Loading [MathJax]/jax/output/CommonHTML/jax.js

Content-Length: 14238 | pFad | http://planetmath.org/automaticgroup

automatic group

automatic group


Let G be a finitely generated group. Let A be a finite generating set for G under inversesMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

G is an automatic groupMathworldPlanetmath if there is a languagePlanetmathPlanetmath LA* and a surjective map f:LG such that

  • L can be checked by a finite automaton (http://planetmath.org/DeterministicFiniteAutomaton)

  • The language of all convolutions of x,y where f(x)=f(y) can be checked by a

  • For each aA, the language of all convolutions of x,y where f(x).a=f(y) can be checked by a

(A,L) is said to be an automatic structure for G.

Note that by taking a finitely generatedMathworldPlanetmath semigroupPlanetmathPlanetmath S, and some finite generating set A, these conditions define an automatic semigroup.

Title automatic group
Canonical name AutomaticGroup
Date of creation 2013-03-22 14:16:54
Last modified on 2013-03-22 14:16:54
Owner mathcam (2727)
Last modified by mathcam (2727)
Numerical id 7
Author mathcam (2727)
Entry type Definition
Classification msc 20F10
Related topic AutomaticPresentation
Defines automatic semigroup
Defines automatic structure








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://planetmath.org/automaticgroup

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy