變數

可以改變的值,通常在方程或運算的上下文中

数学物理学中,变数variable)又称变数,是表達式公式中,没有固定的值而可以变动的数或量;該数或量可以是隨意的,也可能是未指定或未定的。表示变数的字母,统称为變元[1],即变元是一个用来表示符号。在语义上,变数(变量)相对于常数(常量)。初等數學中,也以未知数未知量代称变数。

變數
上级分类運算數、​ 编辑
所属实体方程 编辑
研究学科初等代數 编辑
相對概念常数 编辑

在其他科学中,英语 variable 亦称变项[2]變因[3],是任何欲观测或欲操纵的概念、屬性、情況、事物、因素,其在質或量(性質或數量)上可變。

數學领域中,一个變數可以代表“某個數據”,但也可用以表示:一个、一个向量、一个矩阵、一个函数、一个函数的参数、一个集合或一个集合的元素数学符号表达的内容[4]

变数常见的例子如:一個函數 有兩個變數(參數 和值 ),當參數「變動」時,值也會相對應地「變動」[5]

起源及概念之演進

编辑

弗朗索瓦·韋達於16世紀末引入了使用字母表示已知及未知數字的想法,並將這些字母視同數字般運算,以在最後簡單代入數值求解。弗朗索瓦·韋達習慣會以子音字母表示已知值,以母音字母表示未知值[6]

1637年,勒内·笛卡兒引入以 表示公式中的未知數,以 表示已知數的習慣[7],此一習慣至到今日依然常見。

1660年代起,艾薩克·牛頓哥特佛萊德·萊布尼茲分別獨立發展出无穷小演算,主要研究一個「可變量」的無窮小變動如何導致另一個量(第一個變數(量)的函數值)相對應的變動。之後過了近一個世紀,李昂哈德·尤拉修正了無窮小微積分的用語,並引入 的概念, 是個函數,具有參數 及值 。直到19世紀末,「變數」這一詞幾乎都被用來指函數的參數及值。

19世紀下半葉,人們發覺無窮小微積分的基礎似乎不夠形式化,不足以處理像是處處不可微連續函數這類自相矛盾的問題。為了解決此類問題,卡爾·魏爾斯特拉斯引入了新的定義,以取代之前對極限的直觀概念。對極限,舊的概念描述「當「變數」 變動且趨近於 時, 會趨近於 ,其中的「趨近」並沒有明確的定義或上下文。魏爾斯特拉斯則將上述句子以下列公式取代:

 

其中的5個變數均不被視為是變動的。

此一靜態公式導致今日對變數只是表示數學物件(可以是未知的,或可被給定集合中的任何元素取代)之符號的概念。[8]

計算機科學上

编辑

變數可以指在電腦記憶體裏存在值的被命名的存储空間。

变量通常是可被修改的,即可以用来表示可变的状态。这是许多语言(如Java)的基本概念之一。有的语言可能定义其它术语,如C语言左值来精确地表示这里的(可能匿名的)存储空间的概念,而“变量”则在变量名的意义上被强调。

當某個已宣告變數開始使用,直譯器或編譯器通常會設定一個空間來儲存所給出的值。稍後該變數不再使用時,那些空間可以回收

也有观点认为,变量应该和数学的原意一致,不需要允许它储存的可变,不需要有能力表示可变状态。Haskell的类型变量仍然符合这个含义。

有些編程語言中的變數必須帶有型別

命名

编辑

每種編程語言都有規則指定甚麼才可作為變數的名字。

使用C和其相關語言,變數名稱在语法上称为标识符,必須是由英文字母、數字和底線組成,且必須由字母起頭。有時還不可以使用某些保留字命名。

使用某些語言,變數的名字同時告訴了這個變數帶有甚麼種類的值。例如FORTRAN的程式裏,變數的首個字母顯示了它是整數還是浮点数。變數名字首個字符是$的話,在BASIC的程式裏表示其值是字串。Perl透過字首如$,@,%和&來分辨哪是純量、陣列、雜湊或副程式。

每個編程組織都有非正式的命名規矩——單打獨鬥的程式員亦是如此。有人喜歡所有變數都用簡單的英文字母取名,認為能增加輸入程式碼的速度,但只要變數一多,就會容易混淆,甚至以後自己看回程式碼也不懂在寫甚麼。

迴圈控制變數这样的虚变量和数学上的习惯类似,通常以i, j, k命名。

统计学上

编辑

变量是统计学研究中对象的特征。它可以是定性的也可以是定量的,一个定量变量要么是离散的,要么是连续的。社会科学中研究变量的关系,通常採用數學中對應的觀念,把一个变量称为自变量(独立变量),另一个变量称之为因变量(依赖变量)[9]

參考文獻

编辑
  1. ^ 肖学平. 中学数学的基本思想和方法. 科学出版社. 1994: 296 [2023-01-21]. ISBN 9787030044143. (原始内容存档于2023-04-25). 
  2. ^ 吳明淸. 敎育硏究: 基本觀念與方法之分析. 五南圖書出版. 1991: 101. ISBN 9789571103617. 
  3. ^ 王雲五. 雲五社會科學大辭典. 台灣商務印書館. 1981: 11. 
  4. ^ Stover, Christopher; Weisstein, Eric W. Variable. Weisstein, Eric W. (编). Wolfram MathWorld. Wolfram Research. [2021-11-22]. (原始内容存档于2023-06-06). 
  5. ^ Syracuse University. Appendix One Review of Constants and Variables. cstl.syr.edu. [2014-01-23]. (原始内容存档于2014-01-16). 
  6. ^ Fraleigh, John B. A First Course in Abstract Algebra 4. United States: Addison-Wesley. 1989: 276. ISBN 0-201-52821-5. 
  7. ^ Tom Sorell, Descartes: A Very Short Introduction, (2000). New York: Oxford University Press. p. 19.
  8. ^ Marie-Cécile Darracq; Jean-Étienne Rombaldi. Algèbre et géométrie pour la Licence: Cours complet avec 200 exercices corrigés. DE BOECK SUP. 2021. ISBN 9782807332218 (法语). 
  9. ^ David Freedman; Robert Pisani, Roger Purves. Statistics. Norton & Company. 1998: 136. ISBN 9780393960433. 3 (英语). 

參見

编辑
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy