Processing math: 31%

Content-Length: 16554 | pFad | http://planetmath.org/semifield

semifield

semifield


There are different definitions of semifield.  We give three such which are not equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/BiconditionalMathworldPlanetmathPlanetmath).

Let K be a set with two binary operationsMathworldPlanetmath+” and “”.

  • Semifield  (K,+,)  is a semiringMathworldPlanetmath where all non-zero elements have a multiplicative inverse.

  • Semifield  is the algebraic system(K,+,),  where  (K,+)  is a group (identityPlanetmathPlanetmathPlanetmathPlanetmath :=),  the multiplicationPlanetmathPlanetmathdistributes over the addition+”,  K the multiplicative identity  :=1  and all equationsax=b  and  ya=b  with  a0  have solutions x, y in K.

  • Semifield  (K,+,)satisfies all postulatesMathworldPlanetmath of field except the associativity of the multiplication “”.

Title semifield
Canonical name Semifield
Date of creation 2013-03-22 15:45:46
Last modified on 2013-03-22 15:45:46
Owner CWoo (3771)
Last modified by CWoo (3771)
Numerical id 7
Author CWoo (3771)
Entry type Definition
Classification msc 16Y60
Classification msc 12K10
Related topic NonAssociativeAlgebra








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://planetmath.org/semifield

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy