An Entity of Type: WikicatSeveralComplexVariables, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set , we have If does not have a boundary, the following approximation result can be useful.

Property Value
dbo:abstract
  • In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set is a relatively compact subset of for all real numbers In other words, a domain is pseudoconvex if has a continuous plurisubharmonic . Every (geometrically) convex set is pseudoconvex. However, there are pseudoconvex domains which are not geometrically convex. When has a (twice continuously differentiable) boundary, this notion is the same as Levi pseudoconvexity, which is easier to work with. More specifically, with a boundary, it can be shown that has a defining function; i.e., that there exists which is so that , and . Now, is pseudoconvex iff for every and in the complex tangent space at p, that is, , we have If does not have a boundary, the following approximation result can be useful. Proposition 1 If is pseudoconvex, then there exist bounded, strongly Levi pseudoconvex domains with (smooth) boundary which are relatively compact in , such that This is because once we have a as in the definition we can actually find a C∞ exhaustion function. (en)
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 命題1 G が擬凸であるなら、境界が C∞ 級(滑らか)で、G 内で相対コンパクトであるような有界強レヴィ擬凸領域 Gk ⊂ G で を満たすものが存在する。 この命題がなぜ成立するかと言うと、定義におけるような φ に対して、実際に C∞ エグゾースチョン函数 (exhaustion function) を得ることが出来るからである。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3235998 (xsd:integer)
dbo:wikiPageLength
  • 4584 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124364541 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 6056 (xsd:integer)
  • p/p075650 (en)
dbp:title
  • Pseudo-convex and pseudo-concave (en)
  • Pseudoconvex (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set , we have If does not have a boundary, the following approximation result can be useful. (en)
  • 数学の多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、英: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。 今 を領域、すなわち、開連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して が G の相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。 G が C2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および ∂G = {ρ = 0} を満たすような C2 級の ρ: Cn → R の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち を満たすような w に対して、 が成立することである。 G の境界が C2 級でないなら、次の近似的な結果が有用となる。 を満たすものが存在する。 (ja)
rdfs:label
  • 擬凸性 (ja)
  • Pseudoconvexity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy