Content-Length: 13451 | pFad | http://planetmath.org/banachsteinhaustheorem

Banach-Steinhaus theorem

Banach-Steinhaus theorem


Let X be a Banach spaceMathworldPlanetmath and Y a normed spaceMathworldPlanetmath. If a family (X,Y) of bounded operatorsMathworldPlanetmathPlanetmath from X to Y satisfies

sup{T(x):T}<

for each xX, then

sup{T:T}<,

i.e. is a boundedPlanetmathPlanetmathPlanetmathPlanetmath subset of (X,Y) with the usual operator norm. In other words, there exists a constant c such that for all xX and T,

Txcx.
Title Banach-Steinhaus theorem
Canonical name BanachSteinhausTheorem
Date of creation 2013-03-22 14:48:39
Last modified on 2013-03-22 14:48:39
Owner Koro (127)
Last modified by Koro (127)
Numerical id 5
Author Koro (127)
Entry type Theorem
Classification msc 46B99
Synonym Principle of Uniform Boundedness
Synonym Uniform Boundedness Principle








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://planetmath.org/banachsteinhaustheorem

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy