login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A061038
Denominator of 1/4 - 1/n^2.
33
1, 36, 16, 100, 9, 196, 64, 324, 25, 484, 144, 676, 49, 900, 256, 1156, 81, 1444, 400, 1764, 121, 2116, 576, 2500, 169, 2916, 784, 3364, 225, 3844, 1024, 4356, 289, 4900, 1296, 5476, 361, 6084, 1600, 6724, 441, 7396, 1936, 8100, 529, 8836
OFFSET
2,2
LINKS
FORMULA
a(4n+2) = (2n+1)^2, a(2n+3) = (4n+6)^2, a(4n+4) = (4n+4)^2. - Ralf Stephan, Jun 10 2005
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 25 2011
From Bruno Berselli, Mar 21 2011: (Start)
G.f.: x^2*(1 +36*x +16*x^2 +100*x^3 +6*x^4 +88*x^5 +16*x^6 +24*x^7 +x^8 +4*x^9 +4*x^11)/(1-x^4)^3.
a(n) = (1/64)*( n*(16 - (1+(-1)^n)*(5-i^n)) )^2 with i=sqrt(-1).
a(n) = (n/(n-4))^2 * a(n-4) for n>5. (End)
a(n) = 4*n^2 / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=2} 1/a(n) = Pi^2/6 - 1/4. - Amiram Eldar, Aug 12 2022
MATHEMATICA
Table[Denominator[1/4 - 1/n^2], {n, 2, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 36, 16, 100, 9, 196, 64, 324, 25, 484, 144, 676}, 50] (* Harvey P. Dale, Aug 05 2018 *)
PROG
(PARI) a(n) = { denominator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
(Magma) [ Denominator(1/4-1/n^2): n in [2..50] ]; // Vincenzo Librandi, Feb 10 2011
(Haskell)
import Data.Ratio ((%), denominator)
a061038 n = denominator (1%4 - 1%n^2) -- Reinhard Zumkeller, Jan 22 2012
(SageMath)
def A061038(n): return denominator(1/4 - 1/n^2)
[A061038(n) for n in range(2, 51)] # G. C. Greubel, Apr 18 2023
CROSSREFS
See A061037 for comments, references, links.
Cf. A145979. - Bruno Berselli, Mar 21 2011
Sequence in context: A298572 A260383 A056770 * A058231 A008894 A033973
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, May 26 2001
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy