𝑠 stored in DRAM if for the entire column
encoding 𝑒 ∈ 𝐸, index decision 𝑖 ∈ 𝐼 , and for all chunks the ordering
decision 𝑜 ∈ 𝑂 are applied. Further, in (5) we use the successive
scan penalty𝑢𝑞,𝑠,𝑒 as we observed that consecutive scans are slower
than single scan operations, depending on the applied compression
technique 𝑒 . To reflect this observation and to adopt the measured
isolated scan performance 𝑝𝑞,𝑠,𝑒,𝑜,𝑖 of the benchmark queries (cf.
Section 2), we multiply 𝑝𝑞,𝑠,𝑒,𝑜,𝑖 of all consecutive scan operations
with the fixed parameter 𝑢𝑞,𝑠,𝑒 for each value 𝑒 ∈ 𝐸. This penalty
value 𝑢 is database-specific and can be measured with a simple set
of benchmark queries.

Based on statistics and filters maintained by database systems,
entire chunks can be pruned during query execution to increase
the scan performance [16]. This is especially the case for temporal
range queries, which only scan specific sections of the data. For that
reason, we introduce the parameter 𝑎𝑚,𝑞,𝑠 , cf. (5), which describes
the proportional size of segment (𝑚,𝑛𝑞,𝑠 ) in relation to the amount
of data scanned within a complete column scan on column 𝑛𝑞,𝑠 .
As the costs for pruned chunks are neglectable, for not accessed
chunks we let 𝑎𝑚,𝑞,𝑠 := 0. For accessed chunks𝑚, we define 𝑎𝑚,𝑞,𝑠
by their relative share of actually scanned chunks, i.e., by 1 divided
by the number of not pruned chunks. Additionally, each storage
medium has a penalty 𝜏𝑒,𝑖,𝑏 , which reflects the difference between

the measured access performance on DRAM and the access times
on storage medium 𝑏, which can also depend on the index and
encoding decision. Correspondingly, we multiply the estimated
costs for an operation on a segment with the storage penalty 𝜏𝑒,𝑖,𝑏 .

3.4 Special Case: Segment-Based Model with
Sorting Dependencies (SMS)

The SMS model allows to solve the configuration problem with
segment-based costs, cf. Section 3.3. It still allows to include intra-
chunk dependencies between segments with regard to the chunk-
based ordering decision. The corresponding segments’ costs are
determined based on (5) accounting for a chunk’s specified sorting
column. This enables the model to reflect the impact of the order
decision on memory usage and scan performance, see Section 2.3.

For the specialized SMSmodel, we use an adapted LP formulation,
cp. (1)-(3). The objective to minimize the costs is given by

𝑚𝑖𝑛 ®𝑥, ®𝑦,®𝑧
∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,𝑜∈𝑂,𝑖∈𝐼 ,𝑏∈𝐵 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 · 𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 , (6)

where the binary variables 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 describe whether a certain
tuning configuration, cf. 𝑒 ∈ 𝐸, 𝑜 ∈ 𝑂, 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵, for segment
𝑛 ∈ 𝑁 of chunk𝑚 ∈ 𝑀 is used (’1’) or not (’0’); ®𝑦 and ®𝑧 are auxiliary
variables (see below). Similar to (1), the overall cost is calculated as
the sum of the costs 𝑐 of all selected segment configurations, cf. (6).

To ensure valid table configurations, we define different sets of
constraints. We distinguish between model-specific and database-
specific constraints. The model-specific constraints define general
requirements for the determined table configurations. Database-
specific constraints to incorporate technical restrictions and limita-
tions of different database systems are discussed in Section 3.6.

For the SMS model, we define three types of model-specific con-
straints. The first one describes tiering-specific budget constraints,
cp. (2), that defines that the accumulated memory consumption of
all segments (𝑚,𝑛) with their selected configurations 𝑒, 𝑜, 𝑖 on tier
𝑏 (cf. 𝜙𝑚,𝑛,𝑒,𝑜,𝑖 ) does not exceed a tier’s budget 𝐺𝑏 , i.e., ∀𝑏 ∈ 𝐵,∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,𝑜∈𝑂,𝑖∈𝐼 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 · 𝜙𝑚,𝑛,𝑒,𝑜,𝑖 ≤ 𝐺𝑏 . (7)

Secondly, to guarantee that for each chunk𝑚 a unique ordering
option is chosen, we use binary variables 𝑦𝑚,𝑜 , which describe
whether ordering 𝑜 is used for chunk𝑚, i.e.,∑︁

𝑜∈𝑂 𝑦𝑚,𝑜 = 1 ∀𝑚 ∈ 𝑀. (8)

Thirdly, the binary variables 𝑧𝑚,𝑛,𝑒,𝑖,𝑏 ensure a unique index-
encoding-tiering combination for chunk𝑚’s segment 𝑛,∑︁

𝑒∈𝐸,𝑖∈𝐼 ,𝑏∈𝐵 𝑧𝑚,𝑛,𝑒,𝑖,𝑏 = 1 ∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 . (9)

The chunk variables 𝑦 and segment variables 𝑧 shall together
specify the configuration 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 = 𝑦𝑚,𝑜 · 𝑧𝑚,𝑛,𝑒,𝑖,𝑏 . To express
the 𝑥 variables linearly we use the following auxiliary coupling
constraints ∀𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 , 𝑒 ∈ 𝐸, 𝑜 ∈ 𝑂 , 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,

𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 ≥ 𝑦𝑚,𝑜 + 𝑧𝑚,𝑛,𝑒,𝑖,𝑏 − 1 (10)
𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 ≤ 𝑦𝑚,𝑜 (11)

𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 ≤ 𝑧𝑚,𝑛,𝑒,𝑖,𝑏. (12)

Note, (6) is minimized over all families of variables 𝑥,𝑦, 𝑧. The
LP ensures optimal allocations. In case a chunk-tiering concept is
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applied, we want to ensure that all segments of a chunk are stored
on the same storage medium 𝑏, 𝑏 ∈ 𝐵. For this purpose, we use
(optionally) use the constraints, ∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 ,∑︁

𝑒∈𝐸,𝑖∈𝐼 ,𝑏∈𝐵 𝑏 · 𝑧𝑚,1,𝑒,𝑖,𝑏 =
∑︁

𝑒∈𝐸,𝑖∈𝐼 ,𝑏∈𝐵 𝑏 · 𝑧𝑚,𝑛,𝑒,𝑖,𝑏 . (13)

3.5 Relaxed Model: Independent Segment
Effects (ISE)

To heuristically solve the SMS model, we use a relaxation regarding
the ordering dependencies of the cost effects between segments.
In this simplified model, we only account for whether a certain
chunk’s segment is sorted (’1’) or not (’0’). Hence, instead of the
full set of ordering options𝑂 = {0} ∪𝑁 for each chunk, we use the
simplified binary set {0, 1} of available ordering options for each
chunk’s segment. For the unsorted option (’0’), the rows’ order is
set by the insert sequence and we use the costs 𝑐𝑚,𝑛,𝑒,0,𝑖,𝑏 , cf. (5). If
a segment (𝑚,𝑛) is sorted, we use 𝑐𝑚,𝑛,𝑒,𝑛,𝑖,𝑏 . With this formulation,
we reduce the complexity by abstracting the sorting decision’s intra-
chunk effects. Thus, the model approximates the exact implications
on the memory footprint and scan performance caused by sorting
a chunk by column 𝑛 (cf. Section 2.3).

Compared to the SMS model, the relaxed ISE model has less
variables and constraints. Specifically, we use a smaller family of
binary decision variables 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 , where the ordering option
only reflects the binary set 𝑜 ∈ {0, 1}. The variables 𝑦 and 𝑧, cf.
(8)-(12), are not required. The objective of the ISE model is, cp. (6),

𝑚𝑖𝑛 ®𝑥
∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,
𝑜∈{0,1},𝑖∈𝐼 ,𝑏∈𝐵

𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 · 𝑐𝑚,𝑛,𝑒,𝑜 ·𝑛,𝑖,𝑏 , (14)

where we use 𝑜 · 𝑛 ∈ 𝑂 to include the costs defined in (5) via
𝑐𝑚,𝑠,𝑒,𝑜 ·𝑛,𝑖 . The budget constraints are, cp. (7), ∀𝑏 ∈ 𝐵,∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,𝑜∈{0,1},𝑖∈𝐼
𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 · 𝜙𝑚,𝑛,𝑒,𝑜 ·𝑛,𝑖 ≤ 𝐺𝑏 . (15)

Note, the relaxed use of 𝑐 and 𝜙 in (14)-(15) only approximates
the exact values. Further, we directly use 𝑥 to ensure that for each
chunk𝑚 at most one column is sorted, cp. (8),∑︁

𝑛∈𝑁,𝑒∈𝐸,𝑖∈𝐼 ,𝑏∈𝐵 𝑥𝑚,𝑛,𝑒,1,𝑖,𝑏 ≤ 1 ∀𝑚 ∈ 𝑀 (16)

and that for each chunk𝑚’s segment 𝑛, a unique configuration of
𝑒 , 𝑜 , 𝑖 , and 𝑏 is chosen, i.e., ∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 ,∑︁

𝑒∈𝐸,𝑜∈{0,1},𝑖∈𝐼 ,𝑏∈𝐵 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 = 1. (17)

The LP solutions of ISE are optimal. To obtain the same tiering for
a chunk’s segments we use, ∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 , cp. (13),∑︁

𝑒∈𝐸,𝑜∈{0,1},
𝑖∈𝐼 ,𝑏∈𝐵

𝑏 · 𝑥𝑚,1,𝑒,𝑜,𝑖,𝑏 =
∑︁

𝑒∈𝐸,𝑜∈{0,1},
𝑖∈𝐼 ,𝑏∈𝐵

𝑏 · 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 . (18)

3.6 Integration of Database-Specific
Configuration Constraints

Additionally, we allow for database-specific constraints to themodel-
specific constraints, which enable the models to reflect certain
properties of various database systems. The values for these con-
straints vary between databases and define combinations of in-
dexing and encoding decisions that are incompatible. For Hyrise,
secondary indexes require dictionary encoded segments as they

exploit the dictionary in order to improve space efficiency [17].
Consequently, indexes on all non-dictionary segments are forbid-
den. In the ISE and SMS model, this is realized via the constraint,
∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,

𝑥𝑚,𝑛,𝑒,𝑠,𝑖,𝑏 ≤ 𝑣𝑒,𝑖 , (19)

where the binary parameters 𝑣𝑒,𝑖 , 𝑒 ∈ 𝐸, 𝑖 ∈ 𝐼 , describe whether an
index 𝑖 is valid (=1) for a specific encoding 𝑒 or not (=0). For the
CCD model, constraint (19) can be directly satisfied by considering
only corresponding valid configuration options within the set 𝐾 .
Similar database-specific constraints can also be treated like that.

4 EXTENSIONS
This section introduces two different enhancements, which are
presented for the ISE and SMS models described in the previous
section. The first extension (Section 4.1) enables the internalization
of reconfiguration costs required for an updated table configuration
(given an existing one). The second one addresses a robust con-
figuration selection against multiple potential workload scenarios
(Section 4.2), i.e., we look for allocations that are not optimized for
one workload but “near-optimal” for various of them.

4.1 Minimal-Invasive State-Dependent
Reconfigurations

Real-world workloads typically change over time. As a result, cur-
rent data placements and configuration decisions might be out-
dated and have to be adapted to enable an optimized performance.
However, the reorganization of configurations is costly and time-
consuming [50]. The challenge is to identify ’minimally invasive’
reallocations, which have a significant impact compared to their
costs [25]. We extend the ISE model to exemplary show how to
endogenize reconfiguration costs. We assume a current configu-
ration state, e.g., characterized by parameters 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 ∈ {0, 1},
which characterize the (old) configuration decisions. In case a seg-
ment (𝑚,𝑛) is transferred from a current configuration 𝜂𝑚,𝑛 :=
(𝑒𝑚,𝑛, 𝑜𝑚,𝑛, 𝑖𝑚,𝑛, 𝑏𝑚,𝑛) to a new configuration (𝑒, 𝑜, 𝑖, 𝑏), we gener-
ally assume given reconfiguration costs Δ𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 (𝜂𝑚,𝑛). Finally,
to model reconfiguration costs, we replace the ISE objective as
follows

𝑚𝑖𝑛 ®𝑥
∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,
𝑜∈{0,1},𝑖∈𝐼 ,𝑏∈𝐵

𝑐𝑚,𝑛,𝑒,𝑜 ·𝑛,𝑖,𝑏 · 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏

+𝛼 ·
∑︁

𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,
𝑜∈{0,1},𝑖∈𝐼 ,𝑏∈𝐵

Δ𝑚,𝑛,𝑒,𝑜 ·𝑛,𝑖,𝑏 (𝜂𝑚,𝑛) · 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 . (20)

The additional cost term in (20) (governed by the penalty factor
𝛼) prevents that configurations are widely reorganized while the
performance increase is only marginal. Note, while for 𝛼=0, we
obtain the original performance-maximizing model without recon-
figuration costs, for large 𝛼 any costly configuration changes will
be prevented. The other constraints of the basic ISE model remain
unchanged (cf. (i) the budget constraint, (ii) at most one sorted
column, (iii) unique configurations for each segment). Additional
variables or constraints are not required. Hence, the ISE model with
reconfiguration costs can still be solved via standard solvers.

4084



4.2 Robustness Against Different Potential
Workload Scenarios

In general, spatio-temporal data characteristics and workloads are
continuously influenced by the environment [54]. As future work-
loads are not entirely predictable, the performance can be negatively
affected if the actual workload differs from the predicted one. This
is a potential weakness of existing approaches that are only opti-
mized for a specific workload. Hence, it is crucial to take potential
workload scenarios into account to obtain a robust performance.
Potential future workload scenarios (characterized by query fre-
quencies) can be determined, e.g., (i) based on previously observed
(seasonal) workloads or (ii) forecasts and their confidence intervals
as well as (iii) domain expert inputs. Given potential scenarios, data
allocations and tuning configurations can be optimized to maximize
expected performance (risk-neutral) or more robust (risk-averse)
objectives (cf., e.g., worst case, expected utility, mean-variance cri-
teria, etc.). In particular, such risk-aware objectives seek to avoid
the risk of poor performances. To be able to deal with diverse sce-
narios one is willing to sacrifice a certain share of the best possible
expected performance.

We consider the set𝑊 of potential workload scenarios𝑤 , e.g.,
with probability 𝑃𝑤 , 𝑤 ∈ 𝑊 , where

∑
𝑤 𝑃𝑤 = 1. We assume that

a workload scenario 𝑤 is characterized by a set of queries with
given frequencies 𝑓 (𝑤)𝑞 (within a certain time span). Hence, the
workloads costs 𝑐 defined in (5) generalize to multiple workloads
𝑤 ∈𝑊 as,𝑚 ∈ 𝑀,𝑛 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑜 ∈ 𝑂, 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵,

𝑐
(𝑤)
𝑚,𝑛,𝑒,𝑜,𝑖,𝑏

:=
∑︁

𝑞∈𝑄,𝑠∈𝑆𝑞 :
𝑛𝑞,𝑠=𝑛

𝑓
(𝑤)
𝑞 ·𝑝𝑞,𝑠,𝑒,𝑜,𝑖 ·𝑎𝑚,𝑞,𝑠 ·𝜔𝑞,𝑠 ·𝑢𝑞,𝑠,𝑒 ·𝜏𝑒,𝑖,𝑏 . (21)

For instance, a worst-case optimization for the ISEmodel reads as
follows. Using the non-negative real-valued variable𝑍 for theworst-
case performance costs over all scenarios𝑤 ∈𝑊 , we minimize

𝑚𝑖𝑛 ®𝑥,𝑍 𝑍 (22)

subject to the constraints (15)-(17) and the new ones, ∀𝑤 ∈𝑊 ,∑︁
𝑚∈𝑀,𝑛∈𝑁,𝑒∈𝐸,
𝑜∈{0,1},𝑖∈𝐼 ,𝑏∈𝐵

𝑐
(𝑤)
𝑚,𝑛,𝑒,𝑜 ·𝑛,𝑖,𝑏 · 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 ≤ 𝑍 . (23)

Note, the model (22)-(23) remains linear and is independent of
the distribution 𝑃𝑤 . As we only have one additional variable and
|𝑊 | new constraints, this extended/robust version of our ISE model
has low overhead and the number of potential scenarios to be
considered can be chosen such that the model remains tractable or
the runtime does not exceed a targeted limit. Further, the proposed
approach can also be directly used within the SMS or CCD model.

5 EVALUATION
In this section, we present the evaluation of our LP models based
on the real-world dataset already introduced in Section 2.3. A de-
scription of the experimental setup is provided in Section 5.1. In
Section 5.2, we use end-to-end experiments to compare our models
against rule-based greedy heuristic approaches. Further, we briefly
study and discuss the impact of the reconfiguration extension de-
scribed in Section 4.1 (Section 5.3), the scalability of the models
(Section 5.4), and the limitations of our approach (Section 5.5).

5.1 Experimental Setup
All end-to-end measurements have been executed on a server
equipped with Intel Xeon Platinum 8180 CPUs (2.50GHz). For the
benchmark queries and the evaluation of the determined configu-
rations, we use the research database Hyrise. We define the input
parameters based on the supported encoding and indexing prop-
erties of the database. The set of available encodings 𝐸 consists of
five options introduced in Section 2.3. As secondary indexes, we
use the approach of Faust et al. [17]. Furthermore, we include multi-
column indexes, which are implemented in Hyrise (cf. compound
group-keys [18]), in the evaluation to demonstrate the capabilities
of the CCDmodel. Both approaches leverage a segment’s dictionary
to increase space efficiency. Consequently, we have to ensure that
indexes are only allowed on dictionary encoded segments (cf. Sec-
tion 3.6). Besides 5 singles column indexes, we consider 46 relevant
MCIs with lengths of 2-4 (cf. [23]). For combinations of the 4 tuning
dimensions, we considered about 𝐾 = 120 000 options per chunk.

We partition the data into ten chunks containing one million
observed locations each. We use two storage devices, DRAM and
an Intel P4800X SSD. The 𝜏 value for each encoding is determined
by the mean performance difference of a set of scan operations
executed with different selectivity values on both storage devices.
As the tiering of segments is based on UMap (cf. Section 2.1), we
have to define a UMap page and buffer size. For the user-space
page management, UMap uses a buffer of pages in DRAM [36]. To
ensure that the data has to be read from the slower datastore and
avoid caching effects, we selected a small buffer size of 1000 pages
and a page size of 128 KiB. Note, our models are able to consider
further index structures, storage devices, or encoding approaches
for specific application scenarios. The LP framework is of general
nature and ensures optimal configurations for a given set of tuning
options and associated cost parameters. Naturally, this set of tuning
options can be flexibly defined and varied.

To compute the table configurations, we used a server equipped
with Intel Xeon E7-4880v2 CPUs (2.50GHz). Our different models
are implemented in Pyomo, a Python-based optimization modeling
language [9, 21]. To solve the LP models, we used the Gurobi Solver
with 16 parallel threads (no relaxed optimality gaps or time limits).
Based on the dataset of a TNC, cf. Section 2.3, we defined a workload
𝑄 . Theworkload is designed to represent the characteristic of spatio-
temporal workloads and includes domain-specific access patterns of
TNCs (e.g., order dispatching, demand predictions). As our models
are of general nature and perform workload-driven optimizations,
the approaches do not focus on a specific workload and can be
applied to different workloads and datasets. The workload consists
of six query templates. The first three query templates select the
trajectory data of a specific set of drivers: all trips of a group of
drivers (0.01% of all values) with the status free (𝑞0, 15% of the
queries in the workload), all trips of a group of drivers (1% of all
values) in a specific area (𝑞1, 10%), and all trips of a group of drivers
(1% of all values) in a specific timeframe of about 40 days (𝑞2, 15%).
Further, 𝑞3 (15%) selects all trips of drives with the status free in a
timeframe of 20 days and a specific region; 𝑞4 (25%) queries all trips
of drivers in a relatively large area (20 by 20 km) in the most recent
six hours. Finally, 𝑞5 (20%) returns all trips in a small region of 500
by 500 meters for a timeframe containing 50 percent of the data.
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Figure 4: End-to-end measured runtime performance of the
table configurations determined by the different LP models
for the given workload, a fixed budget of 3 GB on SSD, and
increasingDRAMbudgets (incl.multi-column indexes (MCI)).
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Figure 5: DRAM (solid line) and SSD (dashed line) memory
consumption of the table configurations determined by the
different LP models for the given workload, a fixed budget
of 3 GB on SSD, and increasing DRAM budgets.

5.2 End-to-End Results for SMS, ISE & CCD
As displayed in Figure 4, the three LP models are able to improve
joint table configurations for the given workload. Overall, we can
observe that there are high optimization potentials for fine-grained
configuration decisions, especially for lower memory budgets. Af-
ter a specific DRAM budget value, the performance only increases
slightly or stagnates after most of the segments are stored in the
main memory. Compared to the SMS benchmark results, we can
observe that the ISE model is able to determine competitive table
configurations, especially for larger memory budgets. However,
without detailed information about intra-chunk effects, the chunk-
based and segment-based ISE models have a 12% decreased per-
formance compared to the other approaches. Also, for the initial
case, where all data is stored on SSD, the ISE models have 30% per-
formance decrease. The ISE model cannot consider the effects of a
specific sorting column on other columns’ data characteristics (e.g.,
number of identical values in succession). These characteristics
have an increased impact on the compression rate of compression
approaches like run-length encoding or frame-of-reference encod-
ing, which are used in particular for low memory budgets. Further,
as the SMS and CCD model without multi-column indexes (MCI)
results coincide, it is verified that the SMS model is equivalent to
the CCD model if multi-column optimizations are not considered.

In Figure 5, we can observe that the different LP models are
able to utilize the available DRAM capacities efficiently. Also, the
models satisfy the given memory limitations. In contrast to the
chunk-based optimizations approaches, we observe that segment-
based approaches store infrequently or never accessed segments
even for higher DRAM budgets on SSD to generate more space in
DRAM for further optimizations. Finally, we can observe that the

SMS and CCD model reached a configuration at 8 GB where no
further improvement can be achieved (with more DRAM budget).

In this experiment, segment-based approaches have no signifi-
cant advantage compared to chunk-based approaches. The reason
for that is that our workload accesses 92% of all segments. For work-
loads that query only a limited set of segments, we can expect better
performances for the segment-based approach as less DRAM bud-
get has to be used for never accessed data. By storing infrequently
accessed segments on the slower storage, light-weight compres-
sion techniques or additional index structures can be applied for
frequently accessed segments in the main memory.

5.2.1 Rule-Based Tuning Heuristics. We seek to evaluate the de-
termined table configurations of our LP models against existing
approaches. As a common standard approach, we implemented
two rule-based greedy heuristics. Similar to the SMS model (cf.
Section 3.4), the heuristic includes intra-chunk dependencies by
taking into account the specific sorting column. As a valid table
configuration requires that one sorting option 𝑜 ∈ 𝑂 is selected for
each chunk, we must integrate this constraint into the selection
process of the base configuration. Therefore, we apply a two-phase
approach. In the first phase, we determine a base configuration
with minimal memory consumption by selecting the tuning config-
uration with the lowest memory consumption for each segment.
Here, the segment with the lowest memory consumption defines
the sorting configuration for the entire chunk. In the second phase,
we calculate the benefit 𝑟𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 for each tuning option and adopt
the table configuration iteratively based on the calculated benefits
and the available memory budget. For each segment (𝑚,𝑛) and
tuning option 𝑒 ∈ 𝐸, 𝑜 ∈ 𝑂 , 𝑖 ∈ 𝐼 , 𝑏 ∈ 𝐵, we define 𝑟 as (𝛼 ≥ 0):

𝑟𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 = 1/
(
𝜙𝑚,𝑛,𝑒,𝑜,𝑖 · (

∑︁
𝑞∈𝑄,𝑠∈𝑆𝑞 :
𝑛𝑞,𝑠=𝑛

𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 )𝛼
)
. (24)

To calculate the costs 𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 of the scan operations, we use
the same equation as for the LP models, cp. (5). The 𝛼 value is a
factor to define the proportional balancing of the memory con-
sumption and runtime performance within the objective. A similar
approach is used by Valentin et al. [45] to determine optimized
index configurations. We select the tuning option with the highest
benefit compared to the currently applied configuration. Afterward,
we check if the selected tuning option fits into the remaining stor-
age budgets and change the configuration correspondingly if the
change does not violate the remaining memory budget. The steps
of the second phase are repeated until no more changes are possible.
For the chunk-based approach, we additionally ensure that only
entire data chunks can be transferred to a tier, cf. (13).

5.2.2 End-to-End Comparisons Against Greedy Heuristics. As dis-
played in Figure 6, the LP models outperform the greedy heuristics,
cf. H(𝛼), and can use the available memory budget more efficiently
(cf. Figure 7). We observe that greedy heuristics struggle to compute
configurations for scenarios with limited DRAM capacities. For a
DRAM budget of 2 GB, the SMS model achieves a runtime of 200𝑠 ,
which is only 10% of the heuristics’ runtimes. The heuristics need
significantly more DRAM budget (7 GB) to achieve comparable
performance results. We observe that the heuristics use the major-
ity of the available DRAM resources to optimize single chunks or
segments. Consequently, large parts of the data have to be stored

4086



0 1 2 3 4 5 6 7 8 9 10
DRAM budget [GB]

100

200
300
500

1,000

2,000
3,000
5,000

10,000

Ex
ec

ut
io

n 
tim

e 
[s

] H-0.5 (Chunk)
H-0.5 (Segment)
H-10 (Chunk)
H-10 (Segment)
ISE (Chunk)
SMS (Chunk)

MODEL

Figure 6: End-to-end measured runtime performance of the
table configurations determined by heuristic approaches
compared to the LP models for the given workload, a fixed
budget of 3 GB on SSD, and increasing DRAM budgets.
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Figure 7: DRAM (solid line) and SSD (dashed line) mem-
ory consumption of the table configurations determined by
heuristic approaches for the given workload, a fixed budget
of 3 GB on SSD, and increasing DRAM budgets.

on the significantly slower SSD, even for higher DRAM capacities
(cf. Figure 7). Additionally, the greedy heuristics’ measurements
show that the selection of the 𝛼 value has a significant impact on
performance and memory consumption. As the heuristics select
the sorting configuration for each chunk in the initial phase, the
sorting decisions can be sub-optimal for different budgets.

5.2.3 End-to-End Comparisons Against Existing Approaches. In this
section, we compare our LP approach against existing solutions.
A comparison is not straightforward as various joint optimization
approaches focus on other aspects (e.g., materialized views, parti-
tioning, or knob configurations). In Figure 8, we evaluate the SMS
model regarding (i) the tiering dimension [48] and (ii) the consecu-
tive joint tuning approach [25]. Concerning the tiering dimension,
we re-implemented the capacity mode of Mosaic’s presented linear
optimization strategy (LOPT) [48]. This LP approach is based on
Umbra and optimizes the data placement on columnar granularity.
As Mosaic is optimized for data placement decisions on SSD and
HDD devices, the cost model is based on the throughput and ac-
cessed data size. Furthermore, parallel scan operations on multiple
devices are allowed. To represent the query processing in Hyrise,
we adopted the cost estimation that scan operations are executed se-
quentially where each scan only processes the qualifying positions
of the previous scan. An advantage of this cost model is that less de-
tailed information about the workload (e.g., selectivity of queries) is
required, and no benchmarking queries have to be executed. Based
on the prerequisite that Mosaic requires all segments on one device
to have the same encoding, we selected the best encoding configu-
ration for the given benchmark setup. For a fair comparison, we
partitioned the data to enable pruning during query execution and
applied the same configuration for all segments of a column. Based
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Figure 8: Comparison of the end-to-end measured runtime
of the table configurations determined by budget mode of
Mosaic, a consecutive tuning approach, and the SMS model.

on these restrictions, a relatively large amount of memory has to
be used to store a single dictionary-encoded column in DRAM. As
displayed in Figure 8, for small memory budgets, we can observe a
comparably weak performance as significant parts of the available
DRAM were unused byMosaic as the remaining DRAM budget was
not big enough to store another column. Furthermore, the model is
not designed to optimize other aspects (e.g., sorting or indexing),
which have a significant impact on the overall performance.

Furthermore, we compare the SMS model against the joint tun-
ing approach [25], which proposes a heuristic to tune different
dimensions in a subsequent manner for given budgets to be used in
each step. We evaluated this approach as follows: Starting with an
untuned base configuration, we choose a specific tuning order for
our 4 considered dimensions. Given a budget, we solve our model
for the first dimension by freeing the corresponding variables and
fixing those for the other dimensions. The same is done for the
remaining tuning dimensions. Instead of one LP, for [25], we solve
4 LPs of smaller size. Further, we iterated over all plausible tuning
orders to not miss the best possible one. Comparing the results
obtained, we determined the best configurations (displayed in Fig-
ure 8) by optimizing the encoding first, afterward the sorting and
tiering decision, and the index configuration at the end. For the
index selection, we reserved 10% of the available budget in the
previous steps. We discover that our LP approach outperforms [25]
by 15% for larger DRAM budgets and achieves up to 6.8 times better
performance for more restrictive memory budgets. Naturally, the
final results also depend on the distribution of the total budget
(e.g., budget for indexes) to the 4 steps. Recall that this reveals an-
other advantage of our model as the nontrivial optimization of the
distribution of the budgets is included in our model.

5.2.4 Detailed Configuration Analysis. Figure 9 shows specific table
configurations computed by the SMSmodel, the greedy heuristic (H-
10), the CCDmodel with multi-column indexes, and the consecutive
tuning approach. The configurations were computed for a budget
of 3 GB on both storage mediums. For each configuration, the
segments defined by the chunk (y-axis) and the column (x-axis)
in the top area are stored in DRAM and the bottom ones on SSD.
The color of each segment indicates the applied encoding and the
circle in the middle represents the consumed memory. If an index is
applied to a segment (indicated by a black rectangle or diamond in
the top left corner), the consumed memory of the index is included
in the size of the circle. A sorted column is represented by a black
triangle in the top right corner of a segment. Note, for the CCD
model, we force the tiering decision to be the same within a chunk.
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Weobserve that the selected sorting configuration varies strongly
between different approaches. As the greedy approach determines
the sorting configuration based on the segments with the highest
benefit in the first phase, this can be sub-optimal for lower budgets.
Additionally, we can see that the greedy heuristic uses significantly
more of the available DRAM budget to improve the performance of
specific segments, which leads to an improved runtime for scan op-
erations on these segments, but also consumes a significant part of
the available main memory. In contrast, the SMS model distributes
the available memory on more segments and selects compression
techniques with higher compression ratios (e.g., frame-of-reference
encoding) to store more segments in DRAM. The CCD model ap-
plies different multi-column indexes to mitigate the increased SSD
access latency. In contrast, the CCD model uses single-column in-
dexes in DRAM, which have a lower memory footprint. For the
consecutive tuning approach, we observe weaknesses of the one-by-
one execution of tuning steps. In the first step, the LP to optimize
the encodings leverages the entire memory budget and applies en-
codings like dictionary encoding. Consequently, the tiering LP can
only transfer a limited number of segments to DRAM.

5.3 Extension: Reconfiguration Costs
Based on the LP approach, minor workload or infrastructure (e.g.,
DRAM capacities) changes can lead to significant reconfiguration
costs [25]. All individual tuning optimizations produce modifica-
tion costs (e.g., changing the sorting order of a chunk consumes
time and resources). To determine optimized configurations for the
given input parameters, the models often apply numerous recon-
figurations with only a minor impact on the overall performance.
However, huge modification costs are not desirable in practice. By
considering modification costs in the models (cf. Section 4.1) we
are able to identify and perform only minimal-invasive modifica-
tions. There are various metrics to determine modification costs

(e.g., reorganized data, estimated time, or selected by database ad-
ministrator) [29, 43, 50]. For the evaluation, we defined for each
modification a cost factor. A change of the applied sorting configura-
tion has the highest costs and a reallocation of a segment the lowest.
The database administrator can specify these costs per reconfig-
uration operation. For the given base configuration determined
by the SMS model for a DRAM budget of 3 GB (cf. Figure 9), we
increased the available memory budget by 1 GB and evaluated the
configurations for different 𝛼 values. The 𝛼 enables the balancing
of the trade-off between performance and reconfiguration cost and
depends on different aspects (e.g., time interval between optimiza-
tions). The results of the end-to-end measured performance show
that compared to the best possible 𝛼=0 solution, the 𝛼=1 configura-
tion has only a 2.25% performance decrease with about 40% fewer
reconfiguration costs. For 𝛼=5, there is a performance reduction of
17.6% and a reduction of about 78% of the reconfiguration costs.

5.4 Scaling of the LP-based Approaches
To analyze the scalability of the different models, we evaluated the
runtime of the solver to compute the table configurations by scaling
in the following dimensions: (i) number of chunks, (ii) number of
scan operations that define the workload, (iii) number of storage
devices, and (iv) the number of compression and index options.
As benchmark setup, if not chosen differently, we use the settings
described in Section 5.1 with |𝑄 | = 6, |∪𝑞𝑆𝑞 | = 17 scan operations,
where |𝑀 | = 10, |𝐸 | = 5, |𝑁 | = 5, |𝑂 | = 6, |𝐼 | = 2, and |𝐵 | = 2. The
memory budgets are defined as 3 GB for DRAM and 3 GB for SSD.

5.4.1 Impact of Data Size. Due to large spatio-temporal data vol-
umes, scalability with regard to data size is crucial. In this context,
we analyze our models’ solve time for different numbers of chunks.
Naturally, the complexity of all three models increases with the
number of chunks, see Figure 10 (left top). The ISE & CCD model
scale linear with the number of chunks, whereby the ISE model’s
solver times are orders of magnitude lower. For the given budgets,
the segment-based ISE model needs 24𝑚𝑠 for ten chunks and 613𝑚𝑠
for 500 chunks to compute the configurations. In comparison, the
CCD model needs 22𝑠 for ten chunks and a similar amount of time
for 500 chunks. In contrast, the SMS models do not scale linearly
with the cardinality of 𝑀 ; the models compute the table config-
urations in about 1.5𝑠 for ten chunks and 205𝑠 (500 chunks) for
the segment-based approach and 2.5𝑠 for ten chunks and 413𝑠 (500
chunks) for the chunk-based approach.

5.4.2 Impact of Workload Size. We analyze the capabilities of the
models to scale with the workload, cf.𝑄, 𝑆 . For that reason, we eval-
uated the computation performance for an increasing number of
scan operations. As shown in Figure 10 (bottom left), the workload
size has no impact on the solver time. As described in Section 3, the
amount of scan operation is only relevant for the calculation of the
parameter 𝑐 . The computation of the parameters can be executed
highly parallel. Based on these observations, we can argue that the
different models are capable of handling large workloads. Another
observation is that the segment-based approaches have a faster
runtime compared to their chunk-based equivalents.

5.4.3 Impact of the Number of Storage Devices. Next, we evaluate
the impact of the number of storage devices on the solver time.
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Figure 10: Comparison of solve times of 5 versions of our
LP models for different numbers of tuning options: #chunks
|𝑀 | (top left), #scan operations |∪𝑞𝑆𝑞 | (bottom left), #storage
devices |𝐵 | (top right) and cardinality of the indexing |𝐼 | and
compression options |𝐸 | (bottom right).

Modern systems feature a diversity of storage, from NVMe and SSD
to network-interconnected memory and HDD [36]. The LP models
are designed to support setups with multiple storage devices. We
defined a base budget of 8 GB and divided this budget by the number
of available storage devices. The storage penalty 𝜏𝑒,𝑖,𝑏 is set for all
encodings (𝑒) and index configurations (𝑖) to a fixed value, defined
by the storage device’s number (𝑏). As displayed in Figure 10, all five
models can determine table configurations for infrastructures with
eight different storage mediums in a suitable time (less than 50𝑠).
Here, we have to consider that the solver times are also depending
on the specific setup (e.g., latency between storage devices, storage
capacities).

5.4.4 Impact of the Number of Tuning Options. As modern data-
base systems support various compression techniques and index
implementations, we investigate the impact of the number of com-
pression and index options on the solver time. For that reason, we
generated additional values for up to 50 compression techniques
and ten different index options. We apply no database-specific lim-
itations for this benchmark so that correspondingly each index
option can be applied in combination with each compression op-
tion. In Figure 10 (bottom right), we observe a slight increase in
the solver time for the ISE model up to 2.7𝑠 (chunk-based and 1.9𝑠
(segment-based) for the setup with 50 compression techniques and
ten indexes options. For the segment-based SMS model, the solver
time increased from 1.5𝑠 for the Hyrise settings to 348𝑠 for the
largest considered setup. Due to memory restriction, it was not
possible to determine results for all setups for the CCD model. As
already mentioned in Section 3.2, the number of possible chunk
configurations |𝐾 | can increase quickly. In this context, we further
analyzed the applicability of CCD for reasonable numbers of |𝐾 |
based on randomly generated cost inputs. We evaluated that prob-
lems with selected six million tuning combinations (per chunk) can
be solved in less than 60𝑠 , which, in general, shows the applicability
of the model. Further, we recall that in specific applications, domain

knowledge should be included to select only relevant tuning con-
figurations, which particularly can include more complex concepts,
such as multi-attribute indexes. Also, a hybrid optimization process
could be possible, in which the CCD model compares the table
configuration determined by the SMS or ISE model with several
adopted versions (e.g., advanced sorting strategies).

5.5 Discussion, Insights, and Limitations
Our LP solutions allow us to reveal the main drivers of effective
tunings and to infer recommendations for best practices (which
columns to index, how to compress old/new chunks in case of
small/large budgets, etc.). For example, we observe the following
stylized patterns in optimal solutions. The sorting decision per
chunk is based on the access frequency and memory saving of a
segment. With increasing memory budgets, indexes are applied
to segments with low selectivity queries, enabling sorting by an-
other column. Based on the latency difference between the two
storage devices, the determined models apply more heavy-weight
compression in the main memory and compensate the latency with
lightweight compression approaches on the slower SSD. Further,
the possibility to tune chunks and their segments (accounting for
their individual specifics) on a fine-grained level is, in general, heav-
ily exploited, cf. Figure 9, and does contribute to improving overall
performance.

Naturally, accurate cost parameter inputs are key in the model.
Our cost estimations used in (5) provide a reasonable and viable
starting point. More accurate estimations seem possible, e.g., using
more sophisticated data-driven cost models, and would allow to
further minimize the gap between model-based solutions and their
actual end-to-end performance. However, more complex cost mod-
els may also add more overhead. Overall, the evaluation showed
that fine-grained optimized table configurations are well-suited to
reflect spatio-temporal access patterns in database systems. Nev-
ertheless, although the model is of general nature and allows to
attack complex and coupled tuning dependencies, there are the fol-
lowing limitations. First, we exploit the fact that in our usecase, the
number of attributes |𝑁 | is small, keeping the LP models tractable
with regard to the number of variables and constraints. Second, we
keep the model tractable by considering a comparably small num-
ber of indexes |𝐼 | (cf. single-attribute indexes in the SMS model or
distinguished multi-attributes in the CCD model). To optimize joint
tuning problems for larger problems, hence, will require different
most likely heuristic techniques. In this context, the proposedmodel
may also serve as an upper bound reference to verify the quality of
such techniques by providing optimal solutions for tractable setups
of joint tuning problems.

6 RELATEDWORK
In this section, we briefly discuss related work from the adjacent
research fields of workload-aware compression and indexing opti-
mization for database systems with a focus on spatio-temporal data
management. Zhang et al. [54] noticed that the characteristics of
spatio-temporal data change over time, which leads to a decreased
efficiency of data structures (e.g., indexes). They proposed a time-
decay model to monitor the data distribution and adopt the used
indexing schema correspondingly. Schlosser et al. [43] introduced
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a workload-driven index selection approach that builds on a re-
cursive mechanism and accounts index interaction. In contrast to
other approaches, the presented strategy also allows the scalable
computation of index configurations for large workloads, cf. [24].
Kimura et al. [22] presented an index selection approach that selects
viable secondary indexes and considers compressed alternatives
for each index based on a given memory budget. This index size-
aware approach uses a heuristic to prune index candidates and
configurations of candidates.

All these approaches do not study whether using a more heavy-
weight compression to make space for an additional secondary
index can be beneficial. Compressing data is important for data-
base systems to reduce the storage resources and allow efficient
processing (e.g., SIMD instructions) as well as mitigating band-
width bottlenecks. By analyzing light-weight integer compression,
Damme et al. [12] found that sophisticated compression techniques
can have significant impacts on both performance and compres-
sion ratios. The authors indicate that consideration of multiple
dimensions is necessary to determine which technique is the best
for a specific scenario. Based on similar observations and the fact
that different decisions influence each other, we propose a joint
optimization. For example, the sorting decision has a major impact
on the data characteristics and, consequently, on the compression
ratio of different approaches (e.g., run-length encoding). Raman
and Swart [38] presented an approach that leverages successive
similar values and correlations of sorted relations to improve the
data compression. The sorting of a column has an impact on the
runtime, which can lead to obsolete auxiliary data structures.

Abadi et al. [1] presented a decision tree-based approach to de-
termine compression schema in C-store. The selection is based on
workload and data properties but does not adapt to changing envi-
ronments nor considers memory budgets. Boissier et al. [6] intro-
duced a workload-driven selection of compression configurations
with memory constraints for columnar databases. The approach
uses a greedy heuristic to determine configurations based on data
characteristics and estimated runtime performances based on re-
gression models. Lang et al. [26] presented data blocks for HyPer. It
selects compression schemes statically based on data characteristics
for the data blocks. Mosaic [48] is a storage engine for scan-heavy
workloads on relational database systems. It introduces a linear
optimization to find data placement solutions that maximize I/O
throughput for a given workload and budget. Mosaic places data
on SSD and HDD with column granularity and considers different
compression algorithms for each device. Boissier et al. [7] present
a heuristic approach that evicts cold data to secondary storage.
For a given DRAM budget and workload, the system determines
a Pareto-optimal selection of columns that are stored in DRAM.
Furthermore, Richly et al. [42] introduce an LP-based approach
to optimize the sorting, compression, and index configuration of
tables in DRAM. The proposed solution can neither determine
configurations for tables that do not fit into main memory nor
considers reconfiguration costs or robustness. To the best of our
knowledge, no spatio-temporal storage system applies a joint op-
timization approach to determine workload-driven fine-grained
storage configurations under budgets for different storage devices.

An approach to tune multiple mutually dependent features was
introduced by Kossmann et al. [25]. The authors demonstrated the

inter-dependencies of different feature tunings and presented an
LP approach to optimize the order to tune features subsequently.
Zilo et al. [56] also addressed the tuning order problem and classi-
fied the pairwise dependencies between options in non-dependent,
unidirectional dependent, and mutually dependent. They described
that mutually dependent ones should be optimized simultaneously
as long as the problem complexity allows a joint optimization.

7 CONCLUSION
This paper demonstrates that workload-driven fine-grained configu-
ration optimizations are a practical approach for improving the data
management of spatio-temporal applications. The identification of
an optimized table configuration for a given workload and storage
setup is not a trivial task as the various potential tuning options
influence each other. To our knowledge, this is the first approach
to jointly optimize a table’s sorting, indexing, tiering, and compres-
sion configuration. We introduced three LP models (cf. CCD, SMS,
ISE) addressing cost dependencies at different levels of accuracy
while allowing for trading their solve time. For an evaluation of a
real-world spatio-temporal dataset, we have shown that our config-
uration decisions (requiring only seconds) are superior to existing
rule-based heuristics. Our models achieve an up to 90% increased
runtime performance for a given memory budget; a comparable
runtime is obtained with up to 71% less required memory. Further,
we discussed the scalability of our models and proposed extensions
to include reconfiguration costs as well as robustness against dif-
ferent workloads. The SMS model reliably finds optimized tuning
configurations if sorting dependencies are present. If those are not
strong or shorter runtimes are in focus, we find that the relaxed ISE
model is a suitable scalable alternative with competitive results.

In future work, we will work on improved data-driven cost mod-
els to better and more effectively estimate cost parameters for our
model input. Another direction is to look for workload anticipations
and risk-aware joint tuning configurations.

APPENDIX
Table 1: Notation Table

Se
ts

𝑁 set of attributes 𝑛
𝑀 set of chunks𝑚
𝐸 set of encoding types 𝑒
𝐼 set of indices 𝑖
𝑂 set of ordering options 𝑜
𝐵 set of tiering options 𝑏
𝑄 set of queries 𝑞
𝑆𝑞 set of scan operations 𝑠 of query 𝑞
𝐾 set of configuration options 𝑘 (CCD model)
𝑊 set of potential scenarios𝑤 (robust model)

Pa
ra
m
et
er
s

𝑓𝑞 frequency of query 𝑞
𝑐𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 scan costs for segment 𝑛 of chunk𝑚
𝜙𝑚,𝑛,𝑒,𝑜,𝑖 memory consumption for segment (𝑛,𝑚)
𝐺𝑏 memory budget for tier 𝑏
𝑟𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 benefit measure (greedy 𝛼-heuristic)
Δ𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 (𝜂𝑚,𝑛) reconfiguration cost given allocation state 𝜂

Va
ria

bl
es 𝑥𝑚,𝑛,𝑒,𝑜,𝑖,𝑏 decision if a configuration is active (SSD, ISE)

𝑦𝑚,𝑜 decision (a chunk𝑚’s sorting, SSD)
𝑧𝑚,𝑛,𝑒,𝑖,𝑏 decision (a segment 𝑛’s configuration, SSD)
𝑥𝑚,𝑘 decision (a chunk𝑚’s configuration, CCD)
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