An Entity of Type: scientist, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping.

Property Value
dbo:abstract
  • En théorie de l'homotopie (une branche des mathématiques et plus précisément de la topologie algébrique), le théorème de Whitehead établit que si une application continue f entre deux espaces topologiques connexes X et Y induit un isomorphisme sur tous leurs groupes d'homotopie, alors f est une équivalence d'homotopie dès que X et Y ont le type d'homotopie de CW-complexes. Ce résultat a été démontré par J. H. C. Whitehead dans deux articles de référence de 1949 et justifie l'introduction de la notion de CW-complexes faite dans ces articles. (fr)
  • In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping. (en)
  • У алгебричній топології теорема Вайтхеда стверджує, що якщо неперервне відображення f між CW-комплексами X і Y породжує ізоморфізми на всіх групах гомотопій, то f є гомотопною еквівалентністю. Теорему довів у 1949 році англійський математик Джон Вайтхед для демонстрації корисності введеного ним поняття CW-комплексу. (uk)
  • 在數學領域代數拓撲學的同倫論中,懷特黑德定理說,拓撲空間X和Y之間的連續映射f,誘導出所有同倫群之間的同構,則當X和Y是連通,並都有CW複形的同倫型的時候,f是同倫等價。這條定理是J.H.C.懷特黑德在1949年的兩篇重要論文中證明,給出理由以他在論文所引入的CW複形概念作為研究對象。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 976793 (xsd:integer)
dbo:wikiPageLength
  • 4319 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089520597 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En théorie de l'homotopie (une branche des mathématiques et plus précisément de la topologie algébrique), le théorème de Whitehead établit que si une application continue f entre deux espaces topologiques connexes X et Y induit un isomorphisme sur tous leurs groupes d'homotopie, alors f est une équivalence d'homotopie dès que X et Y ont le type d'homotopie de CW-complexes. Ce résultat a été démontré par J. H. C. Whitehead dans deux articles de référence de 1949 et justifie l'introduction de la notion de CW-complexes faite dans ces articles. (fr)
  • In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping. (en)
  • У алгебричній топології теорема Вайтхеда стверджує, що якщо неперервне відображення f між CW-комплексами X і Y породжує ізоморфізми на всіх групах гомотопій, то f є гомотопною еквівалентністю. Теорему довів у 1949 році англійський математик Джон Вайтхед для демонстрації корисності введеного ним поняття CW-комплексу. (uk)
  • 在數學領域代數拓撲學的同倫論中,懷特黑德定理說,拓撲空間X和Y之間的連續映射f,誘導出所有同倫群之間的同構,則當X和Y是連通,並都有CW複形的同倫型的時候,f是同倫等價。這條定理是J.H.C.懷特黑德在1949年的兩篇重要論文中證明,給出理由以他在論文所引入的CW複形概念作為研究對象。 (zh)
rdfs:label
  • Théorème de Whitehead (fr)
  • Whitehead theorem (en)
  • Теорема Вайтхеда (uk)
  • 懷特黑德定理 (zh)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy