單連通拓撲學拓撲空間的一種性質。直觀地說,單連通空間中所有閉曲線都能連續地收縮至一點。此性質可以由空間的基本群刻劃。拓扑空间的基本群是一个空间是否为单连通的标志:当且仅当空间的基本群是當然群时,道路连通的拓扑空间是单连通的[1]:322

定義

编辑
 
這個集合是單連通的,因为任何一个包含“洞”的闭曲线都不能收缩至一点

考慮道路連通的拓撲空間X。若拓撲空間X 中的任意閉曲線皆同倫等價於一個點,則稱該空間為單連通的。 換言之[2], 拓撲空間X 是单连通的充要条件为:對任意連續映射

 

在拓撲空間X 中,存在一點x同倫等價

 

使得

 
 

另一种等价的定义是:当且仅当拓撲空間X 道路连通,并对任意的、同起点的(即 p(0) = q(0) 且 p(1) = q(1))两条路径 p : [0,1] → Xq : [0,1] → X, 存在一个同伦

 

使得

 
 

此时拓撲空間X 是单连通的。

一个拓扑空间X ,当且仅当拓扑空间X 道路连通,且其基本群仅由单位元素构成时,它是单连通的。[1]:322 类似的,当且仅当对拓扑空间X 中的任意点 (x,y),在X 的基本群中,态射   的集合只有一个元素时,拓扑空间X 是单连通的。[3]

若拓撲空間X 可寫成單連通開子集之并,則稱之為局部單連通。微分拓撲學所論的空間(例如流形)通常不在此類。

複分析中,当且仅当复数域 C 中的开集X 和它的补集在黎曼球面上连通时,X 才是单连通的。 虚部严格大于 0 小于 1 的复数集合,提供了一个有趣的例子:一个无界的、连通的、补集不连通平面的开子集。然而这个集合是单连通的。

讨论

编辑

粗略的说,如果空间中的某个物体仅由一小块构成,并且没有任何的“洞”穿过它,则这个物体是单连通的。举个例子:甜甜圈和(带手柄的)咖啡杯均不是单连通的;而一个空心橡胶球是单连通的。 在二维的情况下,圆不是单连通的;而(实心)碟片和直线是单连通的。 连通但不是单连通的空间称为非单连通多重连通[4]

 
球面是单连通的,因为可以将球面上的任意一条闭曲线,沿球面收缩到一点。

这样的定义只排除了类手柄形状的洞。一个球体或空心的球体是单连通的,因为其表面上的任何闭曲线都能连续地收缩到一点,即使球的中心有一个“孔”。 在更强一些的条件下,如果一个物体在任何维度上都没有洞,则称其为可缩空间

例子

编辑
 
环面不是单连通的。右图中,任意一条彩色闭曲线,都不能在不离开环面的情况下收缩到一点。
  • 單位圓盤   均為單連通
  • 虽然实数集 R 自身是单连通的,但实数集 R 的单点紧化不是单连通的。
  • 二维欧氏空间 R2 是单连通的,但 R2 除去原点 (0,0) 之后得到的 R2\{0} 非單連通。事實上,它同倫等價於  [5]:195
n > 2时,RnRn\{0} 均是单连通的。
  • n 维欧氏空间 Rn 的每个凸子集都是单连通的[6]
  • 二維以上球面   均為單連通[6]
然而   並非單連通: 

性質

编辑
  • 当且仅当一个表面(二维拓扑流形)是连通的,且它的亏格为 0 时,它才是单连通的。
  • 任何(适宜)空间X通用覆盖都是单连通空间,它通过覆叠映射映射到X
  • XY 是同伦等价的,且X 是单连通的,那么Y 也是单连通的。
  • 单连通集合的图像经连续函数变换后不一定是单连通的。举个例子:复数平面经指数映射后得到 C\{0},它不是单连通的。
  • 在單連通流形上,一次微分形式 ω 正合的充要條件是 dω=0 。

應用

编辑

单连通性的概念在复分析中十分重要:

  • 柯西积分定理保证:对一个复平面 C 的单连通开集U,若有全纯函数 f : UC,全纯函数f 在集合U 上有不定积分F。则在集合U 上,被积函数f 的每一个线积分的值,只取决于积分路径的两个端点uv,积分值能表示为 F (v) - F (u)。因此,积分值不依赖于连接 uv 的特定路径。
  • 黎曼映射定理保证:除复数域 C 自身外,任何非空的、单连通的复数域 C 的开子集共形等价单位圆盘

单连通性的概念也是庞加莱猜想的一个重要条件。

參見

编辑

參考文獻

编辑
  1. ^ 1.0 1.1 James, R. Munkres. Ch. 9. Topology (2nd Edition) 2nd ed. Upper Saddle River, NJ: Prentice Hall, Inc. January 7. ISBN 0131816292. OCLC 42683260 (英语). 
  2. ^ Hazewinkel, Michiel (编), Simply-connected domain, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4 
  3. ^ Ronald,, Brown,. Topology and Groupoids.. Academic Search Complete. North Charleston: CreateSpace. June 2006. ISBN 1419627228. OCLC 712629429 (英语). 
  4. ^ Weisstein, Eric W. (编). Wolfram MathWorld (首頁). at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2018-07-09] (英语). 
  5. ^ Colin, Adams; Robert, Franzosa; 沈以淡. 第9章 同伦与度理论. 拓扑学基础及应用. 北京: 机械工业出版社. 2010年4月1日. ISBN 9787111288091. OCLC 644064114 (中文). 
  6. ^ 6.0 6.1 谢桦. 单连通空间的一些性质. 龙岩学院学报. 1993, 11 (3): 57-59 (中文). 
  • Spanier, Edwin. Algebraic Topology. Springer. December 1994. ISBN 0-387-94426-5 (英语). 
  • Conway, John. Functions of One Complex Variable I. Springer. 1986. ISBN 0-387-90328-3 (英语). 
  • Bourbaki, Nicolas. Lie Groups and Lie Algebras. Springer. 2005. ISBN 3-540-43405-4 (英语). 
  • Gamelin, Theodore. Complex Analysis. Springer. January 2001. ISBN 0-387-95069-9 (英语). 
  • Joshi, Kapli. Introduction to General Topology. New Age Publishers. August 1983. ISBN 0-85226-444-5 (英语). 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy