An Entity of Type: language, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In point-set topology, an indecomposable continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of its proper subcontinua. In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum. Indecomposable continua have been used by topologists as a source of counterexamples. They also occur in dynamical systems.

Property Value
dbo:abstract
  • In point-set topology, an indecomposable continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of its proper subcontinua. In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum. Indecomposable continua have been used by topologists as a source of counterexamples. They also occur in dynamical systems. (en)
  • En mathématiques, et plus précisément en topologie, on appelait continu un espace métrique compact et connexe. On dit qu'un tel espace E est un continu indécomposable s'il n'est pas réunion de deux continus (distincts de E). Le continu BJK est un exemple de continu indécomposable. Il fut découvert par Brouwer en 1910, et ce fut simplifié par Zygmunt Janiszewski et ensuite par Bronisław Knaster, qui donna aussi une preuve complète de son indécomposabilité On peut construire la frontière de ce continu en commençant avec l'ensemble de Cantor C sur l'horizontale. Les points de l'ensemble sont liés par des demi-cercles. Pour tout point x dans l'ensemble C, le point (1-x) est aussi dans C, et ces deux points sont joints par un arc passant par en haut. Pour tout point x dans C autre que 0, il existe un n tel que , et le point est aussi dans C et se trouve entre les mêmes limites ; ces deux points sont joints par un arc passant par en dessous. (fr)
  • Несжимаемый континуум — континуум, который нельзя представить как объединение двух его собственных подконтинуумов. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3261244 (xsd:integer)
dbo:wikiPageLength
  • 8383 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1115443387 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In point-set topology, an indecomposable continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of its proper subcontinua. In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum. Indecomposable continua have been used by topologists as a source of counterexamples. They also occur in dynamical systems. (en)
  • Несжимаемый континуум — континуум, который нельзя представить как объединение двух его собственных подконтинуумов. (ru)
  • En mathématiques, et plus précisément en topologie, on appelait continu un espace métrique compact et connexe. On dit qu'un tel espace E est un continu indécomposable s'il n'est pas réunion de deux continus (distincts de E). Le continu BJK est un exemple de continu indécomposable. Il fut découvert par Brouwer en 1910, et ce fut simplifié par Zygmunt Janiszewski et ensuite par Bronisław Knaster, qui donna aussi une preuve complète de son indécomposabilité (fr)
rdfs:label
  • Continu indécomposable (fr)
  • Indecomposable continuum (en)
  • Несжимаемый континуум (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy