Content-Length: 10266 | pFad | http://planetmath.org/cumulantgeneratingfunction

cumulant generating function

cumulant generating function


Given a random variableMathworldPlanetmath X, the cumulant generating function of X is the following function:

HX(t)=lnE[etX]

for all tR in which the expectation converges.

In other , the cumulant generating function is just the logarithm of the moment generating function.

The cumulant generating function of X is defined on a (possibly degenerate) interval containing t=0; one has HX(0)=0; moreover, HX(t) is a convex function (http://planetmath.org/ConvexFunction). (Indeed, the moment generating function is defined on a possibly degenerate interval containing t=0, which image is a positive interval containing t=1; so the logarithm is defined on the same interval on which is defined the moment generating function.)

The kth-derivative of the cumulant generating function evaluated at zero is the kth cumulant of X.

Title cumulant generating function
Canonical name CumulantGeneratingFunction
Date of creation 2013-03-22 16:16:24
Last modified on 2013-03-22 16:16:24
Owner Andrea Ambrosio (7332)
Last modified by Andrea Ambrosio (7332)
Numerical id 17
Author Andrea Ambrosio (7332)
Entry type Definition
Classification msc 60E05
Related topic MomentGeneratingFunction
Related topic CharacteristicFunction2








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://planetmath.org/cumulantgeneratingfunction

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy