OFFSET
2,2
LINKS
Harry J. Smith, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
FORMULA
a(4n+2) = (2n+1)^2, a(2n+3) = (4n+6)^2, a(4n+4) = (4n+4)^2. - Ralf Stephan, Jun 10 2005
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 25 2011
From Bruno Berselli, Mar 21 2011: (Start)
G.f.: x^2*(1 +36*x +16*x^2 +100*x^3 +6*x^4 +88*x^5 +16*x^6 +24*x^7 +x^8 +4*x^9 +4*x^11)/(1-x^4)^3.
a(n) = (1/64)*( n*(16 - (1+(-1)^n)*(5-i^n)) )^2 with i=sqrt(-1).
a(n) = (n/(n-4))^2 * a(n-4) for n>5. (End)
a(n) = 4*n^2 / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=2} 1/a(n) = Pi^2/6 - 1/4. - Amiram Eldar, Aug 12 2022
MATHEMATICA
Table[Denominator[1/4 - 1/n^2], {n, 2, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 36, 16, 100, 9, 196, 64, 324, 25, 484, 144, 676}, 50] (* Harvey P. Dale, Aug 05 2018 *)
PROG
(PARI) a(n) = { denominator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
(Magma) [ Denominator(1/4-1/n^2): n in [2..50] ]; // Vincenzo Librandi, Feb 10 2011
(Haskell)
import Data.Ratio ((%), denominator)
a061038 n = denominator (1%4 - 1%n^2) -- Reinhard Zumkeller, Jan 22 2012
(SageMath)
def A061038(n): return denominator(1/4 - 1/n^2)
[A061038(n) for n in range(2, 51)] # G. C. Greubel, Apr 18 2023
CROSSREFS
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, May 26 2001
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved