An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where .

Property Value
dbo:abstract
  • In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5). More generally, the special case α = β turns Jacobi polynomials into Gegenbauer polynomials, in which case the technique is sometimes called Gauss–Gegenbauer quadrature. Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where Γ denotes the Gamma function and P(α, β)n(x) the Jacobi polynomial of degree n. The error term (difference between approximate and accurate value) is: where . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 18583450 (xsd:integer)
dbo:wikiPageLength
  • 3273 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 932010286 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where . (en)
rdfs:label
  • Gauss–Jacobi quadrature (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy