Computer Science ›› 2019, Vol. 46 ›› Issue (7): 211-216.doi: 10.11896/j.issn.1002-137X.2019.07.032
• Artificial Intelligence • Previous Articles Next Articles
JIANG Hua,WU Yao,WANG Xin,WANG Hui-jiao
CLC Number:
[1]LIU Z H,WU X F,XU J P,et al.Argoocean observations in China for 15 years [J].Progressin Geoscience,2016,31(5):445-460.(in Chinese) 刘增宏,吴晓芬,许建平,等.中国Argo海洋观测十五年[J].地球科学进展,2016,31(5):445-460. [2]DING J,WANG L,SHEN D,et al.An Anomaly Detection System on Big Data[J].Natural Science Journal of Hainan University,2015,33(1):24-27. [3]WANG H Z,ZHANG R,WANG G H,et al.Quality Control Technology of temperature and Salt profile observation data of Argo buoy [J].Journal of Geophysics,2012,55(2):577-588.(in Chinese) 王辉赞,张韧,王桂华,等.Argo浮标温盐剖面观测资料的质量控制技术[J].地球物理学报,2012,55(2):577-588. [4]SHAOLEI L U,HONG L I,LIU Z.Improvement of Argo salini- ty data delayed-mode quality control Method[J].Journal of Pla University of Science&Technology,2014,15(6):598-606. [5]TZORTZIS G,LIKAS A,TZORTZIS G.The MinMaxk-Means clustering algorithm[J].Pattern Recognition,2014,47(7):2505-2516. [6]CHEN G P,WANG W P,HUANG J,et al.Improved initial clustering center selection method for k-means algorithm [ J ].Journal of Chinese Computer Systems,2012,33(6):1320-1323. [7]XING C Z,GU H.K-means algorithm for optimizing initial clustering centers based on average density [J].Computer Enginee-ring and Application,2014,50(20):135-138.(in Chinese) 邢长征,谷浩.基于平均密度优化初始聚类中心的k-means算法[J].计算机工程与应用,2014,50(20):135-138. [8]CELEBI M E,KINGRAVI H A,VELA P A.A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm[J].Expert Systems with Applications,2013,40(1):200-210. [9]HAN Z J.Adaptive K-means initialization method based on data denseness [J].Computer Applications and Software,2014,31(2):182-187.(in Chinese) 韩最蛟.基于数据密集性的自适应K均值初始化方法[J].计算机应用与软件,2014,31(2):182-187. [10]ZUO J,CHEN Z M.Anomaly detection algorithm based on improved K-means clustering [J].Computer Science,2016,43(8):258-261.(in Chinese) 左进,陈泽茂.基于改进K均值聚类的异常检测算法[J].计算机科学,2016,43(8):258-261. [11]CHEN G P,WANG W P,HUANG J.An improved K-means algorithm for initial clustering Center selection [J].Minicomputer System,2012,33(6):170-173.(in Chinese) 陈光平,王文鹏,黄俊.一种改进初始聚类中心选择的K-means算法[J].小型微型计算机系统,2012,33(6):170-173. [12]HAN C,YUAN Y S,MEI T,et al.Outlier Detection algorithm based on K-means [J].Computer Engineering and Application,2017,53(3):58-63.(in Chinese) 韩崇,袁颖珊,梅焘,等.基于K-means的数据流离群点检测算法[J].计算机工程与应用,2017,53(3):58-63. [13]SAMRIN R,VASUMATHI D.Hybrid Weighted K-Means Clustering and Artificial Neural Network for an Anomaly-Based Network Intrusion Detection System[J].Journal of Intelligent Systems,2016,27(2):135-147. [14]SHEN G.Improved k-means initialization method based on data density[J].Computer Engineering & Applications,2014,51(11):139-144. [15]TZORTZIS G,LIKAS A,TZORTZIS G.The MinMax k-Meansclustering algorithm[J].Pattern Recognition,2014,47(7):2505-2516. |
[1] | XU Tian-hui, GUO Qiang, ZHANG Cai-ming. Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance [J]. Computer Science, 2022, 49(9): 101-110. |
[2] | WANG Zi-kai, ZHU Jian, ZHANG Bo-jun, HU Kai. Research and Implementation of Parallel Method in Blockchain and Smart Contract [J]. Computer Science, 2022, 49(9): 312-317. |
[3] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[4] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[5] | FU Li-yu, LU Ge-hao, WU Yi-ming, LUO Ya-ling. Overview of Research and Development of Blockchain Technology [J]. Computer Science, 2022, 49(6A): 447-461. |
[6] | GAO Jian-bo, ZHANG Jia-shuo, LI Qing-shan, CHEN Zhong. RegLang:A Smart Contract Programming Language for Regulation [J]. Computer Science, 2022, 49(6A): 462-468. |
[7] | MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530. |
[8] | LI Bo, XIANG Hai-yun, ZHANG Yu-xiang, LIAO Hao-de. Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios [J]. Computer Science, 2022, 49(6A): 723-728. |
[9] | ZHOU Hang, JIANG He, ZHAO Yan, XIE Xiang-peng. Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit [J]. Computer Science, 2022, 49(6A): 771-776. |
[10] | ZHAO Zheng-peng, LI Jun-gang, PU Yuan-yuan. Low-light Image Enhancement Based on Retinex Theory by Convolutional Neural Network [J]. Computer Science, 2022, 49(6): 199-209. |
[11] | WANG Si-ming, TAN Bei-hai, YU Rong. Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence [J]. Computer Science, 2022, 49(6): 32-38. |
[12] | SUN Hao, MAO Han-yu, ZHANG Yan-feng, YU Ge, XU Shi-cheng, HE Guang-yu. Development and Application of Blockchain Cross-chain Technology [J]. Computer Science, 2022, 49(5): 287-295. |
[13] | YANG Zhen, HUANG Song, ZHENG Chang-you. Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE [J]. Computer Science, 2022, 49(5): 325-332. |
[14] | REN Chang, ZHAO Hong, JIANG Hua. Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism [J]. Computer Science, 2022, 49(5): 333-340. |
[15] | JI Ying-rui, YUAN Liang, ZHANG Yun-quan. Parallelization and Locality Optimization for Red-Black Gauss-Seidel Stencil [J]. Computer Science, 2022, 49(5): 363-370. |
|