About: Complex torus

An Entity of Type: Manifold103717750, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group

Property Value
dbo:abstract
  • In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way. For n = 1 this is the classical period lattice construction of elliptic curves. For n > 1 Bernhard Riemann found necessary and sufficient conditions for a complex torus to be an algebraic variety; those that are varieties can be embedded into complex projective space, and are the abelian varieties. The actual projective embeddings are complicated (see equations defining abelian varieties) when n > 1, and are really coextensive with the theory of theta-functions of several complex variables (with fixed modulus). There is nothing as simple as the cubic curve description for n = 1. Computer algebra can handle cases for small n reasonably well. By Chow's theorem, no complex torus other than the abelian varieties can 'fit' into projective space. (en)
  • En matemáticas, un toro complejo es un tipo particular de variedad compleja M cuya variedad diferenciable subyacente es un toro en el sentido habitual (es decir, el producto cartesiano de algún número N de circunferencias). Aquí N debe ser el número par 2n, donde n es la de M. Todas estas estructuras complejas se pueden obtener de la siguiente manera: tómese una red Λ en Cn considerada como espacio vectorial real; entonces el grupo cociente Cn/Λ es una variedad compleja compacta. Todos los toros complejos, hasta el isomorfismo, se obtienen de esta manera. Para n = 1, esta es la construcción reticular del período clásico de las curvas elípticas. Para n > 1, Bernhard Riemann encontró las condiciones necesarias y suficientes para que un toro complejo sea una variedad algebraica; los que son variedades pueden integrarse en un espacio proyectivo complejo, y son las . Las incorporaciones proyectivas reales son complicadas (véase ) cuando n > 1, y son realmente coextensivas con la teoría de las funciones theta de varias variables complejas (con módulo fijo). No hay nada tan simple como la descripción de la para n = 1. El álgebra computacional puede manejar casos pequeños razonablemente bien. Según el , ningún toro complejo aparte de las variedades abelianas puede 'encajar' en el espacio proyectivo. (es)
  • Комплексный тор — это некоторый вид комплексного многообразия M, лежащее в основе гладкое многообразие которого является тором в обычном смысле (то есть прямым произведением некоторого числа N окружностей). Здесь N должно быть чётным числом 2n, где n — многообразия M. Все такие комплексные структуры могут быть получены следующим образом: возьмём решётку в Cn, которое рассматривается как вещественное векторное пространство. Тогда факторгруппа является компактным комплексным многообразием. Все комплексные торы, с точностью до изоморфизмов, получаются таким образом. При n = 1 это будет классическое построение эллиптических кривых на основе . Для n > 1 Бернхард Риман нашёл необходимые и достаточные условия для комплексного тора, чтобы оно было абелевым многообразием. Если они многообразиями являются, их можно вложить в и они являются абелевыми многообразиями. Актуальные проективные вложения сложны (см. ), когда n > 1 и, на самом деле, совпадают с теорией тета-функций от нескольких комплексных переменных (с фиксированным модулем). Нет ничего проще, чем описание кубической кривой для n = 1. Компьютерная алгебра может работать со случаями малого n сравнительно точно. По никакой тор, отличный от абелевого многообразия, может быть «помещено» в проективное пространство. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3055042 (xsd:integer)
dbo:wikiPageLength
  • 30362 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124779777 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group (en)
  • En matemáticas, un toro complejo es un tipo particular de variedad compleja M cuya variedad diferenciable subyacente es un toro en el sentido habitual (es decir, el producto cartesiano de algún número N de circunferencias). Aquí N debe ser el número par 2n, donde n es la de M. Todas estas estructuras complejas se pueden obtener de la siguiente manera: tómese una red Λ en Cn considerada como espacio vectorial real; entonces el grupo cociente Cn/Λ (es)
  • Комплексный тор — это некоторый вид комплексного многообразия M, лежащее в основе гладкое многообразие которого является тором в обычном смысле (то есть прямым произведением некоторого числа N окружностей). Здесь N должно быть чётным числом 2n, где n — многообразия M. Все такие комплексные структуры могут быть получены следующим образом: возьмём решётку в Cn, которое рассматривается как вещественное векторное пространство. Тогда факторгруппа (ru)
rdfs:label
  • Complex torus (en)
  • Toro complejo (es)
  • Комплексный тор (ru)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy