跳转到内容

廷得耳效應

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自丁达尔效应
德國宮廷主教座堂內被散射而顯現的光路,是廷得耳效應的典型例子
北京中國尊大樓外牆的反射光由于嚴重的而被散射

延德耳效應(英語:Tyndall effect),又稱廷得耳效应丁达尔现象丁泽尔现象丁泽尔效应。当一束光线透过胶体,从入射光的垂直方向可以观察到胶体里出现的一条光亮的「通路」,其原理是被懸浮的膠體粒子(例如:乳劑混懸劑散射。廷得耳效應得名自物理學家约翰·丁达尔,他是首位對此現象深入研究的科學家。

機制

[编辑]

在光的传播过程中,光线照射到粒子时,如果粒子大于入射光波长很多倍,则发生光的反射;如果粒子小于入射光波长,则发生光的散射,这时观察到的是光波环绕微粒而向其四周放射的光,称为散射光或乳光。丁达尔效应就是光的散射现象或乳光现象。由于溶胶粒子大小一般不超过100 nm,胶体粒子介于溶液中溶质粒子和浊液粒子之间,其大小在1~100nm。小于可见光波长(400 nm~700 nm),因此,当可见光透过溶胶时会产生明显的散射作用。而对于真溶液,虽然分子或离子更小,但因散射光的强度随散射粒子体积的减小而明显减弱,因此,真溶液对光的散射作用很微弱。此外,散射光的强度还随分散体系中粒子浓度增大而增强。所以说,胶体能有丁达尔现象,而溶液几乎没有,可以采用丁达尔现象来区分胶体和溶液。1869年,英国科学家约翰·丁达尔研究了此现象。

形成

[编辑]

丁达尔现象是胶体中分散质微粒对可见光(波长为400-700nm)散射而形成的。它在实验室里可用于胶体与溶液的鉴别。光射到微粒上可以发生两种情况,一是当微粒直径大于入射光波长很多倍时,发生光的反射;二是微粒直径小于入射光的波长时,发生光的散射,散射出来的光称为乳光。散射光的强度,随着颗粒半径增加而变化。悬(乳)浊液分散质微粒直径太大,对于入射光只有反射而不散射;溶液里溶质微粒太小,对于入射光散射很微弱,观察不到丁达尔现象;只有溶胶才有比较明显的乳光,这时微粒好像一个发光体,无数发光体散射结果,就形成了光的通路。其还會随着微粒浓度增大而增加,因此进行实验时,溶胶浓度不要太稀。當光射向溶液時,光受到的散射較少,大部分光都能通過溶液。但射向膠體時,膠體的粒子散射光,使得那些粒子有被散射的光的顏色。最易看見的例子便是藍色天空。清晨,在茂密的树林中,常常可以看到从枝叶间透过的一道道光柱,类似这种自然界的现象,也是丁达尔现象。这是因为云、雾、烟尘也是胶体,只是这些胶体的分散剂是空气,分散质是微小的尘埃或液滴。

參見

[编辑]

外部連結

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy